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Abstract�With a goal of automating visual analysis of elec-
troencephalogram (EEG) data and assessing the performance of
various features in seizure recognition, we introduce a mathe-
matical model capable of recognizing patient-speci�c epileptic
seizures with high accuracy. We represent multi-channel EEG
signals (recorded extracranially) using a set of features. These
features expected to have distinct trends during seizure and non-
seizure periods include features from both time and frequency
domains. The contributions of this paper are threefold. First,
we rearrange multi-channel EEG signals as a third-order tensor
called an Epilepsy Feature Tensor with modes: time epochs,
features and electrodes. Second, we model the Epilepsy Feature
Tensor using a multilinear regression model, i.e., Multilinear
Partial Least Squares regression, which is the generalization of
Partial Least Squares (PLS) regression to higher-order datasets.
This two-step approach facilitates EEG data analysis from
multiple electrodes represented by several features from different
domains. Third, we identify which features (in our feature set)
are important for seizure recognition.

Our results based on the analysis of 19 seizures from 5
epileptic patients demonstrate that multiway analysis of an
Epilepsy Feature Tensor can detect (patient-speci�c) seizures with
classi�cation accuracy ranging between 77-96%.

I. INTRODUCTION

The identi�cation of an epileptic seizure period based
on visual analysis of multi-channel EEG signals is a time-
consuming and subjective task. Automation of seizure recog-
nition would, to a certain extent, remove the subjectivity
introduced by visual analysis, which is often susceptible to
poor judgments due to fatigue, etc. Extensive research has been
dedicated to epileptic EEG analysis from diverse disciplines.
In all these studies, the seizure onset and duration of a seizure
are marked by neurologists. Thus, an automated seizure recog-
nition method would not only remove the subjectivity in
identifying a seizure period but also provide an objective and
common basis for further research in this �eld.

A great deal of effort has also been invested in exploring
the features in order to de�ne the signature of a seizure. These
features include statistical complexity measures (e.g., fractal
dimension, approximate entropy, etc.) as well as other features
from time (e.g., higher-order statistics of the signal in time
domain, Hjorth parameters, etc.) and frequency domain (e.g.,
spectral skewness, spectral entropy, etc.). An almost complete
list of the features used in characterization of epileptic seizure
dynamics can be found in recent studies ([1], [2]).

The procedure for feature extraction from multi-channel
EEG data is often as follows: First, the EEG signal recorded
at an electrode is divided into m time epochs (overlapping

or non-overlapping). Then n features are extracted from each
epoch. Consequently, a signal from a single channel can be
represented as a matrix of size m × n. In the literature,
studies often make assumptions prior to the analysis and
focus on the signal from a certain electrode by relying on
the knowledge of seizure localization. For instance, in [1],
seizure dynamics are analyzed solely on a speci�c electrode,
which has the characteristics of an epileptogenic focus (seizure
origin). Another approach commonly employed in literature is
to analyze one feature at a time, as in [2] and [3], rather than
analyzing the combined effect of several features. However, it
is extremely important to realize that while a single feature
may not be very affective in discriminating between seizure
and non-seizure periods, linear or nonlinear combinations of
several features may well be. In addition to the possibility
of enhanced performance, simultaneous analysis of features
also enables the performance comparison of features on the
same data using the same classi�er. Therefore, in this study,
we introduce a new approach, which analyzes EEG data from
all channels by characterizing the signals using a number of
features. We propose to rearrange signals from p channels as a
third-order tensor of size m×n× p as shown in Figure 1 and
model this tensor using multilinear regression analysis. To our
knowledge, this is the �rst study on simultaneous analysis of
EEG data from multiple electrodes based on several features
from different domains.

In this study, we are particularly interested in distinguishing
a seizure (ictal) period from a pre-seizure (preictal) and a post-
seizure (post-ictal) period, which ends right before and starts
right after a seizure period, respectively. Moreover, our goal
is to identify how much each feature contributes to seizure
recognition. This study, therefore, differs from the related work
on seizure detection and prediction, e.g., [2], [4], [5]. They
either focus on the identi�cation of features distinguishing
between interictal and preictal periods or aim to detect an
epileptic seizure with minimum possible delay using features
from a particular domain. Nevertheless, the multiway data
construction and analysis approach introduced in this paper
can easily be extended to seizure prediction and detection.
How accurate such an approach would be is the focus of future
studies.

Multilinear models have previously been employed in sev-
eral applications in neuroscience. In [6], EEG data and data
collected through experiments with different doses of a drug
are arranged as a six-way array with modes: EEG, patients,



Fig. 1. Epilepsy Feature Tensor. X ∈ RI×J×K represents the multi-channel
EEG data, which are transformed into the feature space by computing certain
measures characterizing seizure dynamics. Each entry of X, xijk , corresponds
to the value of jth feature of ith time epoch at kth electrode.

doses, conditions, etc. The analysis of the six-way dataset
demonstrates that signi�cant information is successfully ex-
tracted from a complex drug dataset by a multilinear model
rather than two-way models such as Principal Component
Analysis (PCA). Multiway models have become more popular
in neuroscience with the idea of decomposing EEG data into
space-time-frequency components [7]. The three-way array
constructed from multi-channel EEG data in [7] with modes
time samples × frequency × electrodes is analyzed using
a multilinear component model called Parallel Factor Analysis
model (PARAFAC). Components extracted by PARAFAC are
observed to demonstrate the temporal, spectral and spatial
signatures of EEG. PARAFAC models with nonnegativity
constraints are later used in another study on event-related
potentials (ERP) to �nd the underlying structure of brain dy-
namics [8]. These studies have also motivated the application
of multiway models for understanding the structure of epileptic
seizures ([9], [10]). Similar to the three-way array constructed
in [7], multi-channel ictal EEG data are arranged as a third-
order tensor with modes time samples × frequency ×
electrodes in [9]. Components extracted by multiway models,
i.e., Tucker3 and PARAFAC, are used to explore the signatures
of a seizure in frequency and time domains as well as localize
the seizure origin. Based on the extracted signatures, artifacts
have also been identi�ed and later removed by multilinear
subspace analysis [10]. In addition to the applications of
multilinear component models, multilinear regression models
have also been previously employed in neuroscience, e.g., in
[11] for extracting the connection between EEG and fMRI
(functional magnetic resonance imaging) recordings.

A. Our Contributions
We address the problem of identifying an epileptic seizure

automatically as an alternative or a replacement for visual
analysis of EEG data. We introduce a novel approach, which
combines the recognition power of several features from dif-
ferent domains and classi�es epochs of signals from multiple
electrodes as seizure or non-seizure periods. Our contributions
in this paper are as follows:

1) We rearrange multi-channel EEG data as a third or-
der tensor, Epilepsy Feature Tensor, with modes: time

Fig. 2. Matricization of a three-way array in the �rst mode. A three-way
array X ∈ RI×J×K is unfolded in the �rst mode and a matrix of size
I×JK, denoted by X(1) is formed. Subscript in X(i) indicates the mode of
matricization.

epochs ×features × electrodes. We extract seven
features from both time and frequency domain and rep-
resent a signal using a set of feature vectors. We do not
make any assumptions about the seizure origin but rather
analyze the signals from all electrodes simultaneously.

2) We model Epilepsy Feature Tensors using a multilinear
regression model called Multilinear PLS and develop a
patient-speci�c seizure recognition method.

3) We observe that features from both the time and
frequency domains contribute to seizure recognition.
Among the features analyzed in this study, while me-
dian frequency and fractal dimension are the most
insigni�cant features in almost all patients, spectral
entropy, spectral skewness, Hjorth's activity, mobility
and complexity have been observed to be important
(with comparatively high regression coef�cients).

The organization of this paper is as follows: In Section
2, we include a brief introduction on higher-order datasets
and multilinear regression models. Features used in this study
are described concisely in Section 3. Section 4 discusses the
results, together with the characteristics of the EEG dataset.
We conclude, in Section 5, with future objectives in seizure
recognition.

II. METHODOLOGY

Regression models, e.g., multiple linear regression, PLS and
Principal Component Regression (PCR), etc., are commonly
applied in prediction and classi�cation problems in diverse
disciplines. While these models are employed on datasets of
order no higher than two (vectors or matrices), the independent
variable in this study is a third-order array (Figure 1). This
section brie�y introduces higher-order arrays and the regres-
sion model, i.e., Multilinear Partial Least Squares (N-PLS),
developed for higher-order data analysis.
A. Notation and Background

Multiway arrays, often referred to as tensors, are higher-
order generalizations of vectors and matrices. Higher-order
arrays are represented as X ∈ RI1×I2...×IN , where the order
of X is N (N > 2) while a vector and a matrix are arrays of
order 1 and 2, respectively.

We denote higher-order arrays using underlined boldface
letters, e.g., X, following the standard notation in the multi-
way literature [12]. Matrices and vectors are represented by



Algorithm 1 Multilinear PLS(X, y, N )
1: y0 = y, X0 = X(1)

2: for i = 1 to N do
3: z = yT

i−1Xi−1

Reshape z as a matrix Z ∈ RJ×K such that Z(m,n) =
z(m + J ∗ (n− 1))

4: {Compute singular value decomposition of matrix Z}
Z = USVT

5: wJ = U(:, 1), wK = V(:, 1)
WJ(:, i) = wJ , WK(:, i) = wK

6: T(:, i) = Xi−1(wK ⊗ wJ)

7: Xi = Xi−1 − T(:, i)(wK ⊗ wJ)′

8: bi = (TT T)−1TT yi−1 = T+yi−1

9: {Regression and De�ation}
yi = yi−1 − Tbi = (I− TT+)yi−1

10: end for
*
X(1) stands for the tensor X matricized in the �rst mode. Xi indicates
matricized data in the �rst mode updated/de�ated by the computation
of i components. A(i, j) represents the entry of matrix A at the ith

row and jth column while A(:, j) represents the jth column of matrix
A. WJ and WK correspond to the component matrices in the second
and third mode, respectively. T+ stands for pseudo-inverse de�ned
as T+ = (TT T)−1TT . ⊗ indicates Kronecker product [14].

boldface capital, e.g., X, and boldface lowercase letters, e.g.,
x, respectively. Scalars are denoted by lowercase letters, e.g.,
x.

In higher-order array terminology, each dimension of a
multiway array is called a mode (or a way) and the number of
variables in each mode is used to indicate the dimensionality
of a mode. For instance, X ∈ RI1×I2...×IN is a multiway array
with N modes (called N -way array or N th-order tensor) with
I1, I2, ...,IN dimensions in the �rst, second, ... , N th mode,
respectively.

A multiway array can be rearranged as a two-way array
by unfolding the slices in a certain mode, e.g., �rst mode
as shown in Figure 2. This operation is called matricization.
Rearranging multiway arrays as two-way datasets enables the
application of traditional component and regression models
for two-way datasets on multiway arrays. However, analyzing
multiway datasets with two-way methods may result in low
prediction accuracy, information loss and misinterpretation of
the results especially if the data are noisy [13]. Therefore,
we preserve the multimodality of the dataset and employ a
generalized version of a regression model, i.e., PLS, to higher-
order arrays.

B. Multilinear Partial Least Squares (N-PLS)
Multilinear PLS is introduced as a generalization of PLS to

multiway datasets [15]. This method can handle the situations
where dependent and/or independent variables are multiway
arrays. In this study, we con�ne our attention to the case

where the independent variable, X ∈ RI×J×K , is a three-
way array of type Epilepsy Feature Tensor and the dependent
variable, y ∈ RI , is a vector containing the class assignments
of time epochs (�rst mode). Multilinear PLS models the
dataset X by extracting a component, t ∈ RI , from the �rst
mode such that cov(t, y) is maximized. A pre-de�ned number
of components, N , is extracted iteratively and the matrix
T ∈ RI×N , whose columns are the extracted components
(t's), is constructed. In addition to T, component matrices,
WJ and WK , corresponding to the second and third mode,
respectively are also formed. The steps of the algorithm are
brie�y summarized in Algorithm 1 [16].

Once component matrices T, WJ and WK are formed
using Algorithm 1 and the model is built on the available
data points, the labels for the new samples, ynew, can also
be predicted. The predictions for new samples, Xnew, are
obtained by computing ynew = Tbt = Xnew(1)bpls. How bpls

and bt are related and computed using WJ and WK are given
in detail in [14]. Usually, the predictions are based on centered
X and y.

This prediction step enables us to build a model on available
seizures of a patient and then use the model to predict the
labels of epochs in new EEG recordings of a patient as seizure
or non-seizure.

III. FEATURES

An EEG recording from a single channel is a sequence
of time samples. One approach for analyzing a time series
is to divide the time series into time epochs and inspect
whether there are certain underlying dynamics in a particular
epoch. This could be achieved by extracting measures that
characterize those dynamics. Then each time epoch can be
represented using a set of measures called features. Let s(j)
denote the time sample at time j and s = {s(1), s(2), ...s(N)}
be the time sequence for a particular epoch of length N .
We represent each feature as fi(s), which denotes the ith

feature computed on time epoch s. In this section, we give
brief de�nitions of the features used in this paper.
A. Time domain

1) Hjorth parameters: Hjorth parameters including activity,
mobility and complexity are computed as de�ned in [1] as
follows:

Activity : f1(s) = σ2
s

Mobility : f2(s) = σs′/σs

Complexity : f3(s) = (σs′′/σs′)/(σs′/σs)

where σs stands for the standard deviation of a time sequence
s; s′ and s′′ denote the �rst and second difference of a time
series s, respectively.

2) Fractal Dimension (FD): In order to quantify the signal
complexity and self-similarity, we compute FD of each epoch
using Higuchi's algorithm [17] brie�y described below:
• Given a time series s, k new time series are generated with

different initial times (m = 1, ..k) denoted by sk
m, where

sk
m = {s(m), s(m + k), ..., s(m + b(N −m)/kc ∗ k)} and

N is the total number of samples in series s.



• The length of each time series, Lm(k) is computed:
Lm(k) = 1

k{ N−1
b(N−m)/kc∗k ∗ (

∑b(N−m)/kc
i=1 |s(m + i ∗ k) −

s(m + (i− 1) ∗ k)|)}
• L(k) is calculated by taking the average of Lm(k) over
m.
• If L(k) is proportional to k−D, this indicates that the

time series is fractal-like with dimension D, called the
fractal dimension. The slope of log(L(k)) vs. log( 1

k ) for
k = 1, 2, ..kmax

1 is used as an estimator of D.
FractalDimension : f4(s) = D

B. Frequency domain
1) Frequency Spectrum: We reduce the time series to a

stationary time series by taking the �rst difference of the signal
before computing the amplitude spectrum. Given a time series
s corresponding to a particular epoch, we use a Fast Fourier
Transform (FFT) to obtain the Fourier coef�cients, ck, where
ck = 1

N

∑N
t=1 s(t)e−i 2πk

N t. Based on the Fourier coef�cients,
we construct the amplitude spectrum using |ck|. The amplitude
spectrum is used to extract the �fth (f5(s)) and sixth (f6(s))
features, which are median frequency and skewness of the
amplitude spectrum, respectively.

2) Spectral Entropy: The last feature in this study is a
measure of spectral entropy used to quantify the uncertainty
in the frequency domain. Five frequency bands in accordance
with the traditional EEG frequency bands are chosen: δ (0.5
- 3.5Hz), θ (3.5 - 7.5Hz), α (7.5 - 12.5Hz), β (12.5 - 30Hz),
γ (> 30Hz). We apply continuous wavelet transform (CWT)
between 0.5-50Hz using a Mexican-hat wavelet as the mother
wavelet on each epoch. Wavelet coef�cients are later used to
observe the energy spread across these �ve frequency bands
in each epoch.

Let Ef be the estimate of the energy in frequency band f
and ET be the estimate for the total energy in all frequency
bands computed as follows:

Ef =

NX
i=1

SX
j=1

|cij |2

ET =

5X
f=1

Ef

where cij denotes the wavelet coef�cient corresponding to the
ith time sample in an epoch and jth scale2 and |cij |2 = cijc

∗
ij .

N is the length of an epoch and S is the number of scales.
We then compute spectral entropy, H , using Shannon's

entropy measure [18] as follows:

H = −
5X

f=1

Ef

ET
log(

Ef

ET
)

which is the seventh feature extracted from an epoch.
SpectralEntropy : f7(s) = H

The list of these features can easily be extended to a larger
set and the approach proposed in this paper will still be valid.

1Maximum interval time (kmax) is chosen to be 6.
2Scale is not the same as frequency but contains frequency information

(inversely proportional to frequency).

IV. RESULTS AND DISCUSSIONS

A. Data
Our dataset contains multi-channel EEG recordings of 19

seizures from 5 patients with different pathology substrates:
3 mesial temporal sclerosis (MTS); 1 dysembroyoplastic neu-
roepithelial tumor (DNET); 1 nonlesional. The EEG data have
been collected via scalp electrodes in the epilepsy monitoring
unit of Yeditepe University Hospital. The recording of EEG
with referential electrode Cz is used for computational analy-
ses. The number of seizures per patient, sampling frequencies,
epoch sizes as well as sizes of Epilepsy Feature Tensors
are given in Table I. EEG recordings in the dataset are not
preprocessed to remove artifacts and we know that eye and
muscle artifacts are present based on our previous study on
some of the patients used in this paper [10]3. The only �lter
applied on the data is the notch �lter at 50 Hz to remove the
artifact from the power source.

The data corresponding to a seizure of a patient contain
a certain amount of data before the seizure, the seizure
period and a certain amount of data after the seizure period.
Each signal is divided into epochs of 10 sec. (each epoch
typically contains 2000 or 4000 samples depending on the
sampling frequency.). The epochs are formed using a sliding
window approach such that consecutive epochs differ only in
100 samples4. Seven features are computed for all epochs
and a matrix of size nb of time epochs × 7 is created for
the signal from a single electrode. When all electrodes are
included in the analysis, this forms a three-way array of
nb of time epochs×7×18 for each seizure (Figure 3). Once the
tensor is built, we scale the three-way array within the feature
mode before the analysis since features have different ranges
of magnitudes. Scaling a three-way array within one mode
is different than scaling in two-way datasets. Unlike matrices
where columns or rows are scaled, in three-way case, whole
matrices need to be scaled [19]. For instance, while scaling X
(Figure 1) within feature mode, vertical slices are scaled.

The seizure period is marked by two neurologists for each
seizure of a patient. In accordance with the markings, the
epochs are divided into two classes: epochs that belong to
the seizure period and the ones outside the seizure period.
The dependent variable, i.e., y-vector in Algorithm 1, cor-
responding to the time epoch mode of an Epilepsy Feature
Tensor is then constructed such that: yi = 1 if ith epoch is
outside the seizure period and yi = 2 if ith epoch belongs to
the seizure period. Since epochs are formed using a sliding
window approach, some epochs contain samples from both
pre-seizure and seizure periods or both seizure and post-
seizure periods. These epochs are excluded in both training and
test sets so that the performance of the model is not affected
by epochs containing the characteristics of different seizure
dynamics.

3In this study, we have only chosen the patients with more than two seizures.
4We keep this number the same for all patients regardless of the sampling

frequency. We may also keep the overlap duration constant instead (We did
try for 50 samples for the patient with 200Hz sampling frequency and the
classi�cation accuracy slightly changes, i.e., 83.73%).



Fig. 3. Construction of training and test sets for a patient with three seizures. Si indicates the data for the ith seizure of a patient while Prei and Posti
indicate the recordings in pre-seizure and post-seizure periods corresponding to the ith seizure.

B. Results
1) Seizure Recognition: In order to assess the performance

of the model, we form a training set using all but one
seizure of a patient together with the corresponding labels
of the epochs in the training set (Before the analysis, both
independent and dependent data are centered). We regress
the data for all the seizures in the training set onto the y-
vector containing 1's and 2's (for non-seizure and seizure,
respectively) using Multilinear PLS regression and build a
model based on Algorithm 15. The model is then tested on
the test dataset, which contains the left-out seizure (Figure
3). Predicted classes for the epochs in the test set are real
numbers. A simple approach that rounds the predictions to
the nearest integer (1 or 2) is used to determine the class of
an epoch. This approach is not the optimal way and it can
possibly be improved by a classi�er like Linear Discriminant
Analysis (LDA), etc.

As seen in Algorithm 1, the number of components, N ,
is a user-de�ned parameter. In order to determine N , we
use an approach based on cross-validation. Each seizure of
a patient is left out once and tested for different number
of components ranging from 1 to 10. After all seizures are
tested once, we compare the predictions obtained by the model
for all seizures with the actual labels. We �nally pick the
component number, which gives the best overall classi�cation
accuracy6. The classi�cation accuracy is the percent of the

5Implementation of N-PLS in PLS Toolbox [20] running under MATLAB
is used for the analysis.

6It is also possible to fully automate the approach for picking the component
number. When a seizure of a patient is left out as a test case, the component
number can be determined in the training set using cross validation. The
component number which gives the highest accuracy in the training set can
be chosen as the component number to be used on the test set. We do not use
this approach for the time being since some patients have only 3 seizures.

number of epochs correctly assigned to their actual classes.
The last column of Table I shows the performance of the model
for �ve patients analyzed in this study and demonstrates that
we obtain promising classi�cation accuracies ranging between
77% and 96%. It is also possible to increase N beyond 10 and
obtain slightly better classi�cation. However, as the model gets
complex, the interpretation of features (discussed in the next
section) becomes harder.

In [3], the performance of different approaches in seizure
detection has been summarized by presenting the classi�cation
accuracies given in the literature for the publicly available
EEG dataset described in [21]. We would like to point out that
comparison of our results with those would be misleading due
to major differences in the type of the data. In this study, we
aim to differentiate between non-seizure and seizure phases
using multi-channel EEG data recorded extracranially. We
have also mentioned that non-seizure phases correspond to
pre-seizure and post-seizure periods. Therefore, our goal is to
mark the seizure period. On the other hand, in previous work
([3] and references therein), even if the problem de�nition
is presented as the differentiation of non-seizure and seizure
periods, the concept of non-seizure is de�ned differently.
Epochs that belong to a non-seizure period include seizure-
free data from healthy patients recorded extracranially as well
as seizure-free data from epilepsy patients recorded intracra-
nially. Consequently, in our case, it is more challenging to
differentiate a few seconds before and after a seizure period
from the seizure compared to differentiating EEG of a healthy
patient from the seizure. Besides, we obtain these results
without placing electrodes within the scalp but rather use the
recordings collected outside the cranial cavity. In addition
to these differences, we currently focus on patient-speci�c
seizure recognition and do not model the variation among



TABLE I
EEG DATASET

Patient-ID Seizures-ID Tensor Size Sampling Freq.(Hz) Epoch Size (Samples) Classi�cation Accuracy
1 1 322× 7× 18 200 2000
1 2 406× 7× 18 200 2000
1 3 202× 7× 18 200 2000 84.00%

1 4 202× 7× 18 200 2000
1 5 262× 7× 18 200 2000
2 1 938× 7× 18 400 4000
2 2 934× 7× 18 400 4000
2 3 946× 7× 18 400 4000 95.97%

2 4 974× 7× 18 400 4000
2 5 978× 7× 18 400 4000
3 1 690× 7× 18 400 4000
3 2 710× 7× 18 400 4000 76.94%

3 3 742× 7× 18 400 4000
4 1 830× 7× 18 400 4000
4 2 786× 7× 18 400 4000 94.05%

4 3 922× 7× 18 400 4000
5 1 1214× 7× 18 400 4000
5 2 1294× 7× 18 400 4000 81.66%

5 3 1210× 7× 18 400 4000

different patients.
2) Interpretation of Features: In order to understand the

contribution of each feature to seizure recognition, we model
all the seizures of a patient using N-PLS. We, �rst, combine all
seizures of a patient in a single Epilepsy Feature Tensor and
then regress onto the actual labels using the optimal number of
components chosen in the previous section. We determine the
regression coef�cients, i.e., bpls ∈ RJK×1, which indicate the
signi�cance of each variable in the prediction of time epoch
classes. There are J features and K electrodes. Consequently,
there is a regression coef�cient corresponding to each feature
recorded at each electrode. We rearrange bpls as a matrix of
electrodes by features and each entry in the matrix represents
the regression coef�cient corresponding to the feature recorded
at a particular electrode. The mean across the electrodes is then
used to evaluate the overall signi�cance of a single feature.

When we inspect the mean absolute regression coef�cients
of the features in Table II, we observe that:
• Some features, in particular spectral entropy, spectral skew-

ness, Hjorth's activity, mobility and complexity, have rela-
tively higher mean absolute regression coef�cients. Conse-
quently, they are more signi�cant compared to the remaining
features.
• On the other hand, regression coef�cients corresponding to

fractal dimension and median frequency are lower in mag-
nitude. Therefore, these features have the least contribution
in seizure recognition.
In addition to these observations, we detect that Patient2 and

Patient4, who have comparatively higher classi�cation accura-
cies (94.05% and 95.97%, respectively), also have almost the
same pattern in terms of regression coef�cients of the features.
On the other hand, the patterns in other patients are different.

TABLE II
MEAN ABSOLUTE REGRESSION COEFFICIENTS CORRESPONDING TO

FEATURES FOR DIFFERENT PATIENTS

Patient-ID f1 f2 f3 f4 f5 f6 f7
a

1 0.69 1.07 0.48 0.10 0.58 0.52 1.55
2 0.78 0.28 0.49 0.15 0.12 0.99 0.96
3 1.83 2.20 2.11 0.25 0.96 1.42 2.73
4 0.83 0.44 0.66 0.10 0.21 0.89 1.06
5 1.25 3.87 1.59 0.40 0.32 1.32 1.73

af1: Activity, f2: Mobility, f3: Complexity, f4: FD, f5: Median Freq.,
f6: Spectral Skewness, f7: Spectral Entropy

While spectral entropy, spectral skewness and activity are
the most signi�cant features in Patient2 and Patient4, we
observe that complexity and mobility are in the top three
signi�cant features in other patients. Relatively lower seizure
recognition accuracies in some patients may be attributed
to artifacts and features re�ecting the effects of artifacts or
even to subjectivity in visual analysis. We also acknowledge
that when compared with the clinical �ndings, classi�cation
accuracies are observed not to be correlated with lateralization
or underlying etiology for these �ve patients. However, we
need a larger dataset to generalize these observations.

V. CONCLUSION

We have introduced a multimodal approach with a goal
of automatically differentiating a seizure period from pre-
seizure and post-seizure periods in multi-channel ictal EEG.
The proposed approach enables the analysis and comparison
of a multitude of features from different domains. In addition
to that, signals from multiple electrodes can be analyzed



simultaneously by constructing a third-order tensor called an
Epilepsy Feature Tensor. We model the data using Multilinear
PLS regression and develop a mathematical model for patient-
speci�c seizure recognition with promising classi�cation ac-
curacies on �ve epileptic patients. Our approach characterizes
a patient's seizure dynamics with a set of features so it is
an initial but important step in terms of understanding the
differences in seizures of different patients.

Nevertheless, there are many research directions to explore.
First of all, our model focuses on patient-speci�c seizure
recognition. On the other hand, a more generalizable approach,
which understands and models the variation among patients
is also signi�cant in terms of seizure recognition and patient
treatment. Secondly, this study has only focused on capturing
the linear relations in the feature set. However, whether mod-
eling nonlinear relations between features (also suggested in
[4]) would improve the classi�cation accuracy is an interesting
question. Finally, we hope to work on a larger dataset where
each patient has many seizures. In our dataset, origins of
all seizures for a particular patient are the same. In a larger
dataset, with many seizures from a patient, we would like to
explore the performance of the model in the cases where some
seizures of a patient have different seizure origins.
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