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Abstract— We present VOGUE, a new state machine that
combines two separate techniques for modeling complex patterns
in sequential data: data mining and data modeling. VOGUE relies
on a novel Variable-Gap Sequence miner (VGS), to mine frequent
patterns with different lengths and gaps between elements.It then
uses these mined sequences to build the state machine. Moreover,
we propose two variations of VOGUE: C-VOGUE that tends to
decrease even further the state space complexity of VOGUE by
pruning frequent sequences that are artifacts of other primary
frequent sequences; and K-VOGUE that allows for sequences
to form the same frequent pattern even if they do not have an
exact match of elements in all the positions. However, the different
elements have to share similar characteristics. We apply VOGUE
to the task of protein sequence classification on real data from the
PROSITE and SCOP protein families. We show that VOGUEs
classification sensitivity outperforms that of higher-order Hidden
Markov Models and of HMMER, a state-of-the-art method for
protein classification, by decreasing the sate space complexity
and improving the accuracy and coverage.

Index Terms— VOGUE, Data Mining, Data Modeling, Hidden
Markov Models

I. I NTRODUCTION

Many real world applications, such as in bioinformatics, web
accesses, and text mining, encompass sequential/temporaldata
with long and short range dependencies. Techniques for analyzing
such types of data can be classified in two broad categories:
pattern mining and data modeling. Efficient pattern extraction
approaches, such as association rules and sequence mining,were
proposed, some for temporally ordered sequences [3], [53],[54],
[74], [89] and others for more sophisticated patterns [16],[40].
For data modeling, Hidden Markov Models (HMMs) [67] have
been widely employed for sequence data modeling ranging from
speech recognition, to web prefetching, to web usage analysis, to
biological sequence analysis [1], [9], [29], [35], [51], [65], [66],
[69], [85].

There are three basic problems to solve while applying HMMs
to real world problems:

1) Evaluation: Given the observation sequenceO and a model
λ, how do we efficiently computeP (O|λ)?

2) Decoding: Given the observation sequenceO, and the
modelλ, how do we choose a corresponding state sequence
Q = q1q2...qT which is optimal in some meaningful sense?
The solution to this problem would explain the data.

3) Learning: How do we adjust the modelλ parameters to
maximizeP (O|λ)?

Of all the three problems, the third one is the most crucial and
challenging to solve for most applications of HMMs. Due to the
complexity of the problem and the finite number of observations,
there is no known analytical method so far for estimatingλ to
maximize globallyP (O|λ). Instead, iterative methods that provide
a local maxima onP (O|λ) can be used such as the Baum-Welch
estimation algorithm [13].
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HMMs depend on the Markovian property, i.e., the current
state i in the sequence depends only on the previous statej,
which makes them unsuitable for problems where general patterns
may display longer range dependencies. For such problems,
higher-order and variable-order HMMs [66], [71], [72] have
been proposed, where the order denotes the number of previous
states that the current state depends upon. Although higher-order
HMMs are often used to model problems that display long range
dependency, they suffer from a number of difficulties, namely,
high state-space complexity, reduced coverage, and sometimes
even low prediction accuracy[22]. The main challenge here is
that building higher order HMMs [66] is not easy, since we have
to estimate the joint probabilities of the previousm states (in an
m-order HMM). Furthermore, not all of the previousm states
may be predictive of the current state. Moreover, the training
process is extremely expensive and suffers from local optima, due
to the use of Baum-Welch algorithm [13], which is an Expectation
Maximization (EM) method for training the model.

To address these limitations, we propose, in this thesis, a
new approach to temporal/sequential data analysis that combines
temporal data mining and data modeling via statistics. We intro-
duce a new state machine methodology calledVOGUE (Variable
Order Gaps forUnstructuredElements) to discover and interpret
long and short range temporal locality and dependencies in the
analyzed data. The first step of our method uses a new sequence
mining algorithm, calledVariable-GapSequence miner (VGS), to
mine frequent patterns. The mined patterns could be of different
lengths and may contain different gaps between the elementsof
the mined sequences. The second step of our technique uses the
mined variable-gap sequences to build the VOGUE state machine.

A. VOGUE OVERVIEW
Let’s consider a simple example to illustrate our main idea.Let

S be a sequence over the alphabetΣ = {A, · · · ,K}, with S =
ABACBDAEFBGHAIJKB. We can observe thatA→ B is
a pattern that repeats frequently (4 times), but with variable length
gaps in-between.B → A is also frequent (3 times), again with
gaps of variable lengths. A single order HMM will fail to capture
any patterns since no symbol depends purely on the previous
symbol. We could try higher order HMMs, but they will model
many irrelevant parts of the input sequence. More importantly, no
fixed-order HMM fork ≥ 1 can model this sequence, since none
of them detects the variable repeating pattern betweenA andB
(or vice versa). This is easy to see, since for any fixed sliding
window of sizek, no k-letter word (ork-gram) ever repeats! In
contrast our VGS mining algorithm is able to extract bothA→ B,
andB → A as frequent subsequences, and it will also record how
many times a given gap length is seen, as well as the frequency
of the symbols seen in those gaps. This knowledge of gaps plays
a crucial role in VOGUE, and distinguishes it from all previous
approaches which either do not consider gaps or allow only fixed
gaps. VOGUE models gaps viagap statesbetween elements of
a sequence. The gap state has a notion of state duration whichis
executed according to the distribution of length of the gapsand
the intervening symbols.

The training and testing of VOGUE consists of three main
steps:(i) Pattern Mining via the novel Variable-Gap Sequence
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(VGS) mining algorithm. (ii) Data Modeling via our novel
Variable-Order state machine.(iii) Interpretation of new data
via a modified Viterbi method [26], called Variable-Gap Viterbi
(VG-Viterbi), to model the most probable path through a VOGUE
model.

B. Contributions

There are several major contributions of our work. First,
VOGUE is the combination of two separate but complementary
techniques for modeling and interpreting long range dependencies
in sequential data: data mining and data modeling. The use of
data mining for creating a state machine results in a model
that captures the data reference locality better than a traditional
HMM created from the original (noisy) data. In addition, our
approach automatically finds all the dependencies for a given
state, and these need not be of a fixed order, since the mined
patterns can be arbitrarily long. Moreover, the elements ofthese
patterns do not need to be consecutive, i.e., a variable length
gap could exist between the elements. This enables us to model
multiple higher order HMMs via a single variable-order state
machine that executes faster and yields much greater accuracy.
This contribution is composed of (i) aVariable Gap Sequence
(VGS) miner, which is a contribution in the area of pattern
extraction. VGS mines frequent patterns with different lengths and
gaps between the elements across and within several sequences.
VGS can be used individually as well as part of VOGUE for
pattern extraction, and (ii) a VOGUE state machine that usesthe
mined variable-gap sequences from VGS to model multiple higher
order HMMs via a single variable-order state machine.

Moreover, we applied VOGUE to a real world problem, namely,
finding homologous proteins. Although VOGUE has a much
wider applicability, such as in web accesses, text mining, user
behavior analysis, etc, in this work we apply VOGUE to a real
world problem in biological sequence analysis, namely, multi-
class protein classification. Given a database of protein sequences,
the goal is to build a statistical model so that we can determine
whether a query protein belongs to a given family (class) or
not. Statistical models for proteins, such as profiles, position-
specific scoring matrices, and hidden Markov models [29] have
been developed to find homologs. However, in most biological
sequences, interesting patterns repeat (either within thesame
sequence or across sequences) and may be separated by variable
length gaps. Therefore a method like VOGUE that specifically
takes these kind of patterns into consideration can be very effec-
tive. We show experimentally that VOGUE’s modeling power is
superior to higher-order HMMs while reducing the latter’s state-
space complexity, and improving their prediction. VOGUE also
outperforms HMMER [29], a HMM model especially designed
for protein sequences.

The second contribution is in the area of data interpretation
and decoding. This contribution is a consequence of the unique
structure of VOGUE sate machine, where the gaps have a notion
of duration. Therefore, we adjusted the widely used Viterbi
algorithm, that solves the interpretation problem, to meetthose
needs. We call this method Variable-Gap Viterbi (VG-Viterbi).
We optimized VG-Viterbi based on the fact that the transition
matrix between the states of the model is a sparse matrix and so
there is no need to model the transitions between all the states.

The third contribution is Canonical VOGUE (C-VOGUE) that
aims at increasing the already “good” performance of VOGUE
by eliminating artifacts in the extracted patterns, hence reducing
the number of patterns to be modeled later on. These artifacts are
retained as being frequent patterns but each one of these patterns
is in fact an artifact of another pattern. This contributionaims at
decreasing the state space complexity of the state machine,which
is a major step towards one of the three goals of modeling with
state machines while keeping good accuracy and coverage.

VOGUE is adaptable enough to allow for inclusion of domain
specific knowledge to better model patterns with higher order

structures unlike other techniques that are made speciallyfor 1
dimensional patterns, and perform poorly. We achieved thisby
S-VOGUE (Substitution VOGUE), where the mined patterns are
chosen not only based on the frequency of exact match items
but also among items that could be substituted by one another
according to their secondary or tertiary structure. This is, in
fact, very helpful in protein analysis where proteins of thesame
family share common patterns (motifs) that are not based on exact
match but rather on substitutions based on the protein sequences
elements weight, charge, and hydrophobicity. These elements are
called amino acids.

II. PATTERN M INING USING SEQUENCEM INING

Data mining involves the process of analyzing data to show
patterns or relationships; sorting through large amounts of data;
and picking out pieces of relative information or patterns that
occur e.g., picking out statistical information from some data
[30]. There are several data mining techniques, such as association
rules, sequence mining [74], classification and regression, simi-
larity search and deviation detection [34], [41], [42], [81]–[83].
Most of the real world applications encompass sequential and
temporal data. For example, analysis of biological sequences sush
as DNA, proteins, etc. Another example is in web prefetching,
where pages are accessed in a session by a user in a sequential
manner. In this type of data each “example” is represented asa
sequence of “events”, where each event might be described by
a set of attributes. Sequence Mining helps to discover frequent
sequential attributes or patterns across time or positionsin a
given data set. In the domain of web usage, a database would
be the web page accesses. Here the attribute is a web page and
the object is the web user. The sequences of most frequently
accessed pages are the discovered “frequent” patterns. Biological
sequence analysis [36], [92], identifying plan failures [90], and
finding network alarms [43], constitute some of the real world
applications where sequence mining is applied.

In this work, we choose to use sequence mining rather than
association mining due to the fact that association mining discov-
ers only intra-itemsets patterns where items are unordered, while
sequence mining discovers inter-itemsets, called sequences, where
items are ordered [89].

TABLE I

ORIGINAL INPUT-SEQUENCEDATABASE

SID Time(EID) items

1 10 AB

1 20 A

1 30 AB

2 20 AC

2 30 ABC

2 50 B

3 10 A

3 30 B

3 40 A

4 30 AB

4 40 A

4 50 B

TABLE II

FREQUENT1-SEQUENCES(min sup = 3)

A 4
B 4
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TABLE III

FREQUENT2-SEQUENCES(min sup = 3)

AB 3
A → A 4
A → B 4
B → A 3
B → B 3

TABLE IV

FREQUENT3-SEQUENCES(min sup = 3)

AB 3
AB → B 3

A. Sequence Mining discovery: Definitions

The problem of mining sequential patterns, as defined in [4]
and [74], is as follows: Let’s considerI = {I1, · · · Im} be the
set ofm distinct items. Anitemsetis a subset ofI with possibly
un-ordered items. Asequence S, on the other hand, is an ordered
list of itemsets fromI (i.e., S = I1, · · · Il where Ij ⊆ I and
1 ≤ j ≤ l). S can be defined asS = I1 → I2 · · · → Il, where
“→” is a “happen after” relationship denoted asIi � Ij andi ≤ j.
The length of the sequenceS is defined as| S |=

P

j | Ij |, where
| Ij | is the number of items in the itemsetIj . For example, let’s
consider the sequenceS = AB → C → DF . This sequence is
composed of3 itemsets, namely,AB, C, andDF , and its length
is | S |=| AB | + | C | + | DF | = 5. The sequenceS is
then called5-sequence. We will refer for the remaining of this
proposal to a sequence of lengthk ask-sequence.

A sequenceS′ = I ′1, · · · I
′
p is called a subsequence ofS,

with p ≤| S |, if there exist a list of itemsets ofS, Ii1 , · · · Iip

such thatIj ⊆ I ′ik
, 1 ≤ k, j ≤ p. For example, the sequence

S′ = A → D is a subsequence ofS (described in the previous
example), becauseA ⊆ AB, D ⊆ DF , and the order of itemsets
is preserved. LetD, a set of sequences, be a sequential database,
where each sequenceS ∈ D has a unique identifier, denoted as
sid, and each itemset inS has a unique identifier, denoted as
eid. The supportof S’, is defined as the fraction of the database
sequences that containS’, given asσD(s′) =| Ds | / | D |,
whereDs′ is a set, contained inD, of database sequencesS such
that S′ ⊆ S. A sequence is said to be frequent if it occurs more
than a user-specified thresholdminsup, called minimum support.
The problem of mining frequent patterns is to find all frequent
sequences in the database. This is formally defined in [74] as:

Definitions for Sequential Pattern Mining: Given a se-
quential databaseD and a user-specifiedminsupparameterσ
(0 ≤ σ ≤ 1), find all sequences each of which is supported by at
least⌈σ | D |⌉ of sequences inD. Fk denotes the set of frequent
k-sequences andMaximal frequent sequenceis a sequence that
is not a subsequence of any other frequent sequence.

Table I shows an example database [88]. It consists of three
items (A,B,C), four input sequences and twelve events. Tables
II, III and IV show the frequent1-sequences,2-sequences, and
3-sequences with amin sup of 3, corresponding to75% of the
data, respectively. Themaximalsequences areA → A, B → A,
andAB → B.

B. Sequence Mining discovery: Related Work

It is challenging to find all frequent patterns in a large database
where the search space becomes extremely large. In fact, there are
O(mk) possible frequent sequences of length at mostk, where
m is the number of different symbols in the database alphabet.

Many techniques have been proposed to mine temporal data
sets to extract the frequent sequences. However, if the search is
unconstrained, it can produce millions of rules. Moreover,some

constrains might need to be added in some domains. For example,
a user might be interested in searching for sequences occurring
close in time to each other or far apart from each other, thosethat
contain some specific items, occurring during a specific period of
time, or frequent at most a number of times or at least another
number of times in the data set.

Several techniques have been proposed to discover the frequent
sequences [5], [55], [62], [90]. One of the early algorithmsthat
efficiently discovered the frequent sequences is the AprioriAll
[74], that iteratively finds itemsets of lengthl based on previously
generated(l-1)-length frequent itemsets. In [45] frequent se-
quences in a single long input-sequence, called frequent episodes,
were mined. It was extended to discover generalized episodes
that allow uniary conditions on individual sequences itemsets, or
binary conditions on itemset pairs [54]. In [3], theGeneralized
Sequential Patterns(GSP) algorithm was proposed to extend
the AprioriAll algorithm by introducing user-specified minimum
gap and maximum gap time constraints, user-specified sliding
window size, and user-specified minimum support. GSP is an
iterative algorithm that counts candidate frequent sequences of
length k in the k − th database scan. However,GSP suffers
from a number of drawbacks, namely, it needs as many full
scans of the database as the longest frequent sequence; it uses a
complex hash structure with poor locality; and it scales up linearly
as the size of the data increases.SPADE [89] was proposed
to cope with GSP’s drawbacks. SPADE uses a vertical id-list
database, prefix-based equivalence classes, and it enumerates
frequent sequences through simple temporal joins.SPADEuses
dynamic programming concepts to break the large search space of
frequent patterns into small and independent chunks. It requires
only three scans over the database as opposed toGSP which
requires multiple scans, andSPADE has the capacity of in-
memory computation and parallelization which can considerably
decrease the computation time.SPADE was later on extended
to Constraint SPADE (cSPADE) [88] which considers constraints
like max/min gaps and sliding windows. SPIRIT [39] is a family
of four algorithms for mining sequences that are a complementary
to cSPADE. However, cSPADE considers a different constraint
that finds sequences predictive of at least one class for temporal
classification problems. In fact, SPIRIT mines sequences that
match user-specified regular-expression constraints. Themost
relaxed of the four is SPIRIT(N) that eliminates items not
appearing in any of the user specified regular-expressions.The
most strict one is SPIRIT(R), that applies the constraints, while
mining and only outputs the exact set. GenPresixSpan [6] is
another algorithm based on PrefixSpan [64] that considers gap-
constraints. Regular expressions and other constraints have been
studied in [40], [48], [92]. In [48], a mine-and-examine paradigm
for interactive exploration of association and sequence episodes
was presented, where a large collection of frequent patterns is
first to be mined and produced. Then the user can explore this
collection by using “templates” that specify what is of interest
and what is not. In [60], CAP algorithm was proposed to extract
all frequent associations matching a large number of constraints.
However, because of the constrained associations, these methods
are unsuitable for temporal sequences that introduce different
kinds of constraints.

SincecSPADEis an efficient and scalable method for mining
frequent sequences, we will use it as a base for our new method
Variable-Gap Sequence miner (VGS), to extract the patternsthat
will be used to estimate the parameters and structure of our
proposed VOGUE state machine. The main difference, however,
between VGS and cSPADE is that cSPADE essentially ignores
the length and symbol distributions of gaps, whereas VGS is
specially designed to extract such patterns within one or more
sequences. Note that while other methods can also mine gapped
sequences [6], [40], [92], the key difference is thatduring mining
VGS explicitly keeps track of all the intermediate symbols,their
frequency, and the gap frequency distribution, which are used to
build VOGUE.
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Before we go into more details about cSAPDE, we will give
an overview of SPADE algorithm in Section 1, since cSPADE
is an extension of it.cSPADE technique will be described in
the Section 2. Section III-B provides the details of our proposed
method VGS.

III. SPADE: SEQUENTIAL PATTERNS DISCOVERY USING

EQUIVALENCE CLASSES

The SPADE algorithm [89] is developed for fast mining of
frequent sequences. Given as input a sequential databaseD and
the minimum support, denoted asmin sup, the main steps of
SPADE consists of the following:

1) Computation of the frequent1-sequences: F1 = { frequent
items or1-sequences};

2) Computation of the frequent2-sequences: F2 = { frequent
items or2-sequences};

3) Decomposition into prefix-based parent equivalence classes:
ξ = { equivalence classes[X]θ1

};
4) Enumeration of all other sequences, usingBreadth-First

Search (BFS) or Depth-First Search(DFS) techniques,
within each class[X] in ξ.

In the above,i-sequencesdenotes sequences of lengthi, 1 ≤
i ≤ 2.

A formal description of SPADE [89] is given in Algorithm 1.
The SPADE algorithm uses the following concepts:

Algorithm 1 SPADE
procedure SPADE(min sup)

P = { parent classesPi};
for each parent classPi ∈ P do

Enumerate-Frequent-Seq(Pi);
end for

end procedure
function ENUMERATE-FREQUENT-SEQ(S)

for all atomsAi ∈ S do
Ti = ∅;
for all atomsAj ∈ S with j ≥ i do

R = Ai ∨Aj ;
if Prune(R) == FALSE then

L(R) = L(Ai ∩ L(Aj));
if σ(R) ≥ minsup then

Ti = Ti ∪ {R};] F|R| = F|R| ∪ {R};
end if

end if
end for
if (Breadth-First-Search)then

Enumerate-Frequent-Seq(Ti);
end if

end for
if (Breadth-First-Search)then

for all Ti 6= ∅ do
Enumerate-Frequent-Seq(Ti);

end for
end if

end function

Sequence Lattice:If a sequenceS is frequent all subsequences
S′ of S, such thatS′ � S, are frequent. In fact SPADE considers
that the subsequence relation� is a partial order on the set of
sequences. Therefore, SPADE finds the subsequences that are
frequent from the mostgeneral, single items, to the most specific,
the maximal sequences in either a depth-first-search or breath-
first-search manner. This is done by looking into the sequence

Frequent Sequence Lattice
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Fig. 1. Frequent Sequence Lattice and Temporal Joins.

lattice spanned by the subsequence (�) relation as shown in
Figure 1 for the example dataset.

Support Counting: One of the main differences between
SPADE and the other sequence mining algorithms [5], [74] is
that the latter ones consider ahorizontal databaselayout whereas
SPADE considers a vertical one. The database in the horizontal
format consists of a set of input sequences which in their turn
consist of a set of events and the items contained in the events.
The vertical database, on the other hand, consists of an a disk-
based id-list, denotedL(X) for each itemX in the sequence
lattice, where each entry of the id-list is a pair of sequenceid
and event id(sid, eid) where the item occurs. For example, let’s
consider the database described in Table I, the id-list consist of
the tuples{(2, 20), (2, 30)}.

With the vertical layout in mind, the computation ofF1 and
F2 becomes as follows:

Computation of F1: The id-list of each database item is read
from disk into memory. Then the id-list is scanned incrementing
the new sid encountered. All this is done in a single database
scan.

Computation of F2: Let N = |F1| be the number of frequent
items, andA the average id-list size in bytes. In order to compute
F2 a naive implementation will require

(

N

2

)

id-list joins for all

pairs of items. Then,(A×N×(N−1)
2

) is the corresponding
amount of data read; this is almostN/2 data scans. To avoid this
inefficient method two alternate solutions were proposed in[88]:

To computeF2 above a user specified lower bound threshold,
a preprocessing step is used. An on-the-fly vertical-to-horizontal
transformation is performed: scan the id-list of each itemi into
memory. Then for each(sid, eid) pair (i, e) is inserted in the
list for input sequenceS. Using the id-list for itemA from the
previous example in Table I, the first pair(1, 15) is scanned
then(A, 15) is inserted in the list for input-sequence1. Table V
describes the complete vertical-to-horizontal transformation of the
database. To recover the horizontal database, for eachsid, a list
of all 2− sequences is formed in the list, and counts are updated
in a 2− dimensional array indexed by the frequent items.

Then, as shown in Figure 1, the intermediate id-list forA→
B is obtained by a temporal join on the lists ofA andB. All
occurrences ofA “before” B, that representA → B are found
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TABLE V

VERTICAL-TO-HORIZONTAL DATABASE RECOVERY

sid (item, eid)pairs

1 (A, 10)(A, 30)(B, 10)(B, 20)(B, 30)
2 (A, 20)(A, 30)(B, 30)(B, 50)(C, 20)(C, 30)
3 (A, 10)(A, 40)(B, 30)
4 (A, 30)(A, 40)(B, 30)(B, 50)

in an input sequence and the corresponding eids are stored to
obtainL(A→ B). In the case ofAB → B, the id-lists of its two
generating sequencesA → B andB → B are joined. Because
of main-memory limitations, it is not possible to enumerateall
the frequent sequences by traversing the lattice and performing
joins. However, this large search space is decomposed by SPADE
into smaller chunks, calledclasses, to be processed separately by
usingsuffix-based equivalence classes.

Definition: Two k-sequences are in the same class if they share
a commonk − 1 length suffix.

Therefore, each class is asub-latticeof the original lattice. It
can be processed independently since it contains all the infor-
mation to generate all frequent sequences with the same suffix.
SPADE recursively calls the procedureEnumerate-Frequentthat
counts the suffix classes starting from suffix-classes of length one
(calledparent classes), in the running example (A,B), then it uses
suffix-classes of length two, in the running example (A → B,
AB) and so on. The input to the procedure is a set of items of a
sub-latticeS, along with their id-lists. The id-lists of all distinct
pairs of sequences in each class are joined to generate the frequent
sequences and the results is checked against the user set threshold
min sup.

Temporal Joins: A suffix equivalence class[S] can contain
either an itemset of the formXS or a sequence of the form
Y → S, whereX and Y are items, andS is a suffix sequence.
Assuming that itemsets of a class always precede its sequences,
then joining the id-lists of all pairs of elements extends the class
for the next level. This results in one of the three differentfrequent
sequences depending on the joined pairs [88]:

1) Joining an Itemset to another Itemset: the resulting se-
quence is an itemset. For example,AS with BS the
resulting sequence is the itemsetABS.

2) Joining an Itemset to a Sequence: the resulting sequence is
a new sequence. For example,AS with B → S results in
the sequenceB → AS.

3) Joining a Sequence to another Sequence: there are three
possible resulting sequences considering the sequences
A→ S andB → S: a new itemsetAB → S, the sequence
A→ B → S or the sequenceB → A→ S.

From Figure 1, from the1− sequences A andB we can get
three sequences: the itemsetAB and the two sequencesA → B
and its “reverse”B → A. To obtain the id-list of itemsetAB, the
equality of (sid,eid) pairs needs to be checked and in this case
it is L(AB) = {(1, 10), (1, 30), (2, 20), (4, 30)} in Figure 1. This
shows thatAB is frequent in3 out of the4 sequences in the data
set (min sup = 3 which corresponds to75% of the data). In the
case of the resulting sequenceA → B, there is need to check
for (sid,eid) pairs where sid for bothA andB are the same but
the eid forB is strictly greater in time than the one forA. The
(sid,eid) pairs in the resulting id-list forA → B only keep the
information about the first itemA and notB. This is because all
members of a class share the same suffix and hence the same eid
for that suffix.

A. cSPADE: constrained Sequential Patterns Discovery using
Equivalence classes

In this section we describe in some detail the cSPADE algo-
rithm [88]. cSPADE is designed to discover the following types

of patterns: (i) Single item sequences as well as the sequences
of subsets of items. For example the setAB, and AB → C
in (AB → C → DF ). (ii) Sequences with variable gaps among
itemsets ( a gap of0 will discover the sequences with consecutive
itemsets). For example, from the sequence(AB → C → DF ),
AB → DF is a subsequence of gap 1 andAB → C is a
subsequence of gap 0.

cSPADE is an extension of theSequentialPatternsDiscovery
using Equivalence classes (SPADE) algorithm by adding the
following constraints:

1) Length and width restrictions.
2) Minimum gap between sequence elements.
3) Maximum gap between sequence elements.
4) A time window of occurrence of the whole sequence.
5) Item constraints for including or excluding certain items.
6) Finding sequences distinctive of at least a special attribute-

value pair.
Definition: A Constraint [88] is said to beclass-preserving

if in the presence of the constraintsuffix-classretains it’s self-
containment property,i.e., support of anyk-sequence can be
found by joining id-lists of its two generating subsequences of
length (k − 1) within the same class.

If a constraint isclass-preserving[88], the frequent sequences
satisfying that constraint can be listed using local suffix class
information only. Among all the constraints stated above, the
maximum gapconstraint is the only one that is not class-
preserving. Therefore, there is a need for a different enumeration
method. cSPADE pseudo-code is described in Algorithm 2.

Algorithm 2 cSPADE
procedure CSPADE(min sup)

P = { parent classesPi};
for each parent classPi ∈ P do

Enumerate-Frequent-Seq(Pi );
end for

end procedure
function ENUMERATE-FREQUENT-SEQ(S)

for all sequencesAi ∈ S do
if maxgap join withF2 then

p = Prefix-Item(Ai);
N = { all sequencesAj in class[p]};

else if self-join then
N = { all sequencesAj ∈ S, with j ≥ i};

end if
for all sequencesα ∈ N do

if (length(R) ≤ maxl) and width(R) ≤ maxw)

andaccuracy(R) 6= 100%) then
L(R) = Constrained-Temporal-

Join(L(Ai),L(α), min-gap, max-gap, window);
if σ(R, ci) ≥ minsup(ci) then

T = T ∪ {R}; print R;
end if

end if
end for

end for
Enumerate-Frequent(T );
delete S;

end function

We will describe in some more detail how cSPADE handles
each one of those constraints:

Length and Width restrictions: Without a maximum length
allowed for a pattern to be mined, the number of frequent
sequences blows up especially in the case some items are very
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frequent in highly structured data sets. In cSPADE this is taken
care of by adding the following check [88]: ifwidth(R) ≤ maxw

and if length(R) ≤ maxl, wheremaxw andmaxl are, respec-
tively the maximum width and length allowed in a sequence.
This addition is done in the “Enumerate” method as shown in
cSPADE’s pseudo-code. These constraints areclass-preserving
since they do not affect id-lists.

Minimum Gap between sequence elements:Patterns, which
items are not necessarily immediately consecutive in a sequence,
are very important in some domains such as in DNA analysis.
The minimum gap is aclass-preservingconstraint. In fact, if we
consider that a sequenceA → B → S is frequent with a min-
gap of at leastδ between each two of its elements, thenA and
S are at leastδ elements apart and the same goes forB andS.
Therefore, by joining the id-lists of the two sequencesA → S
and B → S one can determine ifA → B → S is frequent.
Hence, adding the constraint minimum gap boils down to adding
a check in SPADE pseudo-code for the minimum gap between
the items of a sequence. If we consider the example data set in
Figure 1, the latticeL(A → B) is generated by adding a check
on the (sid,eid) pairs inL(A) andL(B). In fact, for every given
pair (c, tb) in L(A) we check if there exist a pair(c, tb) in L(B)
that satisfies the constrainttb 6= ta andtb− ta ≥ min gap. If that
is the case the pair(c, ta) is added toL(A → B). For example,
if min gap is set to20 then the pair(1, 10) from L(A) can be
added toL(A → B) since there exist a pair(1, 30) that satisfies
the constraint [88].

Maximum Gap between sequence elements:This constraint
is not class-preservingsince if there is a sequenceA → B → S
is frequent withmax gap = δ, then the subsequenceB → S is
frequent with at mostmax gap = δ betweenB andS butA→ S
is only frequent at mostmax gap = 2δ. Therefore, ifA → S
could be infrequent with this constraint but yetA → B → S is
frequent. To incorporate maximum gap constraint to the SPADE
pseudo-code [88], first a check needs to be added such that,
in the example of Figure 1, for a given pair(c, ta) in L(A),
check if a pairs(c, tb) exists in L(B) such thattb 6= ta and
tb−ta ≤ max gap. The second step is to change the enumeration
of the sequences with the maximum gap constraint. A join with
F2 is necessary instead of a self-join because the classes are no
more self-contained. This join is done recursively withF2 until
no extension is found to be frequent.

Time Window of occurrence of the whole sequence:In
other words, the time constraint applies to the whole sequence
instead of minimum or maximum gap between elements of the
sequence [88]. This constraint isclass-preservingsince if a
sequenceA→ B → S is within a time-windowδ, then it implies
thatA→ S andB → S are within the same window and so on for
any subsequence. However, including the time-window into the
SPADE software is difficult because the information concerning
the whole sequence time is lost from the parent class. In fact, only
the information about the eid of the first item of the sequenceis
stored and the one of the remaining items is lost from one class
to the next. The solution proposed in [88] is to keep information
about the difference “diff” between the eid of the first and the
last item of the sequence at each step of the process. This is done
by adding an extra column in the id-list calleddiff to store that
information.

Item constraints for including or excluding certain items:
The use of a vertical format of the data set and the equivalence
classes in cSPADE makes it easy to add constraints on items
within sequences [88]. For instance, if the constraint is excluding
a certain item from the frequent sequences, then removing itfrom
parent classes takes care of that. Therefore, no frequent sequence
will contain that item. The same procedure will apply in the case
of including an item.

Whereas cSPADE essentially ignores the length and symbol
distributions of gaps, the new mining sequence algorithm that we
present in the work,VGS(Variable-Gap Sequences), is specially
designed to extract such patterns within one or more sequences.

TABLE VI

VGS: SUBSEQUENCES OFLENGTH 1

A B C D E F G H I

frequency 4 3 2 2 1 1 1 1 1

TABLE VII

VGS: SUBSEQUENCES OFLENGTH 2

subsequence freq g = 0 g = 1 g = 2
A → C 2 1 1 0
A → B 3 0 1 2
A → D 2 1 0 1
C → B 2 2 0 0
C → D 2 0 1 1
C → A 2 0 1 1
B → D 2 1 1 0
B → A 2 1 1 0
D → A 2 1 0 1

The next Chapter describesVGS in more details.

B. Pattern Extraction:Variable-Gap Sequence (VGS) miner

Variable-Gap Sequence miner (VGS) is based on cSPADE
[88]. While cSPADE essentially ignores the length and symbol
distributions of gaps, VGS is specially designed to extractsuch
patterns within one or more sequences. Note that whereas other
methods can also mine gapped sequences [6], [74], [88], [92],
the key difference is thatduring mining VGS explicitly keeps
track of all the intermediate symbols, their frequency, andthe
gap frequency distributions, which are used to build VOGUE.

VGS takes as input the maximum gap allowed (maxgap),
the maximum sequence length (k), and the minimum frequency
threshold (min sup). VGS mines all sequences having up tok
elements, with no more thanmaxgap gaps between any two
elements, such that the sequence occurs at leastmin sup times
in the data. For example, letS = ACBDAHCBADFGAIEB
be an input sequence over the alphabetΣ = {A, · · · , I}, and
let maxgap = 2, minsup = 2 and k = 2. VGS first mines the
frequent subsequences of length 1, as shown in Table VI. Those
symbols that are frequent are extended to consider sequences of
length 2, as shown in Table VII. For example,A→ B is a frequent
sequence with frequencyfreq = 3, since it occurs once with gap
of length 1 (ACB) and twice with a gap of length 2 (AHCB and
AIEB). Thus the gap length distribution ofA → B is 0, 1, 2 as
shown, in Table VII, under columnsg = 0, g = 1, and g = 2,
respectively. VGS also records the symbol distribution in the gaps
for each frequent sequence. ForA → B, VGS will record gap
symbol frequencies asC(2), E(1),H(1), I(1), based on the three
occurrences. Sincek = 2, VGS would stop after mining sequences
of length 2. Otherwise, VGS would continue mining sequences
of lengthk ≥ 3, until all sequences withk elements are mined.

Before we start describing VGS, we will provide definitions of
some terms that will be used in this section and in the rest of this
thesis:

k-seq: sequence of lengthk, i.e. k elements. For ex-
ample,A → B is 2-seq whereB occurs afterA and
A→ B → C is a 3-seq and so on.
min sup: minimum support, is the minimum threshold
for the frequency count of sequences.
maxgap: maximum gap allowed between any two ele-
ments of ak-seq.
F1: the set of frequent1-seq (single items).
Fk: the set of allk-seq which frequency is higher than
the minimum thresholdmin sup and the gap between
their elements is at most of lengthmaxgap.
Ck: the set of candidatek-seq.
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TABLE VIII

SUBSEQUENCES OF LENGTH2 MINED BY VGS

subsequence freq g = 0 g = 1 g = 2
A → C 2 1 1 0
A → B 3 0 1 2
A → D 2 1 0 1
C → B 2 2 0 0
C → D 2 0 1 1
C → A 2 0 1 1
B → D 2 1 1 0
B → A 2 1 1 0
D → A 2 1 0 1

TABLE IX

ID-LIST FOR THE ITEM A

SID EID
1 1
1 5
1 9
1 13

The first step of VOGUE uses VGS to mine the raw data-set for
variable gap frequent sequences. It takes as input the maximum
gap allowed maxgap between the elements of the subsequences,
the maximum length (k) of the subsequences, and the minimum
frequency threshold (min sup) for sequences to be considered
frequent. The mined subsequences from VGS are of the formA→
B if k = 2, or A→ B → C if k = 3, and so on. The frequency
of the subsequences is calculated either across the sequences in
the data-set and/or within the sequences in the data-set, asthe
application may require. Only those sequences that are frequent
within a gap range of[0, maxgap] are reported. As a running ex-
ample, letS =< A,C,B,D,A,H,C,B,A,D, F,G,A, I,E,B >
be a sequence. Letmaxgap = 2, min sup = 2 and k = 2. The
results of VGS are shown in Table VII. For example,A→ B is
a frequent sequence withfreq = 3, since we have< A,C,B >
for a gap of 1, and< A,H,C,B > and< A, I,E,B > for a gap
of 2. In the table, the columnsg = 0, g = 1, andg = 2 show the
gap distributions. For this subsequence we have no occurrences
at g = 0, one atg = 1 and two atg = 2.

The key features of our approach are: (i) Use of a vertical id-
list database format, where each sequence is associated with a
list of objects in which it occurs, and its relative time-stamps,
and (ii) employeed a lattice-theoretic approach to decompose the
original search space (lattice) into smaller sub-latticeswhich can
be processed independently in the main memory. This reducesthe
I/O cost, since the algorithm requires only three scans of the data
set. Refer to [21] for a detailed introduction to Lattice theory.

VGS is, therefore, cost efficient by reducing the dataset scans
and using an efficient depth first search, as described in [89]. We
use, as in [89], a vertical database format, where an id-listfor
each item in the dataset.Each entry in the id-list is a(sid, eid)
pair. Eid is where the item exists in sequence whichid is sid.
sid is the sequenceid in the data set andeid is the eventid where
the item exists.

In our example we have 9 different items
{A,B,C,D,E, F,G,H, I}. The corresponding id-list ofA
is shown in Table IX. This allows checking the frequency of the
sequences via joins of the items. Using our running example,the
join of A andB would beA ∨B = {A→ B,B → A}; this give
us the maximal sub-sequences existing in the data set formedby
A andB with a maximum gap lengthg of maxgap.

The main steps in VGS are:
Computation of F1: we compute all frequent1-seq (single

items) in the whole data set and their frequencies regardless of
theminsup. This is done by reading the id-list of each item and

scanning it incrementing the support for eachsid encountered,
even if it repeats, for eachsid. This is different from SPADE
where only newsid are taken into considerations to look for
patterns across only the sequences. In VGS we look for patterns
within and across the sequences in the data set.

Computation of F2: we compute all the2-seq with a gap of
length g between its elements,g ∈ {0, · · · ,maxgap} in which
frequencies are greater than themin sup. g = 0 corresponds to
no elements between two main elements of thek-seq, andg = 1
corresponds to one element between two main elements of the
elements of thek-seq and so on. This computation is done by
scanning the id-list of each item in the alphabet into memory. For
each pair(sid, eid) we insert it in the list for the input sequence
whose id issid. We, then, form a list of all2-sequences in the
list for eachsid, and increment the frequency if the difference
between the twoeid events is less than themaxgap allowed.

Enumeration: of all other frequentk-seq, with frequency at
least min-sup, with variable gaps between each two of its elements
via Depth First Search (DFS) within each class. For example,the
3-sequenceA

g1
−→ B

g1
−→ C has with gapg1 ∈ {0, · · · ,maxgap}

betweenA andB and gapg2 ∈ {0, · · · ,maxgap} betweenB and
C. Where “A

g1
→ B” meansA is followed byB after g1 elements

in between them. Likewise, “B
g2
→ C” meansB is followed by

C afterg2 elements in between them. The procedure is described
in Algorithm 3.

Algorithm 3 VGS
procedure VGS(min sup,maxgap)

P = { parent classesPi};
for each parent classPi ∈ P do

Enumerate-Frequent-Seq(Pi ,min sup,maxgap);
end for

end procedure
function ENUMERATE-FREQUENT-SEQ(S,min sup,maxgap)

for all itemsvi ∈ S do
Ti = ∅;
for all itemsvj ∈ S with j ≥ i do

R = new candidate sequence fromvi andvj ;
L(R) = L(vi) ∩ L(vj); ⊲ with

0 ≤ (vi(eid)− vj(eid)) ≤ maxgap, wherevi(eid) is the event
id of vi

if freq(R) ≥ minsup then
Ti = Ti ∪ {R};

F|R| = F|R| ∪ {R};
end if

end for
Enumerate-Frequent-Seq(Ti );

end for
end function

The input to the procedure is a set of items of a sub-lattice
S, along with their id-lists and themin sup andmaxgap. The
sequences that are found to be frequent form the atoms of classes
for the next level. This process is done recursively until all the
frequent sequences are computed.

IV. DATA MODELING USING VARIABLE -ORDER STATE

MACHINE

HMMs are a powerful statistical tool that have been applied
in a variety of problems ranging from speech recognition, to
biological sequence analysis, to robot planning, to web prefetch-
ing. Speech recognition, however, is the area of research where
a considerable amount of papers and books on using HMM have
been produced [51], [70]. The best description of how HMMs
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have been used in Speech recognition is described in the well
referenced tutorial by Rabiner [67]. As biological knowledge
accumulates, HMMs have been used as one of the statistical
structures for biological sequence analysis, a growing field of
research, from human genomes to protein folding problems, [26].
In [28], Profile HMMs have been used for multiple alignment of
conserved sequences. HMMs have been used as well in inferring
phylogenetic trees [63], and in splice site detection [44].Partially
Observable Markov Decision Process (POMDP) models have
been used in robot planning to allow the robots to act and learn
even if they are uncertain about their current location, [49]. In
[66], allKth Markov model have been used to predict web surfing
behavior. A hidden markov model was defined for each character
in a text recognition application from grey level images in [1].
In [56], an HMM was used for automatic gait classification in
medical image processing. We assume the reader is familar with
HMM terms and definitions.

There are three basic problems to solve while applying HMMs
to real world problems:(i) Evaluation: Given the observation
sequenceO = o1o2 · · · oT , and a modelλ = (A,B,Π), how
do we efficiently computeP (O|λ)? The solution to this problem
will enable us to evaluate different models and choose the best
one according to the given observation. The main issue, however,
in this problem is that the hidden states tend to complicate
the evaluation. This problem can be solved using the Forward-
Backward algorithm [67].(ii) Decoding: Given the observation
sequenceO = {o1o2...oT }, and the modelλ, how do we choose
a corresponding state sequenceQ = {q1q2...qT } which is optimal
in some meaningful sense? The solution to this problem would
explain the data. An optimization criterion has to be decided
(e.g., maximum likelihood). An efficient dynamic programming
method, as the Viterbi algorithm [67], is used to solve this
problem.(iii) Learning: How do we adjust the model parameters
λ = (A,B,Π) to maximize P (O|λ)? This problem is about
finding the best model that describes the observation at hand.
Of all the three problems, the third one is the most crucial and
challenging to solve for most applications of HMMs. The work
presented here focuses on this problem.

The main problem with HMMs is that they depend on the
Markov property, i.e., the current state depends only on the
previous state. In general patterns may display longer range
dependencies, and one needs a higher-order HMM [25] (where
the order denotes the number of previous states the current state
depends on) to model such patterns. Thus, in addition to HMMs
(of order 1), there are other types of Markov models used in
prediction. For example, anm−order Prediction-by-Partial Match
(PPM) predictor maintains a Markov model of orderj, for all
1 ≤ j ≤ m. This scheme is also referred to as anAll-m-Order
Markov Model[58]. This model uses the pastj events to compute
the probability of next event to come. Mixed-order HMMs have
also been proposed [72]. The main challenge here is that building
higher order HMMs [25] is not easy, since we have to estimate
the joint probabilities of the previousm states (in anm-order
HMM). Furthermore, not all of the previousm states may predict
the current state. Moreover, the training process is extremely
expensive and suffers from local optima. This leads us to consider
a novel approach of usingvariable-orderHMMs via data mining.
The basic idea is to use data mining to mine frequent patterns,
which may be of different lengths, and then use these frequent
patterns as the estimates of the joint probabilities, whichcan be
used to seed the variable-order HMM. There has been almost no
work on variable-order HMMs. The closest work is that of [58],
who proposed using frequent associations for support, confidence
and error pruned markov models (S/C/E-PMMs). However, we
plan to use other higher order patterns (sequences) [89].

A. Estimation of HMM parameters

The parameters estimation problem can be divided into two
categories:

1) Structure of the HMM: Define the number of statesN ,
how they are connected, and the number,M , of output
symbols in each state.

2) Parameters value estimation:Estimate the transition prob-
ability matrixA, the emission probabilitiesB, and the initial
probabilitiesΠ.

For both categories we will assume that the data at hand is
composed of example sequences (training sequence), denoted as
O = {o1, o2 · · · oT }, that are independent. Thus:

P (O|λ) =
T
X

t=1

P (ot|λ) (1)

Due to the complexity of the problem and the finite number
of observations, there is no known analytical method so far
for estimatingλ to globally maximizeP (O|λ). Instead, iterative
methods that provide a local maxima onP (O|λ) can be used such
as the frequently used Baum-Welch estimation algorithm [13].
Besides the well known Viterbi and Baum-Welch methods [67],
in [70], the authors used a gradient descent method to estimate
the HMM parameters, and a back-propagation neural network to
determine the states of the HMM. In [58], associative miningwas
used to estimate the parameters of an allKth-order Prediction-
by-Partial-Match (PPM) Markov Predictors. We will look more
closely at this method later on and compare it to the method we
present in this work.

B. Baum-Welch Algorithm

We will describe in more detail the Baum-Weltch algorithm
[10]–[14], since we use it as a base against which we compare
our method. Recall that we want to estimateλ = (A,B,Π) to
maximize P (O|λ). An overview of the iterative Baum-Welch
algorithm is described in Algorithm 4.

Algorithm 4 Baum-Welch Algorithm
procedure FORWARD-BACKWARD(I, min conf)

Start with an initial modelλ0

Compute newλ based onλ0 and the observation sequence
O = o1, · · · oT

if logP (O|λ)− logP (O|λ0) < ∆ (where∆ is a predefined
threshold)then

stop
else

setλ0 ← λ and goto step 2
end if

end procedure

The training mechanism, step 2, of the Baum-Welch algorithm
uses the Forward-Backward algorithm [10] to compute the
expected number of times each transition or emission is used,
given the training sequence O. This computation is in the order
O(N2T ). The λ, Π , A andB values are iteratively computed,
and converge in a continuous space until a converging criteria is
met, typically stopping when the difference in the log of likeli-
hood [log(P (O|λ))− log(P (O|λ0))] is smaller than a predefined
threshold∆ or the maximum number of iterations is reached.
At each iteration, the log likelihood of the modelλ is increased,
converging the model to a local maximum. As pointed out in the
beginning of this section, in a continuous-valued space there is
no known method to get a global optimum, but rather a local
maximum can be reached. The values of the initial parameters,
used in the Baum-Welch algorithm, influence heavily the local
maximum that the model converges to. This becomes a severe
problem when dealing with large scale HMMs, which is the case
in most of real-world applications, if not all of them.
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TABLE X

SUBSEQUENCES OF LENGTH1 MINED BY VGS

Index Element freq
1 C 2
2 D 2
3 H 1
4 I 1
5 E 1
6 F 1
7 G 1
8 A 4
9 B 3

C. Modeling: Variable-Order State Machine

VOGUE uses the mined sequences to build a variable
order/gap state machine. The main idea here is to model each
non-gap symbol in the mined sequences as a state that emits
only that symbol and to add intermediate gap states between any
two non-gap states. The gap states will capture the distribution
of the gap symbols and length. LetF be the set of frequent
subsequences mined by VGS, and letk be the maximum length
of any sequence. While VOGUE can be generalized to use any
value of k ≥ 2, for clarity of exposition we will illustrate the
working of VOGUE using mined sequences of lengthk = 2.
We consider the general case in the next section. LetF1 and
F2 be the sets of all frequent sequences of length1 and 2,
respectively, so thatF = F1 ∪ F2. Thus, each mined sequence
si ∈ F2 is of the form si : vf → vs, where vf , vs ∈ Σ. Let
Γ = {vf |vf → vs ∈ F2} be the set of all the distinct symbols
in the first position, andΘ = {vs|vf → vs ∈ F2} be the set of
all the distinct symbols in the second position, across all the
mined sequencessi ∈ F2. The VOGUE model is specified by the
6-tupleλ = {Q,Σ, A,B, ρ, π} where each component is defined
below:

Alphabet (Σ): The alphabet for VOGUE is given as:

Σ = {v1, · · · vM} (2)

where |Σ| = M is the number of observations emitted by any
state. The alphabet’s size is defined by the number of symbols
that occur at least once in the training data, obtained as a result
of the first iteration of VGS, as shown in Table X. For our
exampleS in Section2.3 of Chapter2, we have nine distinct
frequent symbols, thusM = 9.

Set of States (Q): The set of states in VOGUE is given as:

Q = {q1, · · · , qN}, (3)

where:
|Q| = N = Nf +Gi +Ns +Gu. (4)

Here,Nf = |Γ| andNs = |Θ| are the number of distinct symbols
in the first and second positions, respectively. Each frequent
sequencesi ∈ F2 having a gapg ≥ 1 requires a gap state to
models the gaps.Gi thus gives the number of gap states required.
FinallyGu = 1 corresponds to an extra gap state, calleduniversal
gap, that acts as the default state when no other state satisfies an
input sequence. For convenience let the partition ofQ be:

Q = Qf ∪Qi ∪Qs ∪Qu (5)

where the firstNf states belong toQf , the nextGi states belong
to Qi, and so on.

For our exampleS in Section 2.3 of Chapter 2, we have
Nf = 4, since there are four distinct starting symbols in
Table VIII (namely, A,B,C,D). We also have four ending
symbols, givingNs = 4. The number of gap states is the number
of sequences of length 2 with at least one occurrence with

gap g ≥ 1. Thus Gi = 8, C → B is the only sequence that
has all consecutive (g = 0) occurrences. With one universal
gap stateGu = 1, our model yieldsN = 4+8+4+1 = 17 states.

Transition Probability Matrix ( A): The transition probability
matrix between the states:

A = {a(qi, qj)|1 ≤ i, j ≤ N} (6)

where:
a(qi, qj) = P (qt+1 = qj |q

t = qi) (7)

gives the probability of moving from stateqi to qj (where t is
the current position in the sequence). The probabilities depend on
the types of states involved in the transitions. The basic intuition
is to allow transitions from the first symbol states to eitherthe
gap states or the second symbol states. The second symbol states
can go back to either the first symbol states or to the universal
gap state. Finally the universal gap state can go to any of the
starting states or the intermediate gap states. We discuss these
cases below.

• Transitions from First States: Any first symbol stateqi ∈
Qf may transition to either a second symbol stateqj ∈ Qs

(modeling a gap ofg = 0) or to a gap stateqj ∈ Qi
(modeling a gap ofg ∈ [1, maxgap]). Let siy : vi → vy ∈ F2

be a subsequence mined by VGS. Letfreqg
i (y) denote the

frequency ofsiy for a given gap valueg, and letfreqi(y)
denote the total frequency of the sequence, i.e.:

freqi(y) =

maxgap
X

g=0

freqg
i (y) (8)

Let the fraction of gap-less transitions fromqi to qj over all
the transitions fromqi to qy ∈ Qs be denoted as:

R =
freq0i (j)
P

y∈Qs

freqi(y)
(9)

The transition probabilities fromqi ∈ Qf are given as:

a(qi, qj) =

8

>

>

>

>

<

>

>

>

>

:

R, qj ∈ Qs

freqi(j)
X

y∈Qs

freqi(y)
−R, qj ∈ Qi

0, qj ∈ Qf ∪Qu

(10)
• Transitions from Gap States: Any gap stateqi ∈ Qi may

only transition to second symbol stateqj ∈ Qs. For qi ∈ Qi
we have:

a(qi, qj) =



1, qj ∈ Qs

0, otherwise
(11)

• Transitions from Second States: A second symbol state
qi ∈ Qs may transition to either first symbol stateqj ∈ Qf
(modeling a gap ofg = 0), or to the universal gap state
qj ∈ Qu (modeling other gaps). LetT =

P

sx∈F2
freq(sx)

be the sum of frequencies of all the sequences inF2. For
qi ∈ Qs we have:

a(qi, qj) =

8

>

>

>

>

<

>

>

>

>

:

0.99×

X

qy∈Qf

freqj(y)

T , qj ∈ Qf

0.01, qj ∈ Qu

0, qj ∈ Qi ∪Qs

(12)
Transitions back to first states are independent ofqi, i.e., the
same for allqi ∈ Qs. In fact, these transitions are the same as
the initialization probabilities described below. They allow
the model to loop back after modeling a frequent sequence.
Note, that we are primarily modeling the frequent sequences
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mined by VGS. However, we need to account for symbols
that may appear between the frequent sequences but are not
picked up as frequent. In a statistical model such as HMM,
if a position or a subsequence of positions in an observation
sequence is not present, then the probability of the sequence
with respect to the model will be very small, regardless of
how well it may match the rest of the model.
For example, assume a model built on two frequent subse-
quencesA→ B andC → D. The sequenceS′ = ABRCD
should be clearly identified to be a good match to the model
since both subsequencesA → B andC → D are present
in it. However, after being in the state that will generate
the symbolB we need to generate the symbolR that is
not in any of the two frequent sequences. Therefore, we
need a transition to the universal gap state. However, since
R → B was not identified as being frequent by VGS
we need to assign a small probability to this transition.
Therefore, we assign an empirically chosen value of1% to
the transition from the “second states” to the universal gap

state. Furthermore, since
N
P

j=1
a(qi, qj) = 1 we assign the

remaining99% to the transition to the “first states”.
• Transitions from Universal Gap: The universal gap state

can only transition to the first states or the intermediate gap
states. Forqi ∈ Qu we have:

a(qi, qj) =

8

>

>

>

>

<

>

>

>

>

:

0.9 ×

X

qy∈Qf

freqj(y)

T , qj ∈ Qf

0.1× 1
Gi
, qj ∈ Qi

0, otherwise

(13)

Since the first states can emit only one symbol, we allow
transitions from universal gap to intermediate gap states,to
allow for other symbol emissions. For example, assuming,
as before, the same frequent sequences areA → B and
C → D that are used to build the model. If we have a new
observation sequenceS′′ = ABRFCD, clearly we need to
generate two symbols,R andF , between the two frequent
sequencesA → B andC → D. After generatingB from a
second state, we can generateR from the universal gap state
however we need to generate one more symbol,F . F does
not belong to any of the frequent sequence before generating
the other frequent sequenceC → D. Therefore there is a
need to transit from the gap state to an intermediate gap
state since the first and second symbols can only generate
symbols that belong to the frequent sequences. Moreover,
since generatingF afterR was not identified as frequent by
VGS, we need to assign a small probability to the transition
from the universal gap to the intermediate gap states. This
probability is at most 10% (empirically chosen) across all
the gap states. In the remaining 90% cases, the universal
gap transitions to a first state with probabilities proportional
to its frequency.
Figure 2 shows transitions between states and their
probabilities in VOGUE for our running example. Note,
that each gap state’s duration is considered explicitly within
a state. The notationgi, for exampleg3, in the graph is
the name of the gap state between the elements of the
sequence, in this caseC → D, and not the value of the gap.
The symbol states, on the other hand, are named after the
only symbol that can be emitted from them, for exampleC
is theonly symbol that is emitted from the first symbol state.

Symbol Emission Probabilities (B): The symbol emission prob-
abilities are state specific. We assume that each non-gap state
(qi ∈ Qf ∪Qs) outputs only a single symbol, whereas gap states
(qi ∈ Qi ∪ Qu) may output different symbols. The emission

probability matrix is then given as:

B = {b(qi, vm) = P (vm|qi), 1 ≤ i ≤ N and1 ≤ m ≤M} (14)

where:
b(qi, vm) = P (vm|qi) (15)

is the probability of emitting symbolvm in stateqi. b(qi, vm)
differs depending on whetherqi is a gap state or not. Since there
is a chance that some symbols that do not occur in the training
data may in fact be present in the testing data, we assign thema
very small probability of emission in the gap states.

• Non-gap States: the emission probability is:

b(qi, vm) =



1, qi ∈ Qf ∪Qs

0, otherwise
(16)

For example, the first and second states are labeled by their
emission symbol in Figure 2.

• Universal Gap: For qi ∈ Qu we have:

b(qi, vm) =

0

B

B

B

@

freqi(vm)
X

vm∈Σ

freqi(vm)

1

C

C

C

A

× 0.99 + c′ (17)

wherec′ = 0.01
M .

This means thatvm is emitted with probability proportional
to its frequency in the training data. Thec′ term handles the
case whenvm does not appear in the training set.

• Gap States: If qi ∈ Qi its emission probability depends on
the symbol distribution mined by VGS. LetΣqi be the set
of symbols that were observed by VGS in the gapqi. We
have:

b(qi, vm) =

0

B

B

B

@

X

g≥1

freqg(vm, qi)

X

vm∈Σqi

X

g≥1

freqg(vm, qi)

1

C

C

C

A

× 0.99 + c (18)

wherec = 0.01
|Σqi |

.

Note that the above summations are for gap rangesg ∈
[1, maxgap], since gapg = 0 is treated as a direct transition from
one state to another. Note that the values 0.99 and 0.01 above
arise from the pseudo-count approach used for previously unseen
symbols.

In our running example, for the symbolvm = C and the gap
state g4 between the states that emitA and B, we have the
frequency ofC as 2 out of the total number (5) of symbols seen
in the gaps (see Section2.3 of Chapter2). ThusC’s emission
probability is 2

5 × 0.99 + 0.01
4 = 0.385.

Gap Duration Probabilities (ρ): The probability of generating
a given number of gaps from the gap statesQi is given by the
gap duration probability matrix:

ρ = {ρ(qi, g)|qi ∈ Qi, g ∈ [1, maxgap]} (19)

Let qi be the gap state between a stateqx ∈ Qf and a state
qy ∈ Qs corresponding to the sequences : vi → vy ∈ F2. The gap
duration probability is proportional to the frequency of observing
a given gap value fors, i.e.:

ρ(qi, g) =

8

>

>

<

>

>

:

freq
g
i (y)

X

g∈{1,··· ,maxgap}

freqg
i (y)

, qi ∈ Qi

1, qi ∈ Q\Qi.

(20)

In our running example, for the gap stateg4 between the states
that emitA and B, we haveρ(g4, 2) = 2

3 = 0.67, since we



11

g1

C

 0.31

A

 0.36

D

 0.1

B

  0.21

g2

 0.012

g3

 0.012

g4

 0.012

g5

0.012

g6

0.012

g7

0.012

g8

0.012

g9

0.012

B

  0.33

  0.33  0.33

D

  0.14

C

  0.14

 0.42   0.14   0.14

A

  0.5

  0.5

 0.25 0.25

 0.25 0.25  0.01

 0.31   0.36   0.1  0.2

   0.01 

 0.31  0.1  0.360.2

0.01 

 0.31 0.1  0.36  0.2

  0.01

  0.31 0.1  0.360.2

 1 1 1    1   1  1 1 1

Fig. 2. VOGUE State Machine for Running Example

observe twice a gap of 2, out of three occurrences.

Initial State Probabilities (π): The probability of being in state
qi initially is given by π = {π(i) = P (qi|t = 0), 1 ≤ i ≤ N},
where:

π(i) =

8

>

>

>

>

<

>

>

>

>

:

0.99×

X

qy∈Qf

freqi(y)

T , qi ∈ Qf

0.01, qi ∈ Qu

0, qi ∈ Qi ∪Qs

(21)

We use a small value for the Universal Gap state as opposed to
the states inQf to accentuate the patterns retained by VGS while
still providing a possibility for gaps after and before them.

Note that the values0.99, 0.1, 0.01, etc., used in the transi-
tion and emission probabilities, are obtained by using pseudo-
counts [17] to allow for symbols that are unseen in the training
data set.

D. Generalization of VOGUE tok ≥ 2

Here, we generalize the model tok ≥ 2. Let S be the set of
subsequences mined by VGS, and letk be the maximum length
of any sequence. We denote byk seq a sequence of lengthk,
such asvi1 , vi2 , · · · , vik

. Let Γk(j) be the set of symbols in the
jth position in all subsequencess, s ∈ S, of length up tok,
j = 1, · · · , k − 1; Γk(k) is then the set of different last symbols
in all subsequences of length up tok. Finally, letS(j) be the set
of subsequences inS of length at leastj.

The VOGUE’s state machine is denoted asλ and is made up
of the 6-tupleλ = {Q,V,A,B, ρ, π} where each component is
defined as follows:

• Q = {q1, · · · , qN} – the set of states of VOGUE, whereN
is the number of states of VOGUE such that:N = N1 +
G1 + · · ·+Ni−1 +Gi−1 + · · ·+Nk +Gk, where:

– Ni =| Γk(i) | , i = 2, · · · , k − 1. This denotes the
number of distinct symbols in positioni over all the
sequences. ThusN1 is the number of distinct first
symbols andNk is the number of distinct last symbols.

– Gi (for i < k) is the number of distinct pairs of symbols
in positionsi−1 andi. This corresponds to the number
of gap states required between states at positionsi− 1
and i.

– Gk = 1, corresponds to an extra gap state, called
Universal Gap state, that will capture elements not
captured by any of the above.

For convenience we let:
–
P

(Gj) =
P

l<j(Nl + Gl) for all j ∈ {2, · · · , k} and
P

(G1) = 0.
–
P

(Nj) =
P

l<j(Gj) +Nj for all j ∈ {1, · · · , k}.
The states of VOGUE are, then, given as follows:

– For
P

(Nj) < i ≤
P

(Gj+1), qi corresponds to the gap
of variable length between the(j−1)th andjth elements
in the subsequences,j ∈ {1, · · · , k − 1}. These states
will be called “Gap” states.

– For
P

(Gj) < i ≤
P

(Nj), qi corresponds to the
elements inΓk(j), j ∈ {1, · · · , k}. These states will
be called “Symbol” states.

– For i =
P

(Gk+1), qi corresponds to the Universal Gap
state.

• V = {v1, · · · vM} – the alphabet of the symbols, whereM
is the number of observations emitted by a state inQ. It is
the number of different subsequences of length 1 retained
by VGS, unless stated differently by the application at hand.

• A = {ail} – the transition probability matrix between the
states inQ. For convenience we let:

– Rsj(m): frequency of subsequences, s ∈ S, wherem is
the index of the symbolvm ∈ Γk(j) at thejth position
of s.

– Wjg(m,m′): frequency of subsequences, s ∈ S, where
m andm′ are, respectively, the indexes ofvm andvm′ .
vm is at thejth position of s andvm′ is at thej + 1th

position of s.g is the value of the gap between thejth

and j + 1th positions ofs, g ∈ {1, · · · ,maxgap}.

Each element of the matrix is given asail = P (qt+1 =
l|qt = i), for 1 ≤ i, l ≤ N .

– if
P

(Gj) < i ≤
P

(Nj), j ∈ {1, · · · , k− 1}, (Non-Gap
(Symbol) states):

ail =

8

>

>

<

>

>

:

Pmaxgap
g=1 Wjg(m,m′)

P

s∈S Rsj(m)
, if

P

(Nj < l ≤
P

(Gj+1));
Wj0(m,m′)

P

s∈S Rsj(m)
, if

P

(Gj+1) < l ≤
P

(Nj+1);

0, Otherwise;
(22)

wherem andm′ are the indexes, respectively, of sym-
bols vm and vm′ ∈ V such that∃vl′ ∈ Γk(j) and
∃vl” ∈ Γk(j + 1): (vl′ = vm and vl” = vm′), and
(l′ = i−

P

(Gj) and l” = l −
P

(Gj+1)).
– if

P

(Nj) < i ≤
P

(Gj+1), j ∈ {1, · · · , k − 1}, (Gap
states):

ail =

8

>

>

<

>

>

:

0.9, if
P

(Gi+1) < l ≤
P

(Ni+1);
0.1

N1+1 if
P

(Nk) < l ≤
P

(Gk+1)
0.1

N1+1 if
P

(G1) < l ≤
P

(N1)

0, Otherwise;
(23)

– if
P

(Gk) < i ≤
P

(Nk) (last Symbol states):
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ail =

8

>

>

>

>

<

>

>

>

>

:

„

P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

«

× 0.9,

if
P

(G1) < l ≤
P

(N1);
0.1, if l =

P

(Gk+1);
0,Otherwise;

(24)

whereRsj(mi) is as defined earlier andmi is the index
of symbol vmi ∈ V such that∃vl′ ∈ Γk(j): vl′ = vmi ,
and l′ = i−

P

(Gj).
– if i =

P

(Gk+1) (Universal Gap state):

ail =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

„

P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

«

× 0.9,

if
P

(G1) < l ≤
P

(N1);
0.1
G , if

P

(Nj) < l ≤
P

(Gj+1), j 6= k;

0,Otherwise;
(25)

Note: Since each gap state’s duration is considered explicitly
within a state, there is no self-transition to any state. The
state transition probabilities to the same state is, then,
aii, 1 ≤ i ≤ N , are set to 0.

• B = {bi(m) = P (ot = vm|qt = i), 1 ≤ i ≤ N and 1 ≤
m ≤ M} - the emission probability of statei. It is defined
as follows:

– if
P

(Gj) < i ≤
P

(Nj), j ∈ [1, k] (Non-Gap (Symbol)
states):

bi(m) =

8

<

:

1, if ∃vl ∈ Γk(j) s.t: vl = vm and
l = i−

P

(Gj);
0,otherwise;

(26)

– if
P

(Nj) < i ≤
P

(Gj+1), j ∈ [1, k] (Gap states):

bi(m) =

„

PMAXGAP
g=1 freqg(m,l)

P

vm∈Ψj(s)[
P

MAXGAP
g=1 freqg(m,l)]

«

× 0.99 + c

(27)
where freqg(m, l) is the frequency ofvm such that
vm ∈ Ψj(sl), sl ∈ S(j) and l = i−

P

(Gj); c = 0.01
Gj

.
– if

P

(Nk) < i ≤
P

(Gk+1), (Universal Gap state):

bi(m) =

 

freqi(m)
P

vm∈V freqi(m)

!

× 0.99 + c′ (28)

where freq(m) is the frequency ofvm, vm ∈ V and
vm is also the1-seq retained by VGS;c′ = 0.01

M .
Note: We will consider that each state, exceptgap states,
generates either only one symbol from the alphabetV at all
times or generates an element from a subclass of symbols
of the alphabet.

• ρ = {ρig =, 1 ≤ i ≤ N, 1 ≤ g ≤ maxgap} - the gap states
duration probability matrix:

– if
P

(Gj) < i ≤
P

(Nj), j ∈ [1, k] (Non-Gap (Symbol)
states) and

P

(Nk) < i ≤
P

(Gk+1) (Universal Gap
state):

ρig =



1, if g = 0;
0, otherwise;

(29)

– if
P

(Nj) < i ≤
P

(Gj+1), j ∈ [1, k] (Gap states):

ρig = freqgapl(g)

M
X

g=1

freqgapl(g) (30)

TABLE XI

VGS WITH k = 2, maxgap = 2 AND min sup = 2

Subsequence freq g = 0 g = 1 g = 2
A → B 4 1 1 2
B → A 3 1 1 1

wherefreqgapl(g) is the frequency ofsl, sl ∈ S(j) and
l = i−

P

(Gj) , such that the gap between thejth and
the (j + 1)th elements is equal to“g”.

• π = {π(i) = P (q0 = i), 1 ≤ i ≤ N}- the initial probabilities
are estimated as follows:

π(i) =

8

>

>

>

>

<

>

>

>

>

:

„

P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

«

× 0.99,

if
P

(Gj) ≤ i ≤
P

(Nj), j = 1;
0.01, if i =

P

(Gk+1);
0, otherwise ;

(31)

whereRsj(m) is as defined earlier andmi is the index of
symbol vmi ∈ V such that∃vl′ ∈ Γk(j): vl′ = vmi , and
l′ = i−

P

(Gj)..

V. VOGUE VARIATIONS

Here, we describe two variations of VOGUE, namely,
Canonical VOGUE (C-VOGUE), and Knowledge VOGUE (K-
VOGUE). C-VOGUE intends to decrease even more the state
space complexity by pruning frequent sequences mined by VGS
that are artifacts of other “primary” frequent sequences, thus,
pruning the states and transitions from and to those states.
Therefore further decreases the state space complexity. Onthe
other hand, in some domains, such as in biological sequence
analysis, the patterns that are supposed to be frequent do not
have an exact match in all the sequences in the original data
set. In fact, some elements of these patterns could be different,
however, they share some common characteristics and thus called
“similar”. Therefore, the sequences in the data set that have a
sequence of elements that are not similar but share some common
characteristics could be incorporated into the model. K-VOGUE
is an extension of VOGUE that takes into consideration these
constraints.

A. C-VOGUE: Canonical VOGUE
Some patterns mined by VGS are artifacts of other pat-

terns. For example, let us consider the sequenceS =
ABACBDAEFBGHAIJB. Using VGS with maxgap = 2,
min sup = 2 andk = 2, the frequent subsequences are shown in
Table XI. For the frequent subsequenceA→ B, its frequency is
freq= 4:

• Once with a gap of length0: that is (AB).
• Once with a gap of length1: that is the subsequence(ACB)

whereA is followed byB but with one element in between,
namelyC.

• Twice with a gap of length2: that is the subsequences
(AEFB) whereA is followed byB with two elements,E
andF , between them, and the subsequence(AIJB) where
A is followed byB with two elements,I andJ , in between.

On the other hand, the frequent sequenceB → A was mined
by VGS as being frequent under the constraintsmaxgap = 2,
min sup = 2 andk = 2. In fact, its frequency isfreq = 3:

• Once with a gap of length0: that is the subsequence(BA)
whereB is followed directly byA.

• Once with gap length1: that is the subsequence(BDA)
whereB is followed byA with one element,D, between
them.
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TABLE XII

THE eid OF THE DIFFERENT ITEMS INS

item (Sid, Eid)
A (1, 1), (1, 3), (1, 7), (1, 13)
B (1, 2), (1, 5), (1, 10), (1, 16)
C (1, 4)
D (1, 6)
E (1, 8)
F (1, 9)
G (1, 11)
H (1, 12)
I (1, 14)
J (1, 15)

• Once with gap length2, that is the subsequence(BGHA)
whereB is followed byA with two elements,G andH in
between.

This frequent subsequence seems to be legitimate under VGS
constraints, however, all the elements,B andA, involved in this
sequence are already in the frequent subsequenceA→ B. Indeed,
this makesB → A not a new pattern but an “artifact” pattern of
A → B sinceA → B is more frequent thanB → A. Moreover,
the position of the items involved inB → A are the same as
those ofA→ B. For instance, in the subsequence(AB), one of
the subsequences in the count of the frequent sequenceA → B,
the positionor eid of A is 1 and theeid of B is 2. While for the
frequent sequenceB → A, in the subsequence(BA) the eid of
B is 2 and the theeid of A is 3. Therefore, theB that is at the
eid 2 is the same and hencesharedbetween the two subsequence
(AB) and(BA). Table XII shows the items inS and theireids.

The items in S that are shared between A → B
and B → A in the format of (items, eid) are
{(B, 2), (A, 3), (B, 5), (A, 7), (B, 10), (A, 13)}. Therefore,
the subsequence(BA) is an artifact of (AB) and (ACB). The
subsequence(BDA) is an artifact of(ACB) and (AEFB). The
subsequence(BGHA) is an artifact of(AEFB) and (AIJB).
Hence, the frequent subsequenceB → A is an “artifact” pattern
of the “primary” patternA→ B.

Figure 3 shows the structure of VOGUE State Machine with
N = 7 being the number of states for our example sequence. In
fact, Nf = 2 since there are2 distinct starting symbols in Table
VII (namely A andB). We also have2 ending symbols giving
(namelyA andB)Ns = 2. The number of gap states is the number
of sequences of length2 that has at least one occurrence with gap
g ≥ 1, thus,Gi = 2. Since we have one universal gapGu = 1,
our model yieldsN = Nf +Gi +Ns +Gu = 2 + 2 + 2 + 1 = 7.
We can see clearly that the pathsA → B andB → A can be
merged into one pathA → B and the information of gapg2
and g3 can be also contained in one gap state instead of two.
In fact, for our example, by eliminatingB → A, and hence the
states associated with the pathB → A from the frequent mined
sequences to build the Variable-Order state machine the number
of states drops fromN = 7 toN = 4. By doing so, we reduce the
state space complexity significantly while conserving the coverage
and accuracy as we will show through experimental results in
Chapter6.

After showing the benefits of pruning the states associated with
the artifact patterns, we need a special pruning mechanism to
separate primary patterns from artifact patterns.

We define the constraint that distinguish the “primary” patterns
from the artifact as follows:

Definition: Let ζp = {(e, eid)|e in Sp} be the set of pairs,
(e, eid), of elementse in the “primary” Sp and their corresponding
eid in the original sequenceS. Let ζa = {(e, eid)|e in Sa} be the
set of pairs,(e, eid), of elementse and their correspondingeid
in the artifact patternSa. Therefore, the third constraint is that
for a candidate sequence to be a “artifact” pattern to a “primary”
pattern the following conditions have to be satisfied as well: (i)

g1

A

 0.5

B

 0.4

g2

 0.05

g3

  0.05

B

  0.25

  0.75

A

  0.33

 0.66

0.01           

 0.5   0.4

                  0.01

 0.5  0.4

 1  1

Fig. 3. VOGUE State Machine before pruning the artifact “B → A” for the
example sequenceS.

TABLE XIII

VGS WITH k = 2, maxgap = 2 AND min sup = 2 FOR SEQUENCES′

Subsequence freq g = 0 g = 1 g = 2
A → B 3 1 1 1
B → A 2 1 0 1

ζa ⊂ ζp and (ii) ∃ (e′, eid′), (e′′, eid′′) ∈ ζp such thateid′ <
eid < eid′′, where(e, eid) ∈ ζa. This constraint is necessary. As
consequence of this constraint we have the following condition:

Condition 1: The artifact patterns are less frequent than the
corresponding primary ones. In fact, for our running example,
the frequency of theprimary patternA → B is freq = 4, while
the frequency of theartifact patternB → A is freq = 3.

In the case of when the mined patterns by VGS are of length
k = 2, the following condition is a consequence of the constraint
of artifact patterns:

Condition 2:The elements of the primary and the artifact
patterns are “mirrored”. In fact, let α→ β be the primary pattern
andκ→ ν be the artifact pattern. On one hand, the first element,
κ, in the artifact pattern is the same as the second last element, β,
in the corresponding primary pattern (κ = β). On the other hand,
the last element,ν, of the artifact pattern is the same as the first
element,α, in the corresponding primary pattern (α = ν). In fact,
in our running example, the first element of the artifact pattern
B → A is B, which is the last element in the corresponding
primary patternA→ B. Likewise, the last element of the artifact
patternB → A is A, which is the first element of the primary
patternA → B. Therefore, we consider that the artifact pattern
B → A is a mirror of the primary patternA→ B.

However, if these two conditions hold they are not sufficient.
The necessary condition is the constraint defined earlier.In fact,
let us assume that the data set in our example consists of the new
sequence:

S′ = ABRSTACBV DWAEFBGHBIJAKLMBA.

Then the frequent sequences areA → B andB → A under the
conditionsmin sup = 2, maxgap = 2 and k = 2, as shown in
Table XIII.

The frequency ofA→ Bis freq = 3:
• Once with a gap of length0: that is the subsequence(AB)

where A is followed directly byB in positions 1 and 2
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respectively in sequenceS′.
• Once with gap length1: that is the subsequence(ACB)

whereA is followed byB with one element,C, between
them.

• Once with gap length2, that is the subsequence(AEFB)
whereA is followed byB with two elements,E andF in
between.

While the frequency ofB → Ais freq = 2:
• Once with a gap of length0: that is the subsequence(BA)

whereB is followed directly byA in the positions25, 26
respectively.

• Once with gap length2: that is the subsequence(BGHA)
whereB is followed by A with two elements,G andH,
between them.

Although B → A is a mirror of A → B and the frequency
of B → A is freq = 2 which is less than the one ofA → B
(freq = 3), B → A cannot be considered an artifacts pattern of
A → B. This is because the positions oreid of the elements
A andB in A → B are different and far from those inB →
A. Therefore,B → A is not in the span ofA → B or vice
versa. Indeed, as shown in Table XIV, the elementsA andB in
A → B (ζp = {(A, 1), (A, 6), (A, 12), (B, 2), (B, 8), (B, 15)}) all
have eids that are different and less in value than the ones in
B → A (ζa = {(A, 21), (A, 26), (B, 18), (B, 25)}). Note that we
are considering patterns with amaxgap = 2 that is why(A, 21)
(B, 25) are not inζA→B because in this caseA is followed by
B with 3 elements in between. Therefore, the two sequences are
not interleaved. On the other hand, as shown in Table XII for the
example sequenceS, the setζa of the pairs of elements and their
eids of B → A is:

ζa = {(A, 3), (A, 7), (A, 13), (B, 2), (B, 5), (B, 10)}

and the one ofA→ B is:

ζp = {(A, 1), (A, 3), (A, 7), (A, 13), (B, 2), (B, 5), (B, 10), (B, 16)}

. We see clearly thatζa ⊂ ζp. Moreover,B in A → B has an
eid that is greater than any ones identified inζa, that is(B, 16).
Likewise, the elementA has an extraeid in A → B, which
corresponds to(A, 1) the smallesteid value inS.

g1

A

 0.9

g2

 0.1

B

  0.25

  0.75

	             0.1

 0.9   

 1

Fig. 4. C-VOGUE State Machine after pruning the artifact “B → A” for
the example sequenceS.

Figure 4 shows the new Variable-Order state machine that
results from this pruning. The path corresponding to the artifact
patternB → A was pruned. However, the pathB → A can be still

TABLE XIV

THE eid OF THE DIFFERENT ITEMS INS′

item (sid, eid)
A (1, 1), (1, 6), (1, 12), (1, 21), (1, 26)
B (1, 2), (1, 8), (1, 15), (1, 18), (1, 25)
C (1, 7)
D (1, 10)
E (1, 13)
F (1, 14)
G (1, 16)
H (1, 17)
I (1, 19)
J (1, 20)
K (1, 22)
L (1, 23)
M (1, 24)
R (1, 3)
S (1, 4)
T (1, 5)
V (1, 9)
W (1, 11)

reproduced. In fact once in staten2 that producesB, we can go
directly to staten1 that producesA. If there is a need to produce
some elements betweenB andA, then there is a possibility to
transit from staten2 to the universal gapg1, and produce an
element or several elements, then transit to staten1 to produce
A.

The pruning process is added between thePattern Extraction
and theData Modelingsteps in VOGUE. We call this extension
of VOGUE, Canonical VOGUE (C-VOGUE). All the steps in
C-VOGUE except the “Artifact Pruning” process, are the same
as in VOGUE. The mined frequent sequences from VGS that
are pruned satisfy the following constraints that summarize the
observations discussed earlier:

1) The artifact sequence is amirror of the “primary” sequence.
2) If freqa is the frequency of the artifact sequence andfreqp

the frequency of the primary sequence, thenfreqa < freqp.
3) ζa ⊂ ζp, and∃ (e′, eid′), (e′′, eid′′) ∈ ζp such thateid′ <

eid < eid′′ where(e, eid) ∈ ζa.

B. K-VOGUE: VOGUE Augmented with Domain Specific Knowl-
edge

In some domains such as in biological sequence analysis [24],
[26], the patterns that are supposed to be frequent do not
have an exact match in all the sequences that belong to
the same family or class, but instead we need to allow
inexact matches among some elements. These elements,
however, share some common characteristics and thus called
“similar”. In fact, in proteins, the motifs (patterns or frequent
subsequences) that characterize a family or class of proteins
is a pattern that is found in all the sequences where some
elements could be different. In this case the pattern or motif
looks more like a grammar. For example, given the motif
P ={G[IV T ][LV AC][LV AC][IV T ]D[DE][FL][DNST ]},
the subsequences: (GICCIDEFD), (GV CLIDEFD),
(GV CLIDEFD), (GV V CIDEFD), and (GV V CIDEFD)
can interchange.[IV T ] means that eitherI, V , or T could be
found. The elements that are grouped together are in general
amino acids that have similar structure. For example,I and V
belong to the same subgroup, that isnon-polar andhydrophobic
amino acids group [52].

Regular methods that look for exact matches in subsequences
to declare them frequent will miss a pattern such as the motif
P . Therefore, there is a need for methods that allow for substitu-
tions among similar elements to capture such patterns/motifs. In
bioinformatics, substitution matrices, [7], [27], have been used
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to estimate the rate at which each possible element in a sequence
changes to another element over time. Substitution matrices are
used in amino acid sequence alignment, [18], [57], [76], [80],
where the similarity between sequences depends on the mutation
rates as represented in the matrix. Aligned sequences are typically
written with their elements (amino acids) in columns, and gaps
are inserted so that elements with identical or similar characters
are aligned in the successive columns.

Thanks to the adaptability of VOGUE, it can be extended
to accommodate inexact matches. We will extend VOGUE to
allow for domain knowledge specific information to be taken
into consideration during the pattern extraction and the modeling
process. The extension of VOGUE that we propose in this section
to allow for substitutions among similar elements is called
KnowledgeVOGUE (K-VOGUE).

The main extensions made to VOGUE to allow for substitutions
are as follows:

1) Get the clusters of symbols used in the data set from the
domain expert. Otherwise, cluster the alphabet symbols into
clustersCi based on similarity depending on the problem
domain at hand using the domain knowledge. The clustering
method we propose is described in some more detail in
Section V-C.

2) Replace each element in the data set that belongs to a
cluster Ci, by a symbolci that represents the clusterCi.
Therefore, the symbol alphabet now becomes the set

P′ =
{ci, i{1, · · · , L}}, whereL is the number of clustersCi.
Therefore the alphabet symbol is no longer the original
symbol set

P

but the new symbol alphabet
P′.

3) Mine the data set for frequent subsequences using VGS
according to a user definedmin sup, maxgap and length
k.

4) Modeling the mined patterns could be done in two ways:
a) Build the variable-order gap state machine directly

from the mined patterns by VGS with the symbol
statesQf and Qs still emitting only one symbol
with probability 1. In this case, the symbols are the
representativesci of the clustersCi, i ∈ {1, · · · , L}
and not the original alphabet symbol

P

. For example,
let’s consider the cluster that has been identified as
C1 = {I, V, T} and the representative symbol isc1 =
I. In this case, the symbol statesQf and Qs, in
the variable-Order state machine, produce only one
symbol. That symbol is the representative symbol of
one of the clustersCi. In our example, one of the
sates inQf emits I the representative of the cluster
C1. Therefore, for theInterpretationstep we need to
replace the elements in the testing data set with the
cluster representativesci, i ∈ {1, · · · , L} then use VG-
Viterbi with the modified testing data set.

b) Build a variable-order gap state machine that allows
several emissions from the symbol statesQf andQs.
In order to build the variable-order state machine, we
use the frequent sequences mined by VGS from the
modified data set,but the only difference is that the
state symbolsQf andQs can emit any symbol,vm,
from the corresponding clusterCi, rather than emitting
only one symbol from the modified symbol alphabet
P′. In our running example, a state inQf can emit
any symbolvm from C1 = {I, V, T}. The emission
probability in this case, is computed as follows:

b(qi, vm) =
freqi(vm)

P

vm∈Ci
freqi(vm)

(32)

Note that only the symbols belonging to the cluster
Ci will be emitted. The symbols from the alphabet

P

that do not belong to the clusterCi will be emitted
with probability 0. For example, let’s assume that
the frequency ofI, V , and T , were 6, 4, and 1

respectively. Then the emission probability from state
q1 for I is b(q1,I) = 6

6+4+1 = 6
11 = 0.54, for V

is b(q1, V ) = 0.36, and for T is b(q1, T ) = 0.09.
On the other hand, for any symbolvm ∈

P

\C1 its
corresponding emission probability isb(q1, vm) = 0.
In this case, the VG-Viterbi will be used directly on
the original testing data set with no replacement.

C. Symbol clustering
This section describes the clustering method that we use for

clustering the symbols that will be used in K-VOGUE. Sometimes
the clusters of the symbols are available from the expert in the
domain at hand and sometimes they are not. In the latter case
where the information from the domain expert is not available, we
can use a clustering method to get the cluster from some domain
information. K-means is one of the most popular clustering
algorithms in data mining. A major drawback toK-means is that
it cannot separate clusters that are non-linearly separable in input
space. In many real world problems where we need to cluster
the symbols, the clusters could be non-linearly separable like
in the case of amino acids. Therefore,K-means, as it is, will
not be a good clustering algorithm. Two recent approaches have
emerged for tracking the problem. One is kernelK-means, where,
before clustering, points are mapped to a higher-dimensional
feature space using a nonlinear function, and then kernelk-means
partitions the points by linear separators in the new space.The
second approach is spectral clustering algorithms, which use the
eigenvectors of a similarity matrix to partition points into disjoint
clusters, with points in the same cluster having high similarity
and points in different clusters having low similarity. Spectral
clustering has many applications in machine learning, exploratory
data analysis, computer vision and speech processing [86],[91].
Most techniques explicitly or implicitly assume a metric ora
similarity structure over the space of configurations, which is then
used by clustering algorithms. The success of such algorithms
depends heavily on the choice of the metric, but this choice
is generally not treated as part of the learning problem. Thus,
time-consuming manual feature selection is often a necessary
precursor to the use of spectral methods. Several recent papers
have considered ways to alleviate this burden by incorporating
prior knowledge into the metric, either in the setting of K-
means clustering [79], [84] or spectral clustering [86], [91].
Several algorithms have been proposed in the literature [46],
[59], [73], each using the eigenvectors in slightly different ways.
A popular objective function used in spectral clustering isto
minimize the normalized cut [73]. Thek-way normalized cut
problem is considered in [87] to partition the data set into
k clusters. We will describe in some more detail thek-way
normalized cut spectral clustering since it is the one that we will
be using as clustering technique. If we represent the data set to
be clustered as a graphG = (V, E), whereV is the set of vertices
representing data points,E is the set of edges connecting the
vertices indicating pair-wise similarity between the points. The
definition of a “good” clustering is that points belonging tothe
same cluster should be highly similar while the points belonging
to different clusters should be highly dissimilar. Then represent
the similarity graph as a matrixA called edge similarity matrix,
assumed to be nonnegative and symmetric. Ifn = |E|, thenA
is ann× n matrix andAij is the edge weight between vertexi
andj. The eigenvalues and eigenvectors of the matrixA provide
global information about its structure. Let’s considerv andu as
two subsets ofV, a link is defined as:

link(u, v) =
X

i∈u,j∈v

A(i, j) (33)

Then the normalized link-ratio ofu andv is:

normallinkratio(u, v) =
links(u, v)

links(u,V)
(34)
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The k-way normalized cut problem is to minimize the links in
a cluster relative to the total “weight” of the cluster. Fork-way
partitioning of the vertices, solving the following problem is of
interest:

min
1

k

k
X

j=1

normalinkratio(Vj ,V\Vj). (35)

This problem was relaxed in [87] by the following spectral
relaxation: LetD be the diagonal matrix whereDii =

P

j Aij .
Therefore, the normalized cut criterion is equivalent to:

max
1

k
trace(ZTAZ) (36)

whereZ = X(XTDX)−1/2, andX is ann×k indicator matrix
for the partitions andZTDZ = Ik.

If we define Z̃ = D1/2Z and relaxing the constraint thatX
is an indicator matrix, then the problem becomes a maximization
of the trace ofZ̃D−1/2AD−1/2Z̃, where the constraints oñZ
are relaxed such that̃ZT Z̃ = Ik. This can be solved in turn by
setting the matrixZ̃ to be the topk eigenvectors of the matrix
D−1/2AD−1/2. Therefore the clustering algorithm is described
as follows:

1) Pre-processing: Construct the scaled adjacency matrixA′ =
D−1/2AD−1/2

2) Decomposition:
• Find the eigenvalues and eigenvectors ofA′.
• Build embedded space from the eigenvectors corre-

sponding to thek largest eigenvalues.
3) Grouping: Applyk-means to reducedn×k space to produce

k clusters.

VI. D ECODING AND INTERPRETATION

After extracting the patterns and modeling the data, the model
is ready to be used todecode or interpret new observation
sequences to answer some questions. For instance in the domain
of biological sequence analysis, there is a need to know whether
or not a protein shares similar properties with a number of other
proteins. This is equivalent to asking if that protein contains the
same patterns as the proteins belonging to the same family that
is summarized in the model. Another question, in the domain of
image segmentation, could be finding the “best” segmentation of
scanned images of printed bilingual dictionaries [47] against a
built model.

These questions are equivalent to finding the best state sequence
in the model. This problem is referred to in HMMs [67] as the
decodingproblem. This problem is difficult to solve since it has
several possible ways of solving it. In fact, finding the beststate
sequence is equivalent to finding the optimal state sequencethat
will decode or interpret the new observation sequence. Therefore,
there are several optimality criteria. One possible solution would
be to choose individually the most likely statesqt. Let the
probability of being in statesi at time t, given the observation
sequenceO, and the modelλ, be defined as follows:

γt(i) = P (qt = si|λ,O) (37)

The partial observation sequenceo1o2 · · · ot accounts forαt(i)
from the forward-backward algorithm, see Section3.2.2 in Chap-
ter 3. On the otherhand, the remainder of the observation se-
quence,ot+1ot+2 · · · oT , accounts forβt(i) given statesi at
time t. Therefore, Equation 37 can be in terms of the forward-
backward variables as follows:

γt(i) =
αt(i)βt(i)

P (O | λ)
=

αt(i)βt(i)
N
P

i=1
αt(i)βt(i)

(38)

Note that:

N
X

i=1

γt(i) = 1 (39)

Now the most likely stateqt at time t can be solved using:
γt(i) as follows:

qt = arg max
1≤i≤N

[γt(i)], 1 ≤ t ≤ T . (40)

Although choosing the most likely state for each timet appears
to maximize the states that will explain the observation sequence
O, this could result in a problem since it looks at the most likely
state at each timet and ignores the probability of occurrence
of sequences of the states. For instance, if a model has some
transitions with zero probability between some states, then the
optimal sate sequence could be an invalid, since the transition is
not possible. To solve this problem, the optimization should be
on the state sequence or path. This is equivalent to maximizing
P (Q,O | λ). The most widely used method to solve for this
optimization problem is the Viterbi algorithm [38], [78], a
technique based on dynamic programming.

For VOGUE, we can use the same concept to answer the
question of interpretation. However, because of VOGUE’s unique
structure and needs, we modified the Viterbi algorithm to handle
the notion of duration in the states. This is very important since
VOGUE’s gap states have the notion of duration. This changes
the search for the optimal path to traverse the model’s states as
opposed to a regular HMM. We call this new proposed algorithm
as, Variable-Gap Viterbi (VG-Viterbi).

The remainder of this chapter is organized as follows: first we
give a description of the Viterbi algorithm since it is the basis for
our VG-Viterbi. Then, we describe our proposed method, VG-
Viterbi.

A. Viterbi Algorithm
Finding the best sequence of statesq∗ for the observation

sequenceO = {o1o2 · · · oT } given the modelλ, in the Viterbi
algorithm [38], [78], is equivalent to solving:

q∗ = argmax
q

P (q|λ,O) (41)

whereq∗ = {q∗1 , q
∗
2 , · · · , q

∗
T }. Now we need to define the highest

probability along a single path, at timet, which accounts for the
first observations inO and ends in statesi by the quantity:

δt(i) = max
q1q2···qt−1

P (q1q2 · · · qt = i, qt+1 6= i, o1o2 · · · ot|λ)

(42)
By induction:

δt+1(i) = [max
i
δt(i)aij ] · bj(ot+1) (43)

To retrieve the best state sequenceq∗, the arguments which
maximize Equation 43 need to be accounted for eacht and j.
This can be done by using:

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] (44)

The procedure for finding the optimal path (sequence of states)
that describes the observation sequenceO, [78] is as follows:

1) Initialization:

δ1(i) = πibi(o1), 1 ≤ i ≤ N (45)

ψt(i) = 0. (46)

2) Recursion:

δt(i) = max
1≤i≤N

[δt−1(i)aij ]bj(ot), 2 ≤ t ≤ T , 1 ≤ j ≤ N

(47)
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ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T , 1 ≤ j ≤ N

(48)
3) Termination:

p∗ = max
1≤i≤N

[δT (i)] (49)

q∗ = arg max
1≤i≤N

[δT (i)]. (50)

4) Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · · , 1. (51)

B. VG-Viterbi: Variable Gap Viterbi
Once VOGUE is built to model a data set, and given a new

sequence of observationsO = o1o2 · · · oT , there is a need to know
whether this sequence belongs to the same class/family of the
training data sequences. In other words, there is a need to interpret
the new sequence based on the built modelλ. This problem is
equivalent to finding the best sequence of states from the model λ
and gap state duration length that will describe the new sequence
in an optimal and meaningful way. That is finding a sequence of
statesq∗ = {q∗1 , q

∗
2 , · · · , q

∗
T } from the modelλ such that:

q∗ = argmax
q

P (q|λ,O) (52)

This is equivalent to finding the most probable path to be
traversed inλ that would produceO. The algorithm that is mostly
used to solve this problem is the Viterbi algorithm [38], [78].
Due to the unique structure of VOGUE, where gap states have a
notion of duration, we adjusted the Viterbi algorithm accordingly.
We will call this method Variable-Gap Viterbi (VG-Viterbi). We
start from the basic formula in Equation52 that is used in Viterbi
Algorithm and adjust as follows:

a) Definition: Let δt(j) be the highest probability path that
produces the subsequenceOt = o1o2 · · · ot and terminates in state
j at time t:

δt(j) = max
q1···qt−1

P(o1, · · · , ot, q1, · · · , qt−1, qt = j) (53)

Equation( 53) is equivalent to:

δt(j) = max
r,s1,··· ,sr−1

g1,··· ,gr

P(o1, · · · , ot, q1 = · · · = qg1 = s1,

qg1+1 = · · · = qg1+g2 = s2, · · · ,
q
1+

r−1
P

h=1
gh

= · · · = q r
P

h=1
gh

= sr = j | λ)

(54)
wheregh ∈ {1, · · · ,maxgap} is the duration of staying in a state.
The maximum of the probability in Equation(54) is taken such

that
r
P

h=1
gh = min(t,maxgap), sh ∈ {1, · · · , N}, h = 1, · · · , r,

sl 6= sl+1, l = 1, · · · , r − 1 and1 ≤ r ≤ min(t,maxgap).
If we omit theqs from Equation(54):

δt(j) = max
gr ,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot, s1, · · · , sr−1 = i,

sr = j, g1, · · · , gr | λ)
(55)

Applying Bayes rule we obtain:

δt(j) = max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot, s1, · · · , sr−2, sr =

j, g1, · · · , gr | sr−1 = i, λ) · P(sr−1 = i | λ)

= max
gr ,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr , s1, · · · , sr−2, g1, · · · , gr |

sr−1=i, ot−gr+1, · · · , ot, sr = j, gr, λ)

·P(ot−gr+1, · · · , ot, sr = j, gr | sr−1 = i, λ)

·P(sr−1 = i | λ)
(56)

Applying the “Markovian” assumption, the current state de-
pends only on the previous state, therefore we obtain :

δt(j) = max
gr ,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr , s1, · · · , sr−2,

g1, · · · , gr−1 | sr−1 = i, λ)

·P(ot−gr+1, · · · , ot, sr = j, gr | sr−1 = i, λ)

·P(sr−1 = i | λ)
(57)

By combining the first and last terms, and using Bayes’ rule on
the second term in Equation(57), we obtain:

δt(j) = max
gr ,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr , s1, · · · , sr−2,

sr−1 = i, g1, · · · , gr−1 | λ)

·P(ot−gr+1, · · · , ot, gr | sr = j, sr−1 = i, λ)

·P(sr = j | sr−1 = i, λ))
(58)

Let’s assume that the duration distribution of a state is in-
dependent of the observations of that state. Since

r
P

h=1
gh =

min(t,maxgap) thengr < min(t,maxgap). Moreover, since the
observations are independent from each other given their states,
we obtain:

δt(j) = max
gr<min(t,maxgap)

i6=j

δt−gr (i) · P(sr = j | sr−1 = i, λ)

· P(gr | sr = j, λ) · [
t
Q

s=t−gr+1
P(os | sr = j, λ)]

= max
gr ,i6=j

δt−gr (i) · βij · ρjgr
· [

t
Q

s=t−gr+1
bjs]

(59)
For simplicity we denotegr by g, then we get the following
recursive relationship:

δt(j) = max
g<min(t,maxgap)

i6=j

δt−g(i) · βij · ρjg · [
t
Y

s=t−g+1

bjs] (60)

where:

βij =



aij , if g < min(t,maxgap)

aNj , if g = min(t,maxgap) or t = 1
(61)

The initialization for VG-Viterbi is:

δ0(j) =



1, if j = N

0, otherwise
(62)

ψ0(j) =



j, if j = N

0, otherwise
(63)

Therefore VG-Viterbi algorithm is defined as:
1) Initialization:

δ0(j) =



1, if j = N

0, otherwise
(64)

ψ0(j) =



j, if j = N

0, otherwise
(65)

2) Recursion:

δt(j) = max
g<min(t,maxgap)

i6=j

δt−g(i) · βij · ρjg · [
t
Y

s=t−g+1

bjs]

(66)
where:

βij =



aij , if g < min(t,maxgap)

aNj , if g = min(t,maxgap) or t = 1
(67)
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C. VG-Viterbi: optimization

Since VG-Viterbi is based on the Viterbi algorithm [78], it
inherits its advantages and drawbacks. One of the drawbacks
of the Viterbi algorithms is that it exhaustively searches the
state space of the HMM to find the best (optimal) path of state
sequences to describe the observation sequenceO. If N is the
number of states of the modelλ, andT is the length ofO, then
the Viterbi algorithm’s time complexity isO(N2×T ) [38], [78].
This is obviously expensive when the number of statesN is large
and the observation sequence is very long. In fact in some areas
like in biological sequence analysis [26], where the lengthof a
sequence varies between500 and 1000 elements, and when the
HMM is about 900 states the estimated time complexity of the
Viterbi algorithm is on the order of8×108. The time complexity
of the VG-Viterbi algorithm is comparable to that of the Viterbi
algorithm. In fact, letN be the number of states in VOGUE, and
the length of the observation sequenceO be T . In the case of
an exhaustive search of the modelλ, for every elementOt in
O (0 ≤ t ≤ T ), we need to check for the highest probability
of Ot to be emitted by a stateqi where 1 ≤ i ≤ N . This is
done by taking into consideration the stateqj that has the highest
probability of emittingOt−1. Moreover, some of the states are
“gap” states, and they have a notion of duration up tomaxgap
times. Hence, we need to explore the number ofO’s elements
that will be emitted from the same “gap” state, i.e., “staying”
in the same state for up tomaxgap. Therefore, the estimated
time is O(N × N × maxgap× T ). In order to reduce the time
complexity we need to reduce eitherN , maxgap or T . Since we
cannot reduceT , which is the length of the observation sequence,
we have to explore reducing eithermaxgap or N .

VOGUE is not a fully connected graph, since all the states are
not connected to all the states. In fact, the only possible transi-
tions, whose probability is nonzero are the following transitions:

• Transitions from theUniversal Gapstate to thefirst state
symbolsqj ∈ Qf and to theintermediate gap statesqj ∈
Qi. Therefore the number of allowed transitions (nonzero
transitions) from theUniversal Gap stateis | Qf | + | Qi |.

• Transitions from thefirst state symbolsqi ∈ Qf to a second
state symbolqj ∈ Qs (modeling a gap ofg = 0) or to an
intermediate gap stateqj ∈ Qi. Therefore the number of
allowed transitions (nonzero transitions) from thefirst state
symbolsis | Qs | + | Qi |.

• Transitions from theintermediate gap stateqi ∈ Qi to only
a second state symbolqj ∈ Qs. Therefore the number of al-
lowed transitions (nonzero transitions) from theintermediate
gap stateis | Qs |.

• Transitions from thesecond symbol stateqi ∈ Qs to a
first state symbolqj ∈ Qf (modeling a gap ofg = 0)
or to the Universal Gap stateqj ∈ Qu. Therefore the
number of allowed transitions (nonzero transitions) from the
intermediate gap stateis | Qf | + | Qu |.

Therefore the transition matrixA is a sparse matrix as shown
in Equation 68. For every observationOt in O we don’t need to
do an exhaustive search of all the states in VOGUE to find the

state that will emitOt such thatδt−g(i) · βij · ρjg · [
t
Q

s=t−g+1
bjs]

is maximal, as described in Equation 60. In fact, not all the
transitions from stateqt to the statesqj ∈ Q are nonzero.

Considering some of the transitions in VOGUE are non-existent
(aij = 0), we propose the followingRecursion step of VG-

Viterbi:

δt(j) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

max
g<min(t,maxgap)

Qf <i≤N−1

ωt(g, i), if 1 ≤ j ≤ Qf

max
g<min(t,maxgap)

Qf +Qi≤i≤N−1

ωt(g, i), if Qf < j ≤ Qf +Qi

max
g<min(t,maxgap)

i∈{1,··· ,Qf}∪{N}

ωt(g, i), if Qf +Qi < j ≤ N − 1

max
g<min(t,maxgap)

1≤i≤Qf

ωt(g, i), if j = N

(69)
where:

ωt(g, i) = δt−g(i) · βij · ρjg · [
t
Y

s=t−g+1

bjs] (70)

and

βij =



aij , if g < min(t,maxgap)

aNj , if g = min(t,maxgap) or t = 1
(71)

In this case, we don’t iterate through all the values ofi ∈
{1, · · · , N} since some of the values ofaij and henceβij are
zero depending on the stateqj (i.e. the value ofj in {1, · · · , N}).
For example, if1 ≤ j ≤ Qf , βij 6= 0, only whenQf < i ≤ N−1
as shown in the transition matrixA in Equation(68).

Therefore, the time complexity of the optimized VG-Viterbiis:

τ = O({[Qf×(Qi+Qs)]+[Qf×Qs]+[Qs×(Qf+1)]}×T×maxgap)
(72)

which becomes:

τ = O({[Qi × (Qf +Qs)]+

2Qs × [Qf + 1]} × T ×maxgap)

= O({Qi × (Qf +Qs)} × T ×maxgap)+
2O({Qs × (Qf + 1)} × T ×maxgap)

(73)

Qf and Qs never exceedM the number of observations in
VOGUE since they are the number of “distinct” first and second
symbols in the mined sequences by VGS, respectively. In fact
there could be at mostM different symbols identified by VGS.
SinceM is always a fixed number as opposed to the number of
sequences retained by VGS, reflected byQi, whenN is largeQi
large. Therefore,O(Qi × (Qf +Qs)× T ×maxgap) ≤ O(Qi ×
2M×T×maxgap), andO(Qi×2M×T×maxgap) ≃ 2MO(Qi×
T ×maxgap) ≃ O(Qi×T ×maxgap). Likewise,O(Qs× (Qf +
1)×T×maxgap) ≤ O(M(M+1)×T×maxgap) andO(M(M+
1)× T ×maxgap) ≃ O(T ×maxgap).

Therefore,τ � O((Qi + 1) × T ×maxgap) ≪ O(N2 × T ×
maxgap), sinceQi < N .

VII. E XPERIMENTAL RESULTS AND ANALYSIS

Several real world applications, such as in bioinformatics,
web accesses, finance, and text mining, encompass sequential
and temporal data with long range dependencies. The fact that
VOGUE has been designed to capture and model such long range
dependency patterns, makes it a very good tool to model some
of those applications. In [2], we developed a toolkit to facilitate
the sharing and long term use of different types of geological
data sets across disciplines. Geoscientists are confronted with an
enormous quantity of diverse data types. These data sets include
published data, geological and topological maps, satellite imagery,
structural, seismic, geophysical, petrologic and geochronologic
data. The time when the data are added or accessed by users
is recorded. While each piece of data originates at a specific
user, each user is allowed to add new annotations to the data
as they wish. Finding where the data is and what type of data
a user should access next is a challenging problem. We use
VOGUE as the core of this toolkit to model user access patterns
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Fig. 5. VG Viterbi Matrix wherej = Qf andk = Qf + Qi.

of the data in the database. Moreover, it allows a new user to
visualize the most common patterns of use or the latest common
patterns of use based on the data set used to construct the VOGUE
state machine. When a user accesses and adds new data to the
database, he/she starts a new project. A specific project mayhave
multiple patterns of use at the same granularity corresponding
to different research activities or problems being investigated.
We built different VOGUE state machines to accommodate the
multiple views corresponding to different interpretations of the
data.

Here, we describe several experiments that we conducted to
compare the performance of VOGUE, C-VOGUE and K-VOGUE
to those of two popular techniques in the domain of biological
sequence analysis: HMMER and all-kth-order HMM. We used
two data sets, a real data set from the PROSITE database, a se-
quential data base of families of proteins, and the SCOP dataset,
a manually derived comprehensive hierarchical classification of
known proteins structures that has secondary structure knowledge
embedded in the data set.

A. Protein modeling and clustering using VOGUE

The completion of the whole genome sequencing of various
organisms facilitates the detection of many kinds of interesting
patterns inDNA and protein sequences. It is known that the
genomes of most plants and animals contain large quantitiesof
repetitiveDNA fragments or, in the case of proteins, Amino Acid
fragments. For instance, it is estimated that one third of the human
genome is composed of families of repeating sequences [31],
[32], [93]. The amino acids are thus far from being pieces of
random sequences, and a substantial amount of currently unknown
information can be extracted from the sequences in the form
of patterns. The abundance and variety of periodic patternsin
genome sequences drove a lot of studies on genome sequence
analysis and mining. In fact, periodic patterns of different lengths
and types are found at both geneomic and proteomic levels. The
short three base pair (bp) periodicity in protein codingDNA
[37], and the medium-length repetitive motifs found in some
proteins [20], to the mosaic of very longDNA segments in the
genome of warm-blooded vertebrates [15], are some of these
patterns. It is very important to identify some of these patterns due
to their biological significance. For instance, some repeats have
been shown to affect bacterial virulence to human being [77].
On the other hand, the excessive expansions of some Variable
Number of Tandem Repeats (V NTRs) are the suspected cause of
some nervous system diseases [68]. Therefore, there is a growing

need for efficient algorithms to extract periodic patterns from long
sequences.

In recent years, a large amount of work in biological sequence
analysis has focused on methods for finding homologous proteins
[26]. Given a database of protein sequences, the goal is to build
a statistical model so that we can determine whether a query
protein belongs to a given family or not. HMMER [29], a profile
HMM, is one of the state-of-the-art approaches to this problem
that depends heavily on a good multiple sequence alignment.It
models gaps, provided that they exist in the alignment ofall the
training sequences. However, if a family of sequences has several
overlapping motifs, which may occur in different sequences, these
sequences will not be aligned correctly, and HMMER will not
perform well. Here, we analyze the performance of VOGUE
compared to HMMER and higher-order HMMs with various
ordersk ∈ [1, 10].

Computationally, protein sequences are treated as long strings
of characters with a finite alphabet of 20 amino acids. Namely,
A, C, D, E, F , G, H, I, K, L, M , N , P , Q, R, S, T , V ,
W , and Y . There are many patterns depending on the issues
considered, for example the number of periods of the patterns, the
maximality of the patterns, whether errors (insertions, deletions
and substitutions) are allowed and palindromic reverses. In [50],
the authors provide a survey on studies to extract patterns taking
into consideration one of the issues mentioned earlier.

In this work, we are particularly interested in extracting patterns
that identify a family of proteins. The first method focuses on
extracting those patterns from the sequences formed of the20
amino acids and not allowing any substitutions between them. The
second method, extracts patterns while allowing for substitutions
between amino acids that have similar structure and functionality
(Hydrophobicity, Charge, Polarity, etc).

We apply VOGUE,C-VOGUE, andK-VOGUE to a real world
problem, namely, finding homologous proteins. Given a database
of protein sequences, the goal is to build a statistical model so
that we can determine whether a query protein belongs to a given
family or not. Statistical models for proteins, such as profiles,
position-specific scoring matrices, and hidden Markov models
[26] have been developed to find homologs. However, in most
biological sequences interesting patterns are periodic with gap
requirements. Therefore a method like VOGUE that specifically
takes these kind of patterns into consideration can be very effec-
tive. We show experimentally that VOGUE’s modeling power is
superior to higher-order HMMs while reducing the latter’s state-
space complexity, and improving their prediction. VOGUE also
outperforms HMMER [29], a HMM model especially designed
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for protein sequences that takes into consideration insertions,
deletions and substitutions between “omosimilar” amino acids.
We will give a an overview of HMMER in Section VII-A.1. Then,
we will describe the scoring and evaluation measure we use for
evaluating the performance of the methods used. Afterwards, we
describe the data sets that we use for our experimentation. Finally,
we provide the performance results of VOGUE, C-VOGUE and
K-VOGUE vs HMMER and higher-order HMM.

1) HMMER: HMMER [29] is a HMM model especially de-
signed for protein sequences that takes into considerationinser-
tions, deletions and substitutions between “omosimilar” amino
acids. It is called a “Profile” HMM, a well suited HMM for
multiple alignments of sequences. We will to first describe what
a multiple alignment is, and then describe a “Profile” HMM.

Multiple Alignment : the problem of multiple alignment is
described as follows: Given a set of sequences, produce a multiple
alignment which corresponds as well as possible, to the biological
relationships between the corresponding bio-molecules [26]. Two
amino acids should be aligned (on top of each other) in the
following conditions:

• if they are homologous (evolved from the same residue in a
common ancestor).

• if they are structurally equivalent.
To identify whether an alignment is good, afitnessfunction is

used where the biological relationships are taken into considera-
tions. For example, assuming the following three sequences:

I N D U S T R Y

I N T E R E S T I N G

I M P O R T A N T

One alignment could be :

I N − D U − S T R Y −

I N T E R E S T I N G

I M − P O R − T A N T

But the following is not a good alignment based on the
biological characteristics of the amino acids:

I N − D U − − S T R Y −
I N T E R E − S T I N G

I M − P O R − − T A N T

For a more detailed description of the multiple alignment
process and the different available methods refer to [61].

Profile HMM : One of the general features of protein family
multiple alignment is that “gaps” tend to line up with each
other, leaving solid blocks of either exact matches or allowed
substitutions between the amino acids. These positions arecon-
sidered to be the “ungapped” states of the HMM. The emission
probability is based on aposition specific score matrix(PSSM).
More details can be found in [26]. Thus, the HMM is built
with a repetitive structure of states but different probabilities
in each one in a left-to-right manner. The PSSM is a HMM
with a series of identical states, called “match states” (Mj),
separated by transitions of probability1. Although PSSM captures
some conservation information, it is does not represent allthe
information in a multiple alignment of a protein family. Therefore,
“Insertion” states (Ij) are introduced in the HMM, where each of
the Ij states is used to match insertion after the element emitted
by the matching stateMj . “Deletion” states (Dj ) are also added
to act as silent states that do not emit any symbol. Therefore,
it is possible to use them to “jump” from any “match” state to
another one without emitting any symbol in between. HMMER
is a software that is based on building profile HMMs to model
protein families.

2) Evaluation and Scoring:We built three models for each
family, namely VOGUE, HMMER, andk-th order HMMs, using
the training set of that family. We score the test sequences against
the model for each of the nine families, and after sorting thescores

in decreasing order, we use a threshold on the scores to assign a
sequence to a given family.

For evaluation of the classifiers, we use Receiver Operating
Characteristic (ROC) curves [33], that represent the relationship
between the false positive rate and true positive rate across the
full spectrum of threshold values. Further, we plot the AreaUnder
the Curve (AUC), to evaluate the goodness of the classifiers.The
AUC is calculated using the following equation [33]:

AUC =
1

pn

p
X

i=1

n
X

j=1

ϕ(Ri, Rj). (74)

HereNtest = n + p is the number of testing sequences,p is
the number of sequences from a given class andn is the number
of sequences that don’t belong to the class. These sequencesare
ranked based on their score from1 to Ntest, assigning1 to the
testing sequence with the highest score andNtest to the one with
the lowest score.Ri, i = 1 · · · p represent the rankings of thep
sequences andRj , j = 1 · · ·n represent the rankings of then
sequences andϕ(Ri, Rj) is defined as:

ϕ(Ri, Rj) =

(

1 if Ri < Rj

0 otherwise
(75)

Note that AUC for each class is calculated separately, by
treating each class asp, and the remaining asn. We score the
testing sequences by computing the log-odds score, (i.e., the ratio
of the probability of the sequence using a given model, and the
probability of the sequence using aNull model, given as follows:

Log-Odds(seq) = log2

„

P (seq|Model)

P (seq|Null)

«

. (76)

P (seq/Model) is computed using the Viterbi algorithm that
computes the most probable path through the model) as Viterbi
is the default method used for scoring in HMMER. TheNull
model is a simple one state HMM that emits the observations
(the amino acids) with equal probability (1/|Σ|). Since we have
20 amino acids the emission probability for each symbol is1/20.
The log-odds ratio measures whether the sequence is a better
match to the given model (if the score is positive) or to the null
hypothesis (if the score is negative). Thus, the higher the score
the better the model.

3) Datasets: We used in our experiments two different data
sets: a set of9 families downloaded from the PROSITE (http:
//www.expasy.org/prosite ) database of protein family
and domains, and SCOP [19] data set, a manually derived com-
prehensive hierarchical classification of known protein structures,
that are organized according to their evolutionary and structural
relationships.

The PROSITE families that we used arePDOC00662,
PDOC00670, PDOC00561, PDOC00064, PDOC00154,
PDOC00224, PDOC00271, PDOC00397, PDOC00443. We
will refer to these families asF1, F2, · · · , F9, respectively. The
number of sequences in each family is, respectively:N1 = 45,
N2 = 225, N3 = 85, N4 = 56, N5 = 119, N6 = 99, N7 = 150,
N8 = 21, N9 = 29. The families consists of sequences of lengths
ranging from 597 to 1043 characters, taken from the alphabetof
the 20 amino acids:Σ = {A, C, D, E, F, G, H, I, K, L, M,
N, P, Q, R, S, T, V, W, Y }. Each family is characterized by a
well-defined motif. FamilyF1, for example, shares the consensus
motif [G]− [IV T ]− [LV AC]− [LV AC]− [IV T ]− [D]− [DE]−
[FL] − [DNST ], which has 9 components. Each component
can contain any of the symbols within the square brackets. For
example, for the second component, namely[IV T ], either I, V
or T may be present in the sequences. We treat each PROSITE
family as a separate class. We divided the data set of each family
Fi into two subsets: the training dataN i

train consists of 90%
of the data, while the testing dataN i

test contains the remaining
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TABLE XVI

RUN TIMES

VOGUE HMMER k = 1 k = 2 k = 4 k = 10
4.6s 34.42s 2s 5.29s 6.40s 11.46s

10%. For example,N1
train = 40 andN1

test = 5. There are a total
of 103 test sequences across all families.

The Scop data setis divided into four hierarchical levels:
Class, Fold, Superfamily and Family. For SCOP1.61 (from
2002), the44327 protein domains were classified into701 folds,
resulting in an average of64 domains per fold. The number
of domains per fold varies in SCOP, where some of the folds,
such asTIM barrels, are highly populated, while some of the
folds, such as theHSP40/DnaJ peptide-binding fold that only
contain one protein, contain a few examples. Therefore, the
SCOP is an imbalanced data set. This imbalanced proportion
of examples in each fold contributes to the poor performance
of classical machine learning techniques such as support vec-
tor machines and neural networks [23]. When learning from
such data sets, existing machine learning approaches tend to
produce a strong discriminatory classifier or ”high accuracy” with
very low sensitivity or completeness. We used10 superfamilies
from the SCOP data set (ftp://ftp.rcsb.org/pub/pdb/
derived_data/pdb_seqres.txt ) namely, family 49417,
46458, 46626, 46689, 46997, 47095, 47113, 48508, 69118, and
81296. We will refer to them asSF1, SF2, SF3, SF4, SF4, SF5,
SF6, SF7, SF8, SF9 andSF10 respectively. Each family has10
sequences. We divided each family data set into90% (9 sequences
for each family)for training and10% for testing (1 for each family
to a total of10 sequences).

B. Performance of VOGUE vs HMMER vsk-th Order HMMs on
PROSITE data
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We built VOGUE state machines with different values of
minsup corresponding to50%, 75% and100% of the number of
instances in the training data, andmaxgap (10, 15, 20, 25, 30) but
with the constantk = 2 for the length of the mined sequences in
VGS. We then choose the best set of parameters and fix them for
the remaining experiments. To model the data using HMMER,
we first need to align the training sequences using CLUSTAL-
W (http://www.ebi.ac.uk/clustalw ). We then build a
profile HMM using the multiple sequence alignment and compute
the scores for each test sequence using HMMER, which directly
reports the log-odds scores with respect to theNull model
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Fig. 7. ROC Curve of VOGUE and HMMER for the familiesF1, F2 and
F3.

mentioned above. We also built severalk-th order HMMs for
various values ofk using an open-source HMM software (http:
//www.cfar.umd.edu/˜kanungo/software ). We tried
different values for the number of states ranging from the size
of the protein alphabet (20) to roughly the size of VOGUE (500)
and HMMER (900). A k-th order HMM is built by replacing
each consecutive subsequence of sizek with a unique symbol.
These different unique symbols across the training and testing sets
were used as observation symbols. Then we model the resulting
sequence with a regular 1st order HMM.

Score Comparison: We first compare VOGUE withk-order
HMMs and HMMER. Table XV shows the comparison on the 5
test sequences for familyF1 when scored against the model for
F1. For VOGUE we usedminsup = 27 (75%) andmaxgap = 20.
For k-th order HMMs we tried several values of the orderk
(shown ask = 1, k = 2, k = 4, k = 8 and k = 10) in the
table with 20 states for eachk-th order HMM. The number of
observationsM for the k = 1 case was set to20 since it is
the number of amino acids.M = 394; 17835; 20216; 19249 were
the number of observations used fork = 2; 4; 8; 10, respectively.
These values were obtained from a count of the different new
symbols used for each value ofk.

The best score for each sequence is highlighted in bold.
Looking at the scores in Table XV, we find that in generalk-th
order HMMs were not able to model the training sequences well.
All their scores are large negative values. HMMER did fairlywell,
which is not surprising, since it is specialized to handle protein
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TABLE XV

TESTSEQUENCELOG-ODDS SCORES FORVOGUE, HMMERAND k-TH ORDER HMM S

Seq S1 S2 S3 S4 S5

VOGUE 7081 7877 2880 5763 5949

HMMER 912.4 155 −345 9.8 −21.3

k-th order HMM
k = 1 −4× 103 −3.4× 103 −2.2× 103 −4.7× 103 −4.7× 103

M = 20

k-th order HMM
k = 2 −1.3× 104 −1.3× 104 −1× 104 −1.5× 104 −1.5× 104

M = 394

k-th order HMM
k = 4 −2.3× 104 −2.2× 104 −1.8× 104 −2.4× 104 −2.4× 104

M = 17835

k-th order HMM
k = 8 −2× 104 −1.9× 104 −1.6× 104 −2.2× 104 −2.2× 104

M = 20216

k-th order HMM
k = 10 −2.6× 104 −2.9× 104 −2.3× 104 −3.0× 104 −3.1× 104

M = 19249

sequences. Moreover, for all the 5 testing sequences VOGUE
vastly outperforms HMMER. This is a remarkable result when we
consider that VOGUE is completely automatic and does not have
explicit domain knowledge embedded in the model, except what
is recovered from relationship between symbols in the patterns
via mining.

Time Comparison: In Table XVI, we show the execution
time for building the three models for familyF1. The time for
VOGUE includes the mining by VGS, and for HMMER, the
alignment by CLUSTAL-W. In general, for VOGUE, the higher
the minimum support, the lower the running time, and the higher
the maximum gap, the higher the running time; the running time
of VOGUE varied from 2.6s (forminsup = 36, maxgap = 10) to
4.6s (minsup = 18, maxgap = 30). We can see that VOGUE’s
execution time is in general much better than HMMER and is
also better than higher-order HMMs (except fork = 1). Thus
not only is VOGUE more accurate in modeling the input, it also
executes faster.

Size Comparison:We also compared the state space complex-
ity of the three methods. The number of states in HMMER was
N = 971, while for higher-order HMMs it ranged from500 to
900. VOGUE on the other hand was able to reduce the state space
complexity by only modeling the mined sequences and not the
full data set thus eliminating noise. Figure 6 shows the number
of states in VOGUE for variousmaxgap and minsup values.
We find that varying the parameters for VOGUE does not alter
the state space complexity considerably. The biggest number of
states,N = 425, is for minsup = 18 andmaxgap = 9; and the
smallest,N = 274, for minsup = 36 andmaxgap = 2. This
follows from the fact that the higher theminsup the less the
frequent sequences mined by VGS, and vice versa.

Full Comparison (ROC Curves and AUC): Figures 7, 8
and 9 present the ROC curves of the9 families generated from
all the testing sequences. Here we focus on comparing HMMER
and VOGUE, sincek-th order HMMs gave highly negative scores
for all the testing sequences. The ROC curves represent the trade-
off between coverage (TPR on theyaxis) and error rate (FPR on
thexaxis) of a classifier. A good classifier will be located at the

top left corner of the ROC graph, illustrating that this classifier
has high coverage of true positives with few false positives. A
trivial rejector will be at the bottom left corner of the ROC
graph and a trivial acceptor will be at the top right corner of
the graph. Each one of the graphs in Figures 7, 8, and 9
has two ROC curves for VOGUE and HMMER, respectively, for
different threshold values. The total AUC for the two methods
is given in the Figure legend. VOGUE was run with typical
parameter values ofminsup = 75% andmaxgap = 20; there
were some minor variations to account for characteristics of
different families. The ROC curves of all the families show clearly
that VOGUE improved the classification of the data over HMMER
because the AUC of VOGUE is constantly higher than HMMER.
In the case of familyF9 the AUC of both VOGUE and HMMER
were comparable. In two cases, for familiesF1 andF6, the AUC
was1 for VOGUE showing that VOGUE was able to capture the
patterns of those families perfectly. Moreover, in6 out 9 families
the AUC for VOGUE was higher than0.9 as opposed to HMMER
whose AUC was greater than0.9 in only 3 out of 9 families. This
again shows that VOGUE outperforms HMMER.

C. Performance of VOGUE vs C-VOGUE vs HMMER on
PROSITE data

In this section, besides the models of VOGUE and HMMER
from the previous section, we also built a C-VOGUE state
machine for the PROSITE data set. We first run VGS on the
training data set with different values ofminsup corresponding
to 50%, 75% and100% of the number of instances in the training
data set, andmaxgap (10, 15, 20, 25, 30) but still with the constant
k = 2 as the length of the mined sequences by VGS. Then we
prune the “artifacts” from the set of frequent sequences andwe
build the new model C-VOGUE. We then choose the best set of
parameters, and fix them for the remaining of the experiments.
We then compare C-VOGUE to VOGUE and to HMMER. The
results of C-VOGUE as opposed to VOGUE and HMMER are
shown in Figures 10, 11 and 12.

These figures show clearly that VOGUE’s and C-VOGUE’s
ROC curves overlap for all9 families, hence have the same
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Fig. 8. ROC Curve of VOGUE and HMMER for the familiesF4, F5 and
F6.

TABLE XVII

THE NUMBER OF STATESN USING VOGUE VS C-VOGUEFOR THE9

PROSITEFAMILIES

Family VOGUE C-VOGUE
F1 421 305
F2 350 252
F3 421 301
F4 423 309
F5 375 268
F6 408 290
F7 298 222
F8 421 318
F9 420 319

AUC. Therefore, C-VOGUE also outperforms HMMER. This
experiments reinforces the claim that C-VOGUE keeps a good
coverage and an increased accuracy. Concerning the state space
complexity, Table XVII shows the number states using VOGUE
and C-VOGUE for the9 families.

The number of states of the families models using C-VOGUE
is clearly smaller by27% than that of the families models
using VOGUE. Therefore, these experiments show the benefit of
pruning using C-VOGUE in reducing the state space complexity
while preserving the good coverage and accuracy of VOGUE.
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Fig. 9. ROC Curve of VOGUE and HMMER for the familiesF7, F8 and
F9.

TABLE XVIII

THE 9 CLUSTERS FOR THE AMINO ACIDS PROVIDED BY THE DOMAIN

EXPERT

Cluster Elements Description
C1 H,R,K Positively charged
C2 A,L, V, I,M Aliphatic. M is the exception,

but it is hydrophobic and
can fit here

C3 F, Y,W Aromatic amino acids
C4 D,E Negatively charged
C5 P Aliphatic with a pseudo ring
C6 S, T With hydroxyl side chains
C7 Q,N Polar uncharged
C8 C Sulphur containing, slightly charged
C9 G Smallest and the most flexible

D. Performance of K-VOGUE vs VOGUE vs HMMER on SCOP
data

In this section we conducted experiments on the SCOP data
set on VOGUE and K-VOGUE vs HMMER. We first collected
clusters of the20 amino acids from the expert in the field based
on several chemical characteristics. Afterwards, we checked the
efficiency of the clustering of the symbols by using the spectral
clustering method previously described. The clusters of the 20
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Fig. 10. ROC Curve of VOGUE, C-VOGUE and HMMER for the families
F1, F2 andF3.

TABLE XIX

AMINO ACIDS GROUPING

Group1 Group2 Group3
HYDROPHOBICITY polar neutral hydrophobic

R K E D Q N G A S T P H Y C V L I M F W
POLARITY 4.9 to 6.2 8.0 to 9.2 10.0 to 13.0

L I F W C M V Y P A T G S H Q R K N E D
POLARIZABILITY 0 to 0.108 0.128 to 0.186 0.219 to 0.409

G A S D T C P N V E Q I L K M H F R Y W
CHARGE positive negative other

H R K D E M F Y W C P
N V Q I L N

NORMALIZED VAN 0 to 2.8 2.95 to 4.0 4.43 to 8.08
DERWAALS VOLUME G A S C T P D N V E Q I L M H K F R Y W

amino acids suggested by the expert were9 cluster as given in
Table XVIII.

In order to check the efficiency of the clustering of the symbols
in case the expert’s clustering is not available, we used thespectral
clustering method described in Chapter4. As domain knowledge
we input the amino acids specifications which groups the amino
acids in3 groups based on the following five criteria:

1) Hydrophobicity : an amino acid can be either polar, neutral
or hydrophobic.

2) Polarity : if the polarity of an amino acid ranges from4.9
to 6.2 it belongs to the group1, if it ranges from8.0 to 9.2
it belongs to group2 and if it ranges from10.0 to 13.0 it
belongs to group3.

3) Polarizability : If the polarizability of the amino acid ranges
from 0 to 0.108 it belongs to the group1, if it ranges from
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Fig. 11. ROC Curve of VOGUE, C-VOGUE and HMMER for the families
F4, F5 andF6.

0.128 to 0.180 it belongs to group2 and if it ranges from
0.210 to 0.409 it belongs to group3.

4) Charge: an amino acid could be either positive, negative
or carrying a small charge or no charge, called other.

5) Normalized Van Derwaals volume: if the volume of the
amino acid ranges from0 to 2.8 it belongs to the group1,
if it ranges from2.95 to 4.0 it belongs to group2 and if it
ranges from4.43 to 8.08 it belongs to group3.

We used K-means with different values of the number of
clustersK(5, 6, 7, 9). The best results of the clustering was for
K = 9 and is shown in Figure 13. TheX axis represents theK
eigenvectors that correspond to theK largest eigenvalues. The last
column represents the cluster index in color to which the amino
acid belongs to. TheY axis represents the amino acid index.
The amino acids indexes are represented from1 to 20. Clustering
using the spectral clustering using eigenvectors and K-means with
K = 9, we obtained the following9 clusters as described in
Table XX. Figure 14 shows the amino acid indexes sorted to
group the amino acids belonging to the same cluster together.
For example the last cluster whose color is dark red corresponds
to the clusterC1 that contains the amino acids(H,K,R).

This clustering is very close to that of the expert. In fact,
clustersC1, C5, C7, C8 were exact match with the experts clusters.
ClustersC2, C3, C4, andC6 were partially identified correctly. In
fact, L and I were identified to belong to the same clusterC2.
F,W were identified as belonging to the same clusterC3. S, T
were identified to belong to the same clusterC6, while G, Y ,
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Fig. 12. ROC Curve of VOGUE, C-VOGUE and HMMER for the families
F7, F8 andF9.

A, M , andV were misclassified. Therefore,in the absence of the
expert’s clustering we can use cluster the alphabet

P

’s symbols
using domain information (knowledge) and Spectral clustering as
described in Chapter4.

1) K-VOGUE vs HMMER Performance:Once we have the
clusters of amino acids from the expert, we transform the data
set by replacing the amino acids belonging to one cluster with
the representative of that class. For example, for the cluster
C1 = {H,K,R}, we replace any instance ofK, R, H in the
data set with the representative of the class which isH. We
built K-VOGUE state machines with different values ofminsup
corresponding to50%, 75% and100% of the number of instances
in the training data, andmaxgap (10, 15, 20, 25, 30) but with the
constantk = 2 for the length of the mined sequences in VGS.
We then choose the best set of parameters and fix them for the
remaining experiments. To model the data using HMMER, we
first align the training sequences using CLUSTAL-W (http://
www.ebi.ac.uk/clustalw ). We then build a profile HMM
using the multiple sequence alignment and compute the scores
for each test sequence using HMMER, which directly reports the
log-odds scores with respect to theNull model mentioned above.

Score Comparison: We first compare K-VOGUE HMMER.
Table XXI shows the comparison on the10 testing sequences from
all the 10 families when scored against the model for families
SF2 and SF5. For K-VOGUE we usedminsup = 6(75%) and
maxgap = 20. The best score for each sequence is highlighted
in bold. Note that a negative score mean does not belong to
the family and that a positive score means that it belongs to
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TABLE XX

THE 9 CLUSTERS FOR THE AMINO ACIDS FROMK-MEANS CLUSTERING

Cluster Elements Indexes of elements
C1 H, K, R (7, 9, 15)
C2 I, L (8, 10)
C3 F, M, W (5, 11, 19)
C4 D, E, V (3, 4, 18)
C5 P (13)
C6 A, G, S, T (1, 6, 16, 17)
C7 N, Q (12, 14)
C8 C (2)
C9 (Y ) (20)
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Fig. 14. Eigenvectors after sorting withK = 9 and using the Amino Acids
Grouping.

the family. Therefore, a very low negative score for sequence
S2 on model of familySF10 means it does not belong. Thus
the smaller that score it is the better it is. Looking at the scores
in Table XXI, we find that in general HMMER did well since
it classified all the sequences as not belonging to familySF2
(all scores were negative). However, sequenceS2 should have a
positive score (S2 belonging toSF2) but it has a negative score
of −4.20. Moreover, for all the10 testing sequences K-VOGUE
vastly outperforms HMMER for familySF2. All the scores by



26

TABLE XXI

TEST SEQUENCELOG-ODDS SCORES FORK-VOGUE AND HMMER

Seq HMMER K-VOGUE HMMER K-VOGUE
SF2 SF2 SF5 SF5

S1 −87.20 −4760.38 −166.70 −4,286.09

S2 −4.20 537.62 −141.60 −1,896.44

S3 −44.70 −1709.69 −76.70 −4,523.37

S4 −31.60 −1903.78 −74.50 −4,525.66

S5 −32.50 −1.42 95.80 197.39

S6 −46.70 −259.53 37.70 −20.37

S7 −89.50 −2210.78 −140.60 −220.44

S8 −268.60 −704.71 −348.80 −13,520.02

S9 −108.40 −940.51 −179.00 −4,642.94

S10 −66.20 −1764.22 −113.90 −6,367.38
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Fig. 15. ROC Curve of K-VOGUE and HMMER for the familiesSF1, SF2

andSF3.

K-VOGUE were better than those of HMMER in this case,
except for sequenceS5. The score ofS5 (−1.42) was higher than
that of HMMER (−32.50) but still negative classifyingS5 as
not belonging toSF2. Concerning familySF5, K-VOGUE again
outperformed HMMER, since it only classifiedS5 as belonging
to SF5 but the remaining of the testing sequences not belonging.
HMMER classified correctly all the sequences but sequenceS6.
With a score of37.70, sequenceS6 was classified as belonging
to family SF5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

ROC Curve for Family SF4

K−VOGUE (AUC = 0.804)
HMMER (AUC = 0.790)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

ROC Curve for Family SF5

K−VOGUE (AUC = 0.944)
HMMER (AUC = 0.804)   

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

ROC Curve for Family SF6

K−VOGUE (AUC = 0.804)
HMMER (AUC = 0.75)   

Fig. 16. ROC Curve of K-VOGUE and HMMER for the familiesSF4, SF5

andSF6.

Full Comparison (ROC Curves and AUC): Figures 15 and
16 present the ROC curves of6 families generated from all the
testing sequences. Here we focus on comparing HMMER and K-
VOGUE. A good classifier will be located at the top left cornerof
the ROC graph, illustrating that this classifier has high coverage of
true positives with few false positives. A trivial rejectorwill be at
the bottom left corner of the ROC graph and a trivial acceptorwill
be at the top right corner of the graph. Each one of the graphs
in Figures 15, 16 has two ROC curves for K-VOGUE and
HMMER, respectively, for different threshold values. The total
AUC for the two methods is given in the legend. K-VOGUE
was run with parameter typical values ofminsup = 75% and
maxgap = 20; there were some minor variations to account for
characteristics of different families. The ROC curves of all the
families show clearly that VOGUE improved the classification of
the data over HMMER because the AUC of VOGUE is constantly
higher than HMMER.

VIII. C ONCLUSIONS ANDFUTURE WORK

We introduced a new state machine called VOGUE to discover
and interpret temporal dependencies in the analyzed data. We
formally defined the two steps of this technique, where the first
step uses a new and efficient sequence mining algorithm, Variable-
Gap Sequence mining (VGS), to mine frequent patterns, and the
second step uses these mined sequences to build VOGUE.

An important contribution of our new technique is that we are
able to simultaneously modelmultiple higher-order HMMs due
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to the inclusion of variable length gaps allowed in the mined
sequences. Once the model is built, it can be used to interpret new
observation sequences. Therfore, we modified the widely used
Viterbi algorithm into VG-Viterbi, to take into consideration the
special topology of VOGUE. We showed experimentally, using
real protein sequence data, that VOGUE’s modeling power is
superior to higher-order HMMs, as well as a domain-specific
algorithm HMMER.

We further generalized VOGUE to any length,k ≥ 2, of the
sequences mined by VGS. Furthermore, some patterns mined by
VGS are artifacts of other patterns, for example, ifA → B
is frequent, then there is a good chance thatB → A will be
frequent as well. We developed a special pruning mechanism,
called,C-VOGUE, to separate primary patterns from artifacts.We
showed through experimental results that,C-VOGUE reduces
further the state space complexity of VOGUE while maintaining
a good coverage and accuracy. Moreover, there are applications
where there isn’t always an exact match for the subsequences
to be mined, such as in bioinformatics or in user data access.
We extended VOGUE toK-VOGUE, to allow for approximate
matches for the mined sequences and states.K-VOGUE takes into
consideration that some elements in the alphabetΣ share similar
characteristics and hence are similar. These elements are clustered
either by a domain expert or by using domain information and
spectral clustering as clustering technique. Then, VGS looks for
frequent patterns whose elements belong to the same cluster
instead of an exact match between the elements.

We used pseudo-counts in the transition, emission and duration
probabilities, to account for the symbols that were not present in
the training data set but might be present in the testing datasets.
The values of these pseudo-counts were heuristically chosen but
they were fixed for all the symbols. We need to automate this
process and allow for pseudo-count values that reflect the overall
distribution of the symbols. In fact, a symbol might have higher
occurrences than others and hence its pseudo-count should be
higher. Moreover, we need to understand what is the impact of
the chosen pseudo-count value on the performance of VOGUE.

Finally, we demonstrate that VOGUE and its variations were
able to outperform the state-of-the-art techniques in biological
sequence clustering and analysis. VOGUE can be further used
in other applications such as user access behavior [2], web
prefetching [8], security [75], and many more interesting and
challenging real world problems.
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