
Finding Maximum Volume Sub-matrices of a Matrix

Ali Çivril and Malik Magdon-Ismail

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180.

Email: {civria,magdon}@cs.rpi.edu
May 31, 2007

Abstract

Given a matrix A ∈ R
m×n (n vectors in m dimensions), we consider the problem of selecting

a submatrix (subset of the columns) with maximum volume. The motivation to study such a
problem is that if A can be approximately reconstructed from a small number k of its columns
(A has “numerical” rank k), then any set of k independent columns of A should suffice to
reconstruct A. However, numerical stability results only if the chosen k have large volume. We
thus define an appropriate algorithmic problem Max-Vol(k), which asks for the k columns with
maximum volume. We show that Max-Vol is NP-hard, and in fact does not admit any PTAS. In

particular, it is NP-hard to approximate Max-Vol within 2
√

2
3 + ǫ. We study a natural greedy

heuristic for Max-Vol and show that it has approximation ratio 2−O(k log k). We show that
our analysis of the greedy heuristic is tight to within a logarithmic factor in the exponent by
giving an instance of Max-Vol for which the greedy heuristic is 2−Ω(k) from optimal. When A
has unit norm columns, a related problem is to select the maximum number of vectors with a
given volume (this pre-specified volume could be the volume required on grounds of numerical
stability for the reconstruction). We show that if the optimal solution selects k columns, then
greedy will select Ω(k

log k
) columns, providing a log k-approximation.

1 Introduction

To motivate the discussion, consider the set of three vectors

{

e1 =

[

1
0

]

, e2 =

[

0
1

]

, u =

[√
1− ǫ2

ǫ

]}

,

which are clearly dependent, and any two of which are a basis. Thus any pair can serve to re-

construct all vectors. Suppose we choose e1, u as the basis, then e2 = 1
ǫ
u −

√
1−ǫ2

ǫ
e1, and we have

a numerical instability in this representation as ǫ → 0. Such problems get more severe as the
dimensionality of the space gets large (curse of dimensionality), and it is natural to ask for the
representatives to be “as far away from each other as possible”. A natural formalization of this
problem is to find the representatives which span the largest volume, since the volume is a quantifi-
cation of how far the vectors are from each other. Thus, given a set of n vectors in R

m represented
as a matrix A ∈ R

m×n and a positive integer k, we ask for a subset of size k with maximum volume.
Given a non-empty set of vectors S = {v1, v2, · · · vk} all in R

m, let V ol(S) be the volume defined
by the vectors in S. V ol(S) can be recursively defined as follows: if S contains one element, i.e.
S = {v}, then V ol(S) = ‖v‖, where ‖ · ‖ is the Euclidean norm. If S has more than one element,

1

V ol(S) = ‖v − π(S−{v})(v)‖ · V ol(S − {v}) for any v ∈ S, where πS(v) is the projection of v onto
the space spanned by the vectors in S. It is well known that π(S−{v})(v) = AA+v, where A is
the matrix whose columns are the vectors in S − {v}, and A+ is the pseudo-inverse of A (see for
example [9]). Using this recursive expression, we have

V ol(S) = ‖v1‖ ·
k−1
∏

i=1

‖vi+1 −AiAi
+vi+1‖

where Ai = [v1 · · · vi].
The notion of volume has already received some interest in the algorithmic aspects of linear

algebra. In the past decade, the problem of matrix reconstruction and finding low-rank approxi-
mations to matrices using a small sample of columns has received much attention (See for example
[3, 5, 6, 7]). Ideally, one has to choose the columns to be as independent as possible when trying
to reconstruct a matrix using few columns. Along these lines, in [3], the authors introduce ‘volume
sampling’ to find low-rank approximation to a matrix where one picks a subset of columns with
probability proportional to their volume squared. Improving the existence results in [3], [4] also
provides an adaptive randomized algorithm which includes repetitively choosing a small number
of columns in a matrix to find a low-rank approximation. The authors show that if one samples
columns proportional to the volume squared, then one obtains a provably good matrix reconstruc-
tion (randomized). Thus, sampling larger volume columns is good. A natural question is to ask
what happens when one uses the columns with largest volume (deterministic). The problem we
address here is the algorithmic problem of obtaining the columns with largest volume and we rely
on [4] as the qualitative intuition behind why obtaining the maximum volume submatrix should
play an important role.

Another important line of research in linear algebra community is finding rank revealing fac-
torizations of matrices. This problem is closely related to subset selection [9] in which one tries to
find a subset C of columns of a matrix such that C is as non-singular as possible. Among several
approaches to solve the problem, the notion of volume plays an important role [2, 10, 11, 14] where a
pivoting strategy based on computing the volumes of subsets differing by one column is considered.

Our Contributions. We prove that an appropriately defined decision version of volume maxi-
mization is NP-hard. In fact we prove that no PTAS for volume maximization exists by showing

that the problem is inapproximable to within 2
√

2
3 + ǫ. Next, we consider a simple (deterministic)

greedy algorithm and show that it achieves a 1/k! approximation to the optimal volume when
selecting k columns. We also construct an explicit example for which the greedy algorithm gives no
better than a 1/2k−1 approximation ratio, thus proving that our analysis of the greedy algorithm
is almost tight (to within a logarithmic factor in the exponent).

We then consider the related problem of choosing the maximum number of vectors with a
given volume, in the case when all columns in A have unit norm. If the optimal algorithm loses
a constant factor with every additional vector selected (which is a reasonable situation), then the
optimal volume will be 2−Ω(k). When the optimal volume for k vectors is 2−Ω(k) as motivated above,
we prove that the greedy algorithm chooses Ω(k

log k
) columns having at least that much volume.

Thus, the greedy algorithm is within a log k-factor of the maximum number of vectors which can
be selected given a target volume. The remainder of the paper is structured as follows: In Section
2, we provide hardness results for Max-Vol. The approximation ratio of a natural greedy algorithm

2

is analyzed in Section 3 where we also present a lower bound for the greedy algorithm. Finally,
some open questions and comments are outlined in Section 4.

2 Hardness of Volume Maximization

We show NP-hardness even under the restriction that the columns of A have unit norm, followed
by a hardness of approximation result. We are interested in choosing a subset of the columns in A
whose volume is maximum. Hence, we formulate the following decision problem.

Problem: Max-Vol

Instance: A matrix A ∈ R
m×n with normalized columns, a real number V ∈ [0, 1], and a positive

integer k ≤ min{m,n}.

Question: Does there exist a subset A′ of at least k columns of A, such that V ol(A′) ≥ V ?

Theorem 1. Max-Vol is NP-Hard.

Proof. We give a reduction from ‘exact cover by 3-sets’, which is known to be NP-complete (See
for example [8, 12]).

Problem: Exact cover by 3-sets (X3C)

Instance: A set Q and a collection C of 3-element subsets of Q.

Question: Does there exist an exact cover for Q, i.e. a sub-collection C ′ ⊆ C such that every
element in Q appears exactly once in C ′?

We use the following reduction from X3C to Max-Vol: let Q = {q1, q2, . . . qm} and C =
{c1, c2, . . . cn} be given as an instance of X3C. We construct the matrix A ∈ R

m×n, in which
each column A(j) corresponds to the 3-element set cj . The non-zero entries in A(j) correspond to
the elements in cj . Specifically, set

Aij =

{

1/
√

3 if qi ∈ cj

0 otherwise

(Note that every A(j) has exactly 3 non-zero entries and has unit norm.) For the instance of
Max-Vol, we set V = 1 and k = m/3.

It is clear that the reduction is polynomial time. All that remains is to show that the instance
of X3C is true if and only if the corresponding instance of Max-Vol is true.

Suppose the instance of X3C is true. Then, there is a collection C ′ = {ci1 , ci2 ,
. . . , cim/3

} of cardinality m/3, which exactly covers Q. (Note that, m should be a multiple of 3,
otherwise no solution exists.) Consider the columns of A corresponding to the 3-element sets in
C ′. Since the cover is exact, cij ∩ cik = ∅ ∀j, k ∈ {1, . . . ,m/3} where j 6= k, which means that

A(ij) · A(ik) = 0. Hence, the columns in A′ = {A(i1), A(i2), . . . , A(im/3)} are pair-wise orthonormal.
Thus, V ol(A′) = 1 and the instance of Max-Vol is true.

Conversely, suppose the instance of Max-Vol is true. Let A′ be a set of m/3 columns of A
with V ol(A′) = 1, which means that the columns in A′ are pair-wise orthonormal. Let u, v be two

3

columns in A′; we have u · v = 0. Since the entries in A′ are all non-negative, ui · vi = 0 ∀i ∈ [1,m],
i.e. u and v correspond to 3-element sets which are disjoint. Hence, the columns in A′ correspond
to a sub-collection C ′ of 3-element sets, which are pair-wise disjoint. Therefore, every element of
Q appears at most once in C ′. C ′ contains m elements corresponding to the m non-zero entries in
A′, it follows that every element of Q appears exactly once in C ′, concluding the proof.

Having shown that the decision problem Max-Vol is NP-hard, it has two natural interpretations
as an optimization problem for a given matrix A:

1. Max-Vol(k): Given k, find a subset of size k with maximum volume.

2. Max-Subset(V): Given V and that A has unit norm vectors, find the largest subset A′ ⊆ A
with volume at least V .

Our reduction in the NP-hardness proof of Max-Vol produces a gap, which provides a hardness
of approximation result for Max-Vol(k).

Theorem 2. Max-Vol(k) is NP-Hard to approximate within 2
√

2
3 + ǫ.

Proof. We already proved that an instance of X3C is true if and only if the maximum volume in the
Max-Vol instance is 1. Assume X3C instance is not true. Then, we have at least one overlapping
element between two sets. Any collection of size m

3 will have two sets v1, v2 which have non-zero

intersection. The corresponding columns in A′ have d(v1, v2) = ‖v1−(v1 ·v2)v2‖ = ‖v1− 1
3v2‖ ≤ 2

√
2

3 ,
where d(v1, v2) is the orthogonal part of v1 with respect to v2. Since V ol(A′) ≤ d(v1, v2), we have

V ol(A′) ≤ 2
√

2
3 . A polynominal time algorithm with a 2

√
2

3 + ǫ approximation factor for Max-Vol
would decide the X3C instance in this case, which would imply P = NP .

3 The Greedy Approximation Algorithm

Since there is no PTAS for Max-Vol(k), the next natural question is whether there exists a sim-
ple heuristic with some approximation guarantee. One obvious strategy is the following greedy
algorithm:

Algorithm 1 Greedy(A, k)

S ← ∅
while |S| < k do

Select largest norm vector v ∈ A
Remove the projection of v from every element of A
S ← S ∪ v

end while

This algorithm has already been proposed to compute QR decomposition of matrices by [1].
Although it is known to work well in practice, there was no provable result for the algorithm,
specifically with respect to the non-singularity of the selected columns. Our analysis of Greedy
provides an approximation ratio for the maximum volume as well as bounds on the singular values
in a rank revealing QR factorization when combined with the results in [10]. In this paper, we do

4

not relate our analysis to that context as the results are rather weak and better algorithms have
been proposed as cited in the introduction.

The outline of the remainder of this section is as follows: In Section 3.1, we analyze performance
ratio of Greedy. Section 3.2 provides a lower bound Greedy. We also analyze Greedy for Max-
Subset(V) in Section 3.3 where we require the columns of the matrix be unit norm since in that
case one should guarantee that the volume is either monotonically non-increasing or non-decreasing
in the number of vectors chosen by the algorithm. When all the vectors have unit norm, the volume
is monotonically non-increasing in the number of vectors chosen, and we analyze the algorithm in
this case.

3.1 Approximation Ratio of Greedy

We consider Greedy after k steps. First, we assume that the dimension of the space spanned by
the column vectors in A is at least k, since otherwise there is nothing to prove. Let span(S) denote
the space spanned by the vectors in the set S and let πS(v) be the projection of v onto span(S). In
this section, for brevity, we denote ‖v−πS(v)‖, the norm of the orthogonal part of v from span(S),
by d(v, S). Let Vk = {v1, . . . , vk} be the set of vectors in order that have been chosen by the greedy
algorithm at the end of the kth step. Let Wk = {w1, . . . , wk} be a set of k vectors of maximum
volume. Our main result in this subsection is the following theorem:

Theorem 3. V ol(Vk) ≥ 1/k! · V ol(Wk).

We prove the theorem through a sequence of lemmas. The basic idea is to show that at the jth

step, Greedy loses a factor of at most j to the optimal. Theorem 3 then follows by an elementary
induction. First, define αi = π(Vk−1)(wi) for i = 1, . . . , k. αi is the projection of wi onto span(Vk−1)
where Vk−1 = {v1, . . . , vk−1}. Let βi = wi − π(Vk−1)(wi). Hence, we have

wi = αi + βi for i = 1, . . . , k. (1)

Note that the dimension of span(Vk−1) is k−1, which means that the αi’s are linearly dependent.
We will need some stronger properties of the αi’s.

Definition 4. A set of m vectors is said to be in general position, if they are linearly dependent
and any m− 1 element subset of them are linearly independent.

It’s immediate from Definition 4 that

Remark 5. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then, γi can be written
as a linear combination of the other vectors in U , i.e.

γi =
∑

l 6=i

λi
lγl (2)

for i = 1, . . . ,m. λi
l’s are the coefficients of γl in the expansion of γi.

Lemma 6. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then, there exists a γi

such that |λi
j| ≤ 1 for all j 6= i.

5

Proof. Assume, without loss of generality that A = {γ2, γ3, . . . , γm} has the greatest volume among
all possible m− 1 element subsets of U . We claim that γ1 has the desired property. Consider the
set Bj = {γ1, . . . γj−1, γj+1, . . . , γm} for 2 ≤ j ≤ m. Let Cj = A − {γj} = Bj − {γ1}. Then, since
A has the greatest volume, V ol(A) = V ol(Cj) · d(γj , Cj) ≥ V ol(Bj) = V ol(Cj) · d(γ1, Cj). Hence,
we have d(γj , Cj) ≥ d(γ1, Cj). Then, using (2), we can write

γ1 = λ1
jγj +

∑

l 6=j,l 6=1

λ1
l γl (3)

Denoting δj = πCj(γj) and θj = γj − δj, (3) becomes

γ1 =



λ1
jδj +

∑

l 6=j,l 6=1

λj
l γl



 + λ1
jθj

where the first two terms are in span(Cj). Hence, θ1 = γ1−πCj (γ1) = λ1
jθj and so ‖θ1‖ = |λ1

j |‖θj‖.
Note that ‖θ1‖ = d(γ1, Cj) and ‖θj‖ = d(γj , Cj), so d(γ1, Cj) = |λ1

j |d(γj , Cj). Since d(γ1, Cj) ≥
d(γj , Cj), we have |λ1

j | ≤ 1.

Lemma 7. If ‖αi‖ > 0 for i = 1, . . . , k and k ≥ 2, then there exists a set of m vectors U =
{αi1 , . . . , αim} ⊆ {α1, . . . , αk} with m ≥ 2 that are in general position.

Proof. Note that the cardinality of a set U with the desired properties should be at least 2, since
otherwise there is nothing to prove. We argue by induction on k. For the base case k = 2, we
have two vectors α1 and α2 spanning a 1-dimensional space and clearly any one of them is linearly
independent since neither is 0. Assume that, as the induction hypothesis, any set of k ≥ 2 non-zero
vectors {α1, . . . , αk} spanning at most a k− 1 dimensional space has a non-trivial subset in general
position. Consider a k+1 element set A = {α1, . . . , αk+1} with dim(span(A)) ≤ k. If the vectors in
A are not in general position, then there is a k element subset A′ of A which is linearly dependent.
Hence, dim(span(A′)) ≤ k− 1 for which, by the induction hypothesis, we know that there exists a
non-trivial subset in general position.

The existence of a subset in general position guaranteed by Lemma 7 will be needed when we
apply the next lemma.

Lemma 8. Assume ‖αi‖ > 0 for i = 1, . . . , k. Then, there exists an αij such that d(αij ,W
′
k−1) ≤

(m− 1) · d(vk, Vk−1), where W ′
k−1 = Wk − {wij}.

Proof. Let U = {αi1 , . . . , αim} ⊆ {α1, . . . , αk} be in general position where m ≥ 2 (the existence of
U is given by Lemma 7). Assume αi1 has the property given by Lemma 6. Let U ′ = {wi2 , . . . , wim}.
We claim that αi1 has the desired property. First, note that d(αi1 ,W

′
k−1) ≤ d(αi1 , U

′), since
span(U ′) is a subspace of span(W ′

k−1). We seek a bound on d(αi1 ,W
′
k−1). Using (2) and (1), we

have

αi1 =
∑

l 6=1

λ1
il
αil =

∑

l 6=1

λ1
il
(wil − βil).

where αil ’s are the vectors in U and βil ’s are their orthogonal parts. Rearranging,

6

∑

l 6=1

λ1
il
βil =

∑

l 6=1

λ1
il
wil − αi1 .

Note that the right hand side is an expression for the difference between a vector in span(U ′) and
αi1 . Hence,

d(αi1 ,W
′
k−1) ≤ d(αi1 , U

′)

= min
v∈span(U ′)

‖v − αi1‖

≤ ‖
∑

l 6=1

λ1
il
wil − αi1‖

= ‖
∑

l 6=1

λ1
il
βil‖

≤
∑

l 6=1

λ1
il
‖βil‖

≤ (m− 1) ·max1≤l≤m‖βil‖
≤ (m− 1) · d(vk, Vk−1).

where the last two inequalities follow from Lemma 6 and the greedy property of the algorithm,
respectively.

Before stating the final lemma, which gives the approximation factor of the algorithm at each
round, we need the following simple observation.

Lemma 9. Let u be a vector, let V and W be subspaces and let α = πV (u). Then d(u,W) ≤
d(u, V) + d(α,W).

Proof. Let γ = πW (α). By triangle inequality for vector addition, we have
‖u− γ)‖ ≤ ‖u− α‖+ ‖α− γ‖ = d(u, V) + d(α,W). The result follows since d(u,W) ≤ ‖u− γ‖.

Lemma 10. At the kth step of the algorithm, there exists a wi such that
d(wi,W

′
k−1) ≤ k · d(vk, Vk−1) where W ′

k−1 = Wk − {wi}.
Proof. For k = 1, there’s nothing to prove. For k ≥ 2, there are two cases.

1. One of the wi’s is orthogonal to Vk−1 (‖αi‖ = 0). In this case, by the greedy property,
d(vk, Vk−1) ≥ ‖wi‖ ≥ d(wi,W

′
k−1), which gives the result.

2. For all wi, ‖αi‖ > 0, i.e., all wi have non-zero projection on Vk−1. Assuming that α1 =
πVk−1

(w1) has the desired property proved in Lemma 8, we have for the corresponding w1

d(w1,W
′
k−1) ≤ d(w1, Vk−1) + d(α1,W

′
k−1)

≤ ‖β1‖+ d(α1,W
′
k−1)

≤ ‖β1‖+ (m− 1) · d(vk, Vk−1)

≤ m · d(vk, Vk−1).

7

The first inequality is due to Lemma 9. The last inequality follows from the greedy property of the
algorithm, i.e. the fact that d(vk, Vk−1) ≥ ‖β1‖. The lemma follows since m ≤ k.

The last lemma immediately leads to the result of Theorem 3, with a simple inductive argument
as follows:

Proof. The base case is easily established since V ol(V1) = V ol(W1). Assume that V ol(Vk−1) ≥
1

(k−1)! ·V ol(Wk−1) for some k > 2. By Lemma 10, we have a wi such that d(wi,W
′
k−1) ≤ k·d(vk, Vk−1)

where W ′
k−1 = Wk − {wi}. It follows that

V ol(Vk) = d(vk, Vk−1) · V ol(Vk−1)

≥ d(wi,W
′
k−1)

k
· V ol(Wk−1)

(k − 1)!

≥ d(wi,W
′
k−1)

k!
· V ol(W ′

k−1)

=
V ol(Wk)

k!
.

3.2 Lower Bound for the Greedy Algorithm

We give a lower bound of 1/2k−1 for the approximation factor of Greedy by explicitly constructing
a bad example. We will inductively construct a set of unit vectors satisfying this lower bound. It
will be the case that the space spanned by the vectors in the optimal solution is the same as the
space spanned by the vectors chosen by Greedy. We will first consider the base case k = 2: let the
matrix A = [v1w1w2] where dim(A) = 2 and d(v1, w1) = d(v1, w2) = δ for some 1 > δ > 0 such that
θ, the angle between w1 and w2 is twice the angle between v1 and w1, i.e. v1 is ‘between’ w1 and
w2. If the greedy algorithm first chooses v1, then limδ→0 V ol(V2)/V ol(W2) = 1

2 cos θ
2 = 1

2 . Hence,
for k = 2, there’s a set of vectors for which V ol(W2) = (2− ǫ) · V ol(V2) for arbitrarily small ǫ > 0.

For arbitrarily small ǫ > 0, assume that there is an optimal set of k vectors Wk = {w1, . . . , wk}
such that V ol(Wk) = (1 − ǫ)2k−1 · V ol(Vk) where Vk = {v1, . . . , vk} is the set of k vectors chosen
by the algorithm. The vectors in Wk and Vk span a subspace of dimension k, and assume wi ∈ R

d

where d > k. Let d(v2, V1) = ǫ1 = δ for some 1 > δ > 0, and d(vi+1, Vi) = ǫi = δǫi−1 for

i = 2, . . . , k − 1. Thus, V ol(Vk) = δ
k(k−1)

2 and V ol(Wk) = (1 − ǫ)2k−1δ
k(k−1)

2 . Assume further that
for all wi in Wk, d(wi, Vj) ≤ ǫj for j = 1, . . . , k − 2 and d(wi, Vk−1) = ǫk−1 so that there exists an
execution of Greedy where no {v1, . . . , vk} is chosen.

We will now construct a new set of vectors Wk+1 = W ′
k ∪ {wk+1} = {w′

1, . . . ,

w′
k, wk+1} which will be the optimal solution. Let wj

i = πVj (wi), and let ej
i = πVj (wi)− πVj−1(wi)

for j = 2, . . . , k and e1
i = w1

i . Namely, ei
j is the component of wi which is in Vj , but perpendicular

to Vj−1 and e1
i is the component of wi which in in the span of v1. (Note that ‖ek

i ‖ = ǫk−1.)
Let u be a unit vector perpendicular to span(Wk). For each wi we define a new vector w′

i =

(
∑k−1

j=1 ej
i) +

√
1− δ2ek

i + δǫk−1u. Intuitively, we are defining a set of new vectors which are first
rotated towards Vk−1 and then towards u such that they are δǫk−1 away from Vk. Introduce another
vector wk+1 =

√
1− δ2v1 − δǫk−1u. Intuitively, this new vector is v1 rotated towards the negative

direction of u. Note that, in this setting ǫk = δǫk−1. We finally choose vk+1 = wk+1.

8

Lemma 11. For any w ∈Wk+1, d(w, Vj) ≤ ǫj for j = 1, . . . , k − 1 and d(w, Vk) = ǫk.

Proof. For w = wk+1, d(wk+1, Vj) = ǫk ≤ ǫj for j = 1, . . . , k. Let w = w′
i for some 1 ≤ i ≤ k.

Then, for any 1 ≤ j ≤ k − 1, we have d(w′
i, Vj)

2 =
∑k−1

l=j+1 ‖el
i‖2 + (1 − δ2)‖ek

i ‖2 + δ2‖ek
i ‖2 =

∑k
l=j+1 ‖el

i‖2 = d(wi, Vj)
2 ≤ ǫj

2 by the induction hypothesis.

Lemma 11 ensures that {v1, . . . , vk+1} is a valid output of Greedy. What remains is to show
that for any ǫ > 0, we can choose δ sufficiently small so that V ol(Wk+1) ≥ (1 − ǫ)2k · V ol(Vk+1).
In order to show this, we will need the following lemmas.

Lemma 12. limδ→0 V ol(Wk+1) = 2ǫk · V ol(Wk).

Proof. With a little abuse of notation, let Wk+1 denote the matrix of coordinates for the vectors
in the set Wk+1.

Wk+1 =















w1,1 w1,2 · · · w1,k

√
1− δ2k

w2,1 w2,2 · · · w2,k 0
...

...
. . .

...
...√

1− δ2wk,1

√
1− δ2wk,2 · · ·

√
1− δ2wk,k 0

δk δk · · · δk −δk















where wi,j is the ith coordinate of wj , which is in Wk. (Note that this is exactly how U is constructed
in the inductive step). Expanding on the right-most column of the matrix, we have

V ol(Wk+1) = |det(Wk+1)| = |
√

1− δ2k · det(A) + (−1)k+1δk · det(B)| (4)

where A and B are the corresponding minors of the coefficients, i.e. the left-most lower and upper
k× k sub-matrices of Wk+1, respectively. Clearly, we have det(B) =

√
1− δ2 ·det(Wk) where Wk is

the matrix of coordinates for the vectors in the set Wk. Let C be the matrix obtained by replacing
each w1,i by 1 in Wk. Then, using row interchange operations on A, we can move the last row of
A to the top. This gives a sign change of (−1)k−1. Then, factoring out

√
1− δ2 and δk in the first

and last rows respectively, we have det(A) = (−1)k−1δk
√

1− δ2 · det(C). Hence, (4) becomes

|det(Wk+1)| = (δk
√

1− δ2)|
√

1− δ2k · det(C) + det(Wk)| (5)

We will need the following lemma to compare det(Wk) and det(C).

Lemma 13. limδ→0
det(C)

det(Wk) = 1.

Proof. For i > 1, the elements of the ith rows of both Wk and C has δi−1 as a common coefficient

by construction. Factoring out these common coefficients, we have det(Wk) = δ
k(k−1)

2 · det(U) and

det(C) = δ
k(k−1)

2 ·det(U ′) where U and U ′ are matrices with non-zero determinants as δ approaches
0. Furthermore, limδ→0det(U) = det(U ′) as the elements in the first row of U approaches 1. The
result then follows.

Using Lemma 13 and (5), we have

limδ→0V ol(Wk+1) = limδ→0|det(Wk+1)| = 2δk|det(Wk)| = 2ǫk · V ol(Wk)

9

Theorem 14. V ol(Wk+1) ≥ (1− ǫ)2k · V ol(Vk+1) for arbitrarily small ǫ > 0.

Proof. Given any ǫ′ > 0 we can choose δ small enough so that V ol(Wk+1) ≥ 2ǫk(1− ǫ′) · V ol(Wk),
which is always possible by Lemma 12. Given any ǫ′′, we can apply induction hypothesis to obtain
Vk and Wk such that V ol(Wk) ≥ (1− ǫ′′)2k−1 · V ol(Vk). Thus,

V ol(Wk+1) ≥ 2ǫk(1− ǫ′) · V ol(Wk)

≥ 2ǫk(1− ǫ′)(1− ǫ′′)2k−1 · V ol(Vk)

= (1− ǫ′)(1− ǫ′′)2k · V ol(Vk+1),

where we have used V ol(Vk+1) = ǫk · V ol(Vk). Choosing ǫ′ and ǫ′′ small enough such that (1 −
ǫ′)(1 − ǫ′′) > 1− ǫ gives the result.

3.3 Maximizing the Number of Unit norm Vectors Attaining A Given Volume

In this section, we give a result on approximating the maximum number of unit norm vectors which
can be chosen to have at least a certain volume. This result is essentially a consequence of the
previous approximation result. We assume that all the vectors in A have unit norm, hence the
volume is non-increasing in the number of vectors chosen by the algorithm. Let OPTk denote the
optimal volume for k vectors. Note that OPTk ≥ OPTk+1 and the number of vectors m, chosen
by Greedy attaining volume at least OPTk is not greater than k. Our main result states that, if
the optimal volume of k vectors is 2−Ω(k), then Greedy chooses Ω(k

log k
) vectors having at least that

volume. Thus, Greedy gives a log k-approximation to the optimal number of vectors. We prove
the result through a sequence of lemmas. The following lemma is an immediate consequence of
applying Greedy on Wk.

Lemma 15. Let Wk = {w1, . . . , wk} be a set of k vectors of optimal volume OPTk. Then there
exists a permutation π of the vectors in Wk such that dπ(k) ≤ dπ(k−1) ≤ . . . ≤ dπ(2) where dπi =
d(wπi , {wπ1 , . . . , wπi−1}) for k ≥ i ≥ 2.

We use this existence result to prove the following lemma.

Lemma 16. OPTm ≥ (OPTk)
m−1
k−1 where m ≤ k.

Proof. Let Wk = {w1, . . . , wk} be a set of vectors of optimal volume OPTk. By Lemma 15, we
know that there exists an ordering of vectors in Wk such that dπ(k) ≤ dπ(k−1) ≤ . . . ≤ dπ(2) where
dπi = d(wπi , {wπ1 , . . . , wπi−1}) for k ≥ i ≥ 2. Let Wm

′ = {wπ(1), . . . , wπ(m)}. Then, we have

OPTm ≥ V ol(Wm
′) =

∏m
i=2 dπi ≥ (

∏k
i=2 dπi)

m−1
k−1 = (OPTk)

m−1
k−1 .

Lemma 17. Suppose OPTk ≤ 2
(k−1)m log m

m−k . Then, the greedy algorithm chooses at least m vectors
whose volume is at least OPTk.

Proof. We are seeking a condition for OPTk which will provide a lower bound for m such that
OPTm

m! ≥ OPTk. If this holds, then V ol(Greedym) ≥ Optm
m! ≥ OPTk and so Greedy can choose

at least m vectors which have volume at least OPTk. It suffices to find such an m satisfying

(OPTk)
m−1
k−1

m! ≥ OPTk by Lemma 16. This amounts to 1
m! ≥ (OPTk)

1−m−1
k−1 . Since 1

m! ≥ 1
mm for

m ≥ 1, we require

10

1

mm
≥ (OPTk)

1−m−1
k−1 .

Taking logarithms of both sides and rearranging, we have

−(k − 1)m

k −m
log m ≥ log OPTk.

Taking exponents of both sides yields

2
(k−1)m log m

m−k ≥ OPTk.

In order to interpret this result, we will need to restrict OPTk. Otherwise, for example if
OPTk = 1, the greedy algorithm may never get more than 1 vector to guarantee a volume of
at least OPTk since it might be possible to miss guess the first vector. In essence, the number of
vectors chosen by the algorithm depends on OPTk. First, we discuss what is a reasonable condition
on OPTk. Consider n vectors in m dimensions which defines a point in R

m×n. The set of points
in which any two vectors are orthogonal has measure 0. Thus, define 2−α = maxij d(vi, vj). Then,
it is reasonable to assume α > 0, in which case OPTk ≤ 2−αk = 2−Ω(k). Hence, we provide the
following theorem which follows from the last lemma under the reasonable assumption that the
optimal volume decreases by a constant factor with the addition of one more vector.

Theorem 18. If OPTk ≤ 2−Ω(k), then the greedy algorithm chooses Ω
(

k
log k

)

vectors having volume

at least OPTk.

Proof. For some α, OPTk ≤ 2−αk. Thus, we solve for m such that

2−αk ≤ 2
(k−1)m log m

m−k .

Suitable rearrangements yield

m ≤ αk(k −m)

(k − 1) log m
≤ 2αk

log m
.

For m, the largest integer such that m ≤ 2αk
log m

, we have

m ≈ 2αk

log
(

2αk
log m

) =
2αk

log(2αk) − log log m
= Ω

(

k

log k

)

.

In reality, for a random selection of n vectors in m dimensions, α will depend on n and so the
result is not as strong as it appears.

11

4 Discussion

Our analysis of the approximation ratio relies on finding the approximation factor at each round of
Greedy. Indeed, we have found examples for which the volume of the vectors chosen by the greedy
algorithm falls behind the optimal volume by as large a factor as 1/k, making Lemma 10 tight.
But it might be possible to improve the analysis by correlating the ‘gains’ of the greedy algorithm
between different steps. Hence, one of the immediate questions is that whether one can close the
gap between the approximation ratio and the lower bound for the greedy algorithm.

We list other open problems as follows:

• Do there exist efficient non-greedy algorithms with better guarantees for this problem? Max-
Vol(k) does not appear to admit any canonical techniques like LP or SDP.

• There is a huge gap between the approximation ratio of the greedy algorithm we have analyzed
and the inapproximability result. Can this gap be closed on the inapproximability side by
using more advanced techniques?

• Volume seems to play an important role in constructing a low-rank approximation to a matrix.
Solutions proposed thus far consider only randomized algorithms. Can this work be extended
to find a deterministic algorithm for matrix reconstruction?

We would like to note that the approximation ratio of the greedy algorithm is considerably
small because of the ‘multiplicative’ nature of the problem. Another important problem which
resembles Max-Vol in terms of behavior (but not necessarily in nature) is the Shortest Vector
Problem (SVP), which is not known to have a polynomial factor approximation algorithm. Indeed,
the most common algorithm which works well in practice has 2O(n) approximation ratio [13] and
non-trivial hardness results for this problem are difficult to find.

References

[1] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder transformations.
Numerische Mathematik, (7):269–276, 1965.

[2] F. R. de Hooga and R. M. M. Mattheijb. Subset selection for matrices. Linear Algebra and
its Applications, (422):349–359, 2007.

[3] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projec-
tive clustering via volume sampling. In SODA ’06, pages 1117–1126. ACM Press, 2006.

[4] A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation.
In RANDOM’06, pages 292–303. Springer, 2006.

[5] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–
183, 2006.

[6] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices III:
Computing a compressed approximate matrix decomposition. SIAM Journal on Computing,
36(1):184–206, 2006.

12

[7] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. Journal of the Association for Computing Machinery, 51(6):1025–1041, 2004.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[9] G. H. Golub and C. V. Loan. Matrix Computations. Johns Hopkins U. Press, 1996.

[10] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

[11] Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the singular value decom-
position. Mathematics of Computation, 58:213–232, 1992.

[12] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[13] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficients.
Mathematische Annalen, (261):515–534, 1982.

[14] C.-T. Pan. On the existence and computation of rank-revealing LU factorizations. Linear
Algebra and its Applications, 316(1-3):199–222, 2000.

13

