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Abstract— We present VOGUE, a new state machine that HMMs depend on the Markovian property, i.e., the current
combines two separate techniques for modeling complex pa&itns state: in the sequence depends only on the previous state
in sequential data: data mining and data modeling. VOGUE reles  which makes them unsuitable for problems where generanpastt
on a novel Variable-Gap Sequence miner (VGS), to mine frequeé may display longer range dependencies. For such problems,
patterns with different lengths and gaps between elementstthen  higher-order and variable-order HMMs [66], [71], [72] have
uses these mined sequences to build the state machine. Morep  been proposed, where the order denotes the number of pseviou
we propose two variations of VOGUE: C-VOGUE that tends to states that the current state depends upon. Although hayter
decrease even further the state space complexity of VOGUE by HMMs are often used to model problems that display long range
pruning frequent sequences that are artifacts of other prirary dependency, they suffer from a number of difficulties, natmel
frequent sequences; and K-VOGUE that allows for sequences high state-space complexityeduced coverageand sometimes
to form the same frequent pattern even if they do not have an evenlow prediction accuracy[22]. The main challenge here is
exact match of elements in all the positions. However, the lierent  that building higher order HMMs [66] is not easy, since weéav
elements have to share similar characteristics. We apply VGUE  to estimate the joint probabilities of the previousstates (in an
to the task of protein sequence classification on real datadém the ~m-order HMM). Furthermore, not all of the previous states
PROSITE and SCOP protein families. We show that VOGUEs may be predictive of the current state. Moreover, the mani
classification sensitivity outperforms that of higher-order Hidden — process is extremely expensive and suffers from local aptaue
Markov Models and of HMMER, a state-of-the-art method for ~ to the use of Baum-Welch algorithm [13], which is an Expeotat
protein classification, by decreasing the sate space comply —Maximization (£M) method for training the model. _
and improving the accuracy and coverage. To address these limitations, we propose, in this t_he3|s, a
. . . new approach to temporal/sequential data analysis thabices
Index Terms—VOGUE, Data Mining, Data Modeling, Hidden  temporal data mining and data modeling via statistics. Vi®-n
Markov Models duce a new state machine methodology call&{GUE (Variable
Order Gaps forUnstructuredElements) to discover and interpret
| INTRODUCTION long and short range temporal locality and dependenciefan t
o o ) analyzed data. The first step of our method uses a new sequence
Many real world applications, such as in bioinformatics bwemining algorithm, called/ariableGap Sequence miner (VGS), to
accesses, and text mining, encompass sequential/temgat@l mine frequent patterns. The mined patterns could be ofrdifte
with long and short range dependencies. Techniques foyzingl |engths and may contain different gaps between the elenuénts
such types of data can be classified in two broad categorigge mined sequences. The second step of our technique eses th

pattern mining and data modeling. Efficient pattern extoact mined variable-gap sequences to build the VOGUE state mechi
approaches, such as association rules and sequence nvirrey,

proposed, some for temporally ordered sequences [3], [54],
[74], [89] and others for more sophisticated patterns [{4)]. A. VOGUE OVERVIEW

For data modeling, Hidden Markov Models (HMMs) [67] have | et's consider a simple example to illustrate our main ides.
been widely employed for sequence data modeling ranging fros be a sequence over the alphabet= {A,--- , K}, with S =
speech recognition, to web prefetching, to web usage abalgs ABACBDAEFBGHAIJKB. We can observe that — B is
biological sequence analysis [1], [9], [29], [35], [51],5]6 [66], a pattern that repeats frequently (4 times), but with vaeiténgth
[69], [85]. . , , aps in-betweenB — A is also frequent (3 times), again with
There are three basic problems to solve while applying HMMgaps of variable lengths. A single order HMM will fail to cape
to real world problems: any patterns since no symbol depends purely on the previous
1) Evaluation: Given the observation sequenoeand a model symbol. We could try higher order HMMs, but they will model
A, how do we efficiently computé (O|\)? many irrelevant parts of the input sequence. More impdstano
2) Decoding: Given the observation sequenc®, and the fixed-order HMM fork > 1 can model this sequencsince none
model \, how do we choose a corresponding state sequerafethem detects the variable repeating pattern betwéemd B
Q = q192...qr Which is optimal in some meaningful sense?or vice versa). This is easy to see, since for any fixed gidin

The solution to this problem would explain the data. window of sizek, no k-letter word (ork-gram) ever repeats! In
3) Learning: How do we adjust the model parameters to contrast our VGS mining algorithm is able to extract bdth- B,
maximize P(O|\)? and B — A as frequent subsequences, and it will also record how

Of all the three problems, the third one is the most crucial afmany times a given gap length is seen, as well as the frequency
challenging to solve for most applications of HMMs. Due te thof the symbols seen in those gaps. This knowledge of gaps play
complexity of the problem and the finite number of observetjo @ crucial role in VOGUE, and distinguishes it from all pravso
there is no known analytical method so far for estimatingp  @pproaches which either do not consider gaps or allow ongdfix
maximize globallyP(O|)). Instead, iterative methods that providedaps. VOGUE models gaps vigap statesbetween elements of
a local maxima onP(O|)) can be used such as the Baum-Welch sequence. The gap state has a notion of state duration ighich
estimation algorithm [13]. executed according to the distribution of length of the gapd

the intervening symbols.

Bougata, Carothers, Szymanski and Zaki are with the Com@teence ~ The training and testing of VOGUE consists of three main
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(VGS) mining algorithm. (i) Data Modeling via our novel structures unlike other techniques that are made spediaily
Variable-Order state machingiii) Interpretation of new data dimensional patterns, and perform poorly. We achieved llyis
via a modified Viterbi method [26], called Variable-Gap Viie S-VOGUE (Substitution VOGUE), where the mined patterns are
(VG-Viterbi), to model the most probable path through a VG&U chosen not only based on the frequency of exact match items
model. but also among items that could be substituted by one another
according to their secondary or tertiary structure. This s
o fact, very helpful in protein analysis where proteins of #ane
B. Contributions family share common patterns (motifs) that are not basedaate
There are several major contributions of our work. Firstpatch but rather on substitutions based on the protein segae
VOGUE is the combination of two separate but complementaglements weight, charge, and hydrophobicity. These eltae
techniques for modeling and interpreting long range depecids called amino acids.
in sequential data: data mining and data modeling. The use of
data mining for creating a state machine results in a model
that captures the data reference |0cality better than dtitaal 11. PATTERN MINING USING SEQUENCEMlNlNG
HMM created from the original (noisy) data. In addition, our
approach automatically finds all the dependencies for angive Data mining involves the process of analyzing data to show
state, and these need not be of a fixed order, since the miggterns or relationships; sorting through large amouhtsate;
patterns can be arbitrarily long. Moreover, the elementthe$e and picking out pieces of relative information or patterhatt
patterns do not need to be consecutive, i.e., a variablethengccur e.g., picking out statistical information from somatad
gap could exist between the elements. This enables us tolmqde]. There are several data mining techniques, such asiatisa
multiple higher order HMMs via a single variable-order statrules, sequence mining [74], classification and regressioni-
machine that executes faster and yields much greater agcurgarity search and deviation detection [34], [41], [42], [&B3].
This contribution is composed of (i) Wariable Gap Sequence Most of the real world applications encompass sequentidl an
(VGS) miner, which is a contribution in the area of patternemporal data. For example, analysis of biological secesash
extraction. VGS mines frequent patterns with differengléis and as DNA, proteins, etc. Another example is in web prefetching
gaps between the elements across and within several seuenghere pages are accessed in a session by a user in a sequential
VGS can be used individually as well as part of VOGUE fomanner. In this type of data each “example” is represented as
pattern extraction, and (i) a VOGUE state machine that tises sequence of “events”, where each event might be described by
mined variable-gap sequences from VGS to model multiplaédrig a set of attributes. Sequence Mining helps to discover &egu
order HMMs via a single variable-order state machine. sequential attributes or patterns across time or positiona
Moreover, we applied VOGUE to a real world problem, namelyjiven data set. In the domain of web usage, a database would
finding homologous proteins. Although VOGUE has a mucbe the web page accesses. Here the attribute is a web page and
wider applicability, such as in web accesses, text minirggru the object is the web user. The sequences of most frequently
behavior analysis, etc, in this work we apply VOGUE to a realccessed pages are the discovered “frequent” patternegiial
world problem in biological sequence analysis, namely, timul sequence analysis [36], [92], identifying plan failures0][%and
class protein classification. Given a database of protejoeseces, finding network alarms [43], constitute some of the real @orl
the goal is to build a statistical model so that we can demmiapplications where sequence mining is applied.
whether a query protein belongs to a given family (class) or |n this work, we choose to use sequence mining rather than
not. Statistical models for proteins, such as profiles, tsi association mining due to the fact that association minisgay-
specific scoring matrices, and hidden Markov models [29]eha¥rs only intra-itemsets patterns where items are unorgevbie

been developed to find homologs. However, in most biologicgbquence mining discovers inter-itemsets, called se@sendere
sequences, interesting patterns repeat (either withinstivee jtems are ordered [89].

sequence or across sequences) and may be separated bievariab
length gaps. Therefore a method like VOGUE that specifically TABLE |
takes these kind of patterns into consideration can be \fégg-e
tive. We show experimentally that VOGUE'’s modeling power is
superior to higher-order HMMs while reducing the lattertate-

ORIGINAL INPUT-SEQUENCEDATABASE

space complexity, and improving their prediction. VOGUEaal SIID Tlmel((?lD) “ﬁrgs

outperforms HMMER [29], a HMM model especially designed I 30 )

for protein sequences. T 30 15
The second contribution is in the area of data interpratatio 5 0 T

and decoding. This contribution is a consequence of theueniq 5 0 150

structure of VOGUE sate machine, where the gaps have a notion 5 0 5

of duration. Therefore, we adjusted the widely used Viterbi 3 o =

algorithm, that solves the interpretation problem, to nbete 3 30 5

needs. We call this method Variable-Gap Viterbi (VG-Viigrb 3 10 71

We optimized VG-Viterbi based on the fact that the transitio

matrix between the states of the model is a sparse matrix@nd s j Zg AAB

there is no need to model the transitions between all thesstat 1 %0 B
The third contribution is Canonical VOGUE (C-VOGUE) that

aims at increasing the already “good” performance of VOGUE

by eliminating artifacts in the extracted patterns, hereducing

the number of patterns to be modeled later on. These asgtifaet

retained as being frequent patterns but each one of thesersat TABLE Il

is in fact an artifact of another pattern. This contributmims at FREQUENT1-SEQUENCES(min_sup = 3)

decreasing the state space complexity of the state machimeh

is a major step towards one of the three goals of modeling with Al4

state machines while keeping good accuracy and coverage. B |4

VOGUE is adaptable enough to allow for inclusion of domain
specific knowledge to better model patterns with higher rorde



TABLE Il

FREQUENT2-SEQUENCES(min_sup — 3) constrains might need to be added in some domains. For ezampl

a user might be interested in searching for sequences augurr
close in time to each other or far apart from each other, thuste

AA_?A Z contain some specific items, occurring during a specificopeof
A5 T1 time, or frequent at most a number of times or at least another
E= A3 number of times in the data set.

BS B 3 Several techniques have been proposed to discover theefrequ
sequences [5], [55], [62], [90]. One of the early algoriththat
efficiently discovered the frequent sequences is the Aigdior

TABLE IV [74], that iteratively finds itemsets of lengthbased on previously

FREQUENT3-SEQUENCES(min_sup = 3) generated(l-1)-length frequent itemsets. In [45] frequent se-
guences in a single long input-sequence, called frequesbegs,
AB 3 were mined. It was extended to discover generalized epsode

AB - B | 3 that allow uniary conditions on individual sequences itets;sor

binary conditions on itemset pairs [54]. In [3], tli&eneralized
Sequential Pattern§GSP algorithm was proposed to extend
the AprioriAll algorithm by introducing user-specified minimum
A. Sequence Mining discovery: Definitions gap and maximum gap time constraints, user-specified glidin

The problem of mining sequential patterns, as defined in [4findow S|Ize, .‘1“‘1 uhser-speC|f|ed n:jl_rgmun; support. GSP |fs an
and [74], is as follows: Let's consider — {I,,--- Im} be the | rative algorithm that counts candidate frequent sece®ro

set of m distinct items. Anitemsetis a subset of with possibly length & in the k — th database scan. HoweveESP suffers

un-ordered items. Aequence ,Sn the other hand, is an ordered™®m & number of drawbacks, namely, it needs as many full
list of itemsets from/ (i.e., S = Ir,---I, where I; C I and scans of the database as the longest frequent sequencesitus

1<j<1).S can be defined a§ = I, — Ir--- — I, where complex hash structure with poor locality; and it scalesin@drly
“_"is a “happen after” relationship denoted Bs< I; andi < ;. ?s the S|z<_-:£hcgstg§ gata tl)ncrkeasg!;?AADDEE [89] was F;FOF}O%G? .
The length of the sequendais defined as 5 |= 3, | I; |, where doatg%gzemprefix-baségwegﬁivsailence clagssee: aa%/g riltcaertlen;::ra
| Z; | is the number of items in the itemsgt. For example, let's frequent ’sequences through simple temporalyjoSEADEuses
consider the sequencg = AB — C — DF. This sequence is : :
composed o8 itemsets, namelyd B, C, and DF', and its length dynamic programming concepts to break the large searcle siac
is | 2, = AB | + | c |+ | 1’7F1| 25 The se uencés?s frequent patterns into small and independent chunks. lires|
then caﬁedS-se uenceWe will refer f?)r the remai?ﬂn of this only three scans over the database as oppose@3B which
roposal to a sg uence of lendtras k-sequence 9 requires multiple scans, an8PADE has the capacity of in-
P Ap S’q o o dq - memory computation and parallelization which can considligr
with segTeSnTeif there exist a Ilsistcﬁfeiten?sgtjs S(Eq??nf:? Ii‘f decrease the computation timBPADE was later on extended
P = r, ] b t»  to Constraint SPADEASPADB [88] which considers constraints
such thatl; € I;, , 1 < k,j < p. For example, the sequencejike max/min gaps and sliding windows. SPIRIT [39] is a famil
S§"=A — D is a subsequence @ (described in the previous of four algorithms for mining sequences that are a complé¢angn
example), becausd C AB, D C DF, and the order of itemsetsto ¢cSPADE. However, cSPADE considers a different constrain
is preserved. LeD, a set of sequences, be a sequential databaggt finds sequences predictive of at least one class foraehp
where each sequence D has a unique identifier, denoted ag|assification problems. In fact, SPIRIT mines sequences th
sid, and each itemset i has a unique identifier, denoted asmatch user-specified regular-expression constraints. ffiost
eid. The supportof S', is defined as the fraction of the databasgelaxed of the four is SPIRIT{) that eliminates items not
sequences that contai®, given asop(s’) =| Ds | / | D |, appearing in any of the user specified regular-expressiohs.
where D, is a set, contained i, of database sequencBsuch most strict one is SPIRITY), that applies the constraints, while
that S" C S. A sequence is said to be frequent if it occurs morgining and only outputs the exact set. GenPresixSpan [6] is
than a user-specified threshotdnsup, called minimum support. another algorithm based on PrefixSpan [64] that consideps ga
The problem of mining frequent patterns is to find all frequertonstraints. Regular expressions and other constraines teen
sequences in the database. This is formally defined in [74] astudied in [40], [48], [92]. In [48], a mine-and-examine adigm
Definitions for Sequential Pattern Mining: Given a se- for interactive expioration of association and sequendsoeis
quential databaseD and a user-specifiedhinsupparameters  was presented, where a large collection of frequent pattirn
(0 <o <1), find all sequences each of which is supported by fitst to be mined and produced. Then the user can explore this
least[o | D [] of sequences im. F;, denotes the set of frequentcollection by using “templates” that specify what is of st
k-sequences ankllaximal frequent sequenceis a sequence that and what is not. In [60], CAP algorithm was proposed to extrac
is not a subsequence of any other frequent sequence. all frequent associations matching a large number of caimsr.
_ Table | shows an example database [88]. It consists of thre@wever, because of the constrained associations, thet®adse
items (A, B, C), four input sequences and twelve events. Table§e unsuitable for temporal sequences that introduce reliffe
II, ll'and IV show the frequentl-sequences-sequences, and kinds of constraints.
3-sequences with aninsup of 3, corresponding td’5% of the  sjnce cSPADEIs an efficient and scalable method for mining
data, respectively. Theaximalsequences ard — A, B — A,  frequent sequences, we will use it as a base for our new method
and AB — B. Variable-Gap Sequence miner (VGS), to extract the pattévais
will be used to estimate the parameters and structure of our
B. Se Mining di - Related Work proposed VOGUE state machine. The main difference, however
- Sequence Mining discovery. Related Wor between VGS and cSPADE is that cSPADE essentially ignores
It is challenging to find all frequent patterns in a large date the length and symbol distributions of gaps, whereas VGS is
where the search space becomes extremely large. In fact,d@he specially designed to extract such patterns within one oremo
O(m*) possible frequent sequences of length at migsivhere sequences. Note that while other methods can also mine gappe
m is the number of different symbols in the database alphabetequences [6], [40], [92], the key difference is tHating mining
Many techniques have been proposed to mine temporal d&i@S explicitly keeps track of all the intermediate symbakeir
sets to extract the frequent sequences. However, if thetséar frequency, and the gap frequency distribution, which aedus
unconstrained, it can produce millions of rules. Moreowame build VOGUE.



Frequent Sequence Lattice

Before we go into more details about cSAPDE, we will give
an overview of SPADE algorithm in Section 1, since cSPADE

is an extension of itcSPADEtechnique will be described in s
the Section 2. Section I1I-B provides the details of our g === .
method VGS.
-Intersect A->B and B->B
SID | EID
[1l. SPADE: SEQUENTIAL PATTERNS DISCOVERY USING T T
EQUIVALENCE CLASSES A 5 ”
The SPADE algorithm [89] is developed for fast mining of 4 | 30

frequent sequences. Given as input a sequential datdbhasel ZA 0 R R .
the minimum support, denoted asin_.sup the main steps of
SPADE consists of the following:

1) Computation of the frequerit-sequencesr; = { frequent
items orl-sequences

2) Computation of the frequer-sequencesr» = { frequent
items or2-sequences;

3) Decomposition into prefix-based parent equivalencesels
¢ = { equivalence class€X]y, };

4) Enumeration of all other sequences, usBgeadth-First
Search (BFS or Depth-First Search(DFS) techniques,
within each clas$X] in .

In the above,-sequencesienotes sequences of lengthl <

SID | EID ¥

10 SID | EID
20 10
30 20
10 30
30 30
40

>n
BN

AN |F

AW IN|IN|F

1< 2.

A formal description of SPADE [89] is given in Algorithm 1. Fig. 1. Frequent Sequence Lattice and Temporal Joins.

The SPADE algorithm uses the following concepts:

Algorithm 1 SPADE

procedure SPADE(nin_sup)
P = { parent classeg;};
for each parent clasB;, € P do
Enumerate-Frequent-S@g; );
end for
end procedure
function ENUMERATE-FREQUENTSEQ(S)
for all atomsA; € S do
T, = @,
for all atomsA; € S with j >4 do
R=A;V Aj;
if Prune(R) == FALSE then
L(R) = L(A; N L(A;));
if o(R) > minsup then
T; = T; U{R};] Fig = Fig| U{R};
end if
end if
end for
if (Breadth-First-Searchthen
Enumerate-Frequent-SEgj;
end if
end for
if (Breadth-First-Searchthen
for all T; # 0 do
Enumerate-Frequent-S&gj;
end for
end if
end function

lattice spanned by the subsequencé) felation as shown in
Figure 1 for the example dataset.

Support Counting: One of the main differences between
SPADE and the other sequence mining algorithms [5], [74] is
that the latter ones considetharizontal databaséayout whereas
SPADE considers a vertical one. The database in the hoakont
format consists of a set of input sequences which in thein tur
consist of a set of events and the items contained in the vent
The vertical database, on the other hand, consists of anka dis
based id-list, denoted.(X) for each itemX in the sequence
lattice, where each entry of the id-list is a pair of sequeitce
and event id(sid, eid) where the item occurs. For example, let's
consider the database described in Table I, the id-listisbn$
the tuples{(2, 20), (2, 30)}.

With the vertical layout in mind, the computation Bf and
F> becomes as follows:

Computation of F1: The id-list of each database item is read
from disk into memory. Then the id-list is scanned increriment
the new sid encountered. All this is done in a single database
scan.

Computation of F,: Let N = |F;| be the number of frequent
items, andA the average id-list size in bx}es. In order to compute

F2 a naive implementation will requir(é2) id-list joins for all

AxNx(N—l))

pairs of items. Then is the corresponding

amount of data read; this is a?mdsrt/Q data scans. To avoid this
inefficient method two alternate solutions were proposediga:
To computeF, above a user specified lower bound threshold,

a preprocessing step is used. An on-the-fly vertical-tgzbatal
transformation is performed: scan the id-list of each itemto
memory. Then for eaclisid, eid) pair (i,e) is inserted in the
list for input sequences. Using the id-list for itemA from the
previous example in Table |1, the first pait, 15) is scanned
then (A, 15) is inserted in the list for input-sequenteTable V

Sequence Latticelf a sequencss is frequent all subsequencesdescribes the complete vertical-to-horizontal transtiiom of the
S’ of S, such thats’ < S, are frequent. In fact SPADE considergdatabase. To recover the horizontal database, for sakha list
that the subsequence relatiehis a partial order on the set of of all 2 — sequences is formed in the list, and counts are updated
sequences. Therefore, SPADE finds the subsequences thatirag2 — dimensional array indexed by the frequent items.

frequent from the mogieneral single items, to the most specific,

Then, as shown in Figure 1, the intermediate id-list for—

the maximal sequences in either a depth-first-search othsreaB is obtained by a temporal join on the lists df and B. All
first-search manner. This is done by looking into the segeencccurrences ofd “before” B, that represend — B are found



TABLE V

of patterns: (i) Single item sequences as well as the seqaenc
VERTICAL-TO-HORIZONTAL DATABASE RECOVERY p () g q q

of subsets of items. For example the seB, and AB — C
in (AB — C — DF). (ii) Sequences with variable gaps among

sid (item, eid)pairs . LN : .

i (A,10)(4, 30)(B, 10)(B, 20)(B, 30) itemsets (a gap df will discover the sequences with consecutive
2 | (4, 20)(A, 30)(B, 30)(B, 50)(C, 20)(C, 30) itemsets). For example, from the sequeriegeb — C — DF),

3 (A, 10)(A, 40)(B, 30) AB — DF is a subsequence of gap 1 antB — C is a

4 (A, 30)(A, 40)(B, 30)(B, 50) subsequence of gap 0.

CcSPADE is an extension of thequentialPatternsDiscovery
using Equivalence classes (SPADE) algorithm by adding the
following constraints:

in an input sequence and the corresponding eids are stored t@) Length and width restrictions.

obtainL(A — B). In the case ofAB — B, the id-lists of its two 2) Minimum gap between sequence elements.
generating sequences — B and B — B are joined. Because 3) Maximum gap between sequence elements.

of main-memory limitations, it is not possible to enumerate 4) A time window of occurrence of the whole sequence.
the frequent sequences by traversing the lattice and peirigr 5) Item constraints for including or excluding certain iem
joins. However, this large search space is decomposed b{pEPA 6) Finding sequences distinctive of at least a speciabatti
into smaller chunks, calledassesto be processed separately by value pair.

using suffix-based equivalence classes , Definition: A Constraint [88] is said to belass-preserving
Definition: Two k-sequences are in the same class if they shafein the presence of the constraistffix-classretains it's self-
a commonk — 1 length suffix. containment property;j.e., support of anyk-sequence can be

Thel’efore, each class issab-latticeof the Original lattice. It found by joining id-lists of its two generating Subsequa’]w
can be processed independently since it contains all th@-inflength (1 — 1) within the same class.
mation to generate all frequent sequences with the samex.suffi |f a constraint isclass-preserving88], the frequent sequences
SPADE recursively calls the procedumumerate-Frequenthat  satisfying that constraint can be listed using local suffixss
counts the suffix classes starting from suffix-classes (g‘t.mnne information only. Among all the constraints stated abowvee t
(calledparent classgsin the running exampled, B), thenituses maximum gapconstraint is the only one that is not class-
suffix-classes of length two, in the running examplé £ B, fpreserving. Therefore, there is a need for a different ematios

AB) and so on. The input to the procedure is a set of items ofygethod. cSPADE pseudo-code is described in Algorithm 2.
sub-latticeS, along with their id-lists. The id-lists of all distinct

pairs of sequences in each class are joined to generatestheefit
sequences and the results is checked against the userestiaior

Algorithm 2 cSPADE

min_sup. procedure CSPADEnin_sup)
Temporal Joins: A suffix equivalence clasgs| can contain P = { parent classeg;};
either an itemset of the fornX'.S or a sequence of the form for each parent clasB; € P do

Y — S, whereX andY are items, and is a suffix sequence. Enumerate-Frequent-Segjj:
Assuming that itemsets of a class always precede its seesienc df '
then joining the id-lists of all pairs of elements extends thass end tor

for the next level. This results in one of the three differeatjuent end procedure

sequences depending on the joined pairs [88]: function ENUMERATE-FREQUENTSEQ(S)
1) Joining an ltemset to another Itemsehe resulting se- for all sequencest; € S do
qguence is an itemset. For exampld,S with BS the if maxgap join withFs then
resulting sequence is the itemséBS. p = Prefix-Item@;);
2) Joining an Itemset to a Sequentke resulting sequence is N = { all sequencest; in class[p]};

a new sequence. For exampléS with B — S results in
the sequencé3 — AS.
3) Joining a Sequence to another Sequertbere are three

else if self-join then
N = { all sequencesi; € S, with j > i},

possible resulting sequences considering the sequences end if
A — S andB — S: a newitemsetAB — S, the sequence for all sequences. € N do
A — B — S or the sequenc&8 — A — S. if (length(R) < max;) and width(R) < mazw)
From Figure 1, from the — sequences A and B we can get  andaccuracy(R) # 100%) then
three sequences: the itemseB and the two sequence$ — B L(R) = Constrained-Temporal-

and its “reverse”’B — A. To obtain the id-list of itemsefi B, the
equality of (sid,eid) pairs needs to be checked and in thég ca
it is L(AB) = {(1, 10), (1, 30), (2, 20), (4,30)} in Figure 1. This

Join(L(4;), L(«), min-gap, max-gap, window);
if o(R,c;) > minsup(c;) then

shows thatd B is frequent in3 out of the4 sequences in the data T =T U{R}; print R;
set (nin_sup = 3 which corresponds t65% of the data). In the end if

case of the resulting sequenge — B, there is need to check end if

for (sid,eid) pairs where sid for botd and B are the same but end for

the eid for B is strictly greater in time than the one fer. The end for

(sid,eid) pairs in the resulting id-list fad — B only keep the
information about the first item and notB. This is because all
members of a class share the same suffix and hence the same eid delete S;
for that suffix. end function

Enumerate-Frequert];

. ; : : : We will describe in some more detail how cSPADE handles
A. c_SPADE.constralned Sequential Patterns Discovery using each one of those constraints:
Equivalence classes Length and Width restrictions: Without a maximum length

In this section we describe in some detail the cSPADE algellowed for a pattern to be mined, the number of frequent
rithm [88]. cSPADE is designed to discover the following égp sequences blows up especially in the case some items are very



TABLE VI

frequent in highly structured data sets. In cSPADE this kema VGS: SUBSEQUENCES OFLENGTH 1

care of by adding the following check [88]:wWidth(R) < mazw

and if length(R) < maxz;, wheremaz., and maz; are, respec-
tively the maximum width and length allowed in a sequence.
This addition is done in the “Enumerate” method as shown in
cSPADE’s pseudo-code. These constraints @ess-preserving

A|B|C|D|E|F|G|H]|I
frequency| 4 [ 3 | 2| 2| 1|1 |1]1]1

since they do not affect id-lists. TABLE VII

Minimum Gap between sequence element®atterns, which VGS: SUBSEQUENCES OFLENGTH 2
items are not necessarily immediately consecutive in aesemg)
are very important in some domains such as in DNA analysis. subsequencd freq | g=0 | g=1 ] g =2
The minimum gap is &lass-preservingonstraint. In fact, if we ASC 2 1 T 0
consider that a sequencek — B — S is frequent with a min- A= B 3 0 1 2
gap of at least between each two of its elements, thdnand A=D 2 1 0 1
S are at least elements apart and the same goesBoand S. C—B 2 2 0 0
Therefore, by joining the id-lists of the two sequencés— S C—D 2 0 1 1
and B — S one can determine iA — B — S is frequent. C—A 2 0 1 1
Hence, adding the constraint minimum gap boils down to agdin B—-D 2 1 1 0
a check in SPADE pseudo-code for the minimum gap between B— A 2 L 1 0
the items of a sequence. If we consider the example data set in D—A 2 L 0 L

Figure 1, the latticd (A — B) is generated by adding a check

on the (sid,eid) pairs ih(A) andL(B). In fact, for every given

pair (¢, t,) in L(A) we check if there exist a paik, t,) in L(B) ) . .
that satisfies the constraiff  t, andt, —t, > min_gap. If that The next Chapter describ&GSin more details.
is the case the paif, t,) is added toL(A — B). For example,

if min_gap is set t020 then the pair(1,10) from L(A) can be g .
added toL(A — B) since there exist a paitl, 30) that satisfies B. Pattern Extraction.Variable-Gap Sequence {GS) miner

the constraint [88]. Variable-Gap Sequence miner (VGS) is based on cSPADE
Maximum Gap between sequence elementhis constraint [88]. While cSPADE essentially ignores the length and syimbo
is not class-preservingince if there is a sequence — B — §  distributions of gaps, VGS is specially designed to extsaath
is frequent withmaz_gap = 6, then the subsequende — S is patterns within one or more sequences. Note that whereas oth
frequent with at mosinaz_gap = § betweenB and S but A — § Mmethods can also mine gapped sequences [6], [74], [88], [92]
is only frequent at mostnaz_gap = 26. Therefore, ifA — § the key difference is thatluring mining VGS explicitly keeps
could be infrequent with this constraint but yét— B — S is track of all the intermediate symbols, their frequency, dnel
frequent. To incorporate maximum gap constraint to the SPADBap frequency distributions, which are used to build VOGUE.
pseudo-code [88], first a check needs to be added such thalyGS takes as input the maximum gap allowedafgap),
in the example of Figure 1, for a given pae,t,) in L(4), the maximum sequence length)(and the minimum frequency
check if a pairs(c,t,) exists inL(B) such thatt, # t, and threshold {uin_sup). VGS mines all sequences having up o
ty —ta < maz_gap. The second step is to change the enumeratig@iements, with no more thamazgap gaps between any two
of the sequences with the maximum gap constraint. A join wiglements, such that the sequence occurs at teastsup times
F, is necessary instead of a self-join because the classesarémthe data. For example, l&t = ACBDAHCBADFGAIEB
more self-contained. This join is done recursively with untii  be an input sequence over the alphabet= {A4,.--,I}, and
no extension is found to be frequent. let maxgap = 2, minsup = 2 and k = 2. VGS first mines the
Time Window of occurrence of the whole sequenceln frequent subsequences of length 1, as shown in Table VI.€Thos
other words, the time constraint applies to the whole secpierfymbols that are frequent are extended to consider secgiefice
instead of minimum or maximum gap between elements of tiNgth 2, as shown in Table VII. For examplé— B is a frequent
sequence [88]. This constraint islass-preservingsince if a sequence with frequencfreq = 3, since it occurs once with gap
sequenced — B — S is within a time-windows, then it implies of length 1 (AC'B) and twice with a gap of length 24¢(ZC'B and
thatA — S andB — S are within the same window and so on forAIEB). Thus the gap length distribution of — B is 0,1,2 as
any subsequence. However, including the time-window iht tshown, in Table VII, under columng =0, g = 1, andg = 2,
SPADE software is difficult because the information coneyn respectively. VGS also records the symbol distributiorhie gaps
the whole sequence time is lost from the parent class. Indaty  for each frequent sequence. Far— B, VGS will record gap
the information about the eid of the first item of the sequeisce sSymbol frequencies as(2), £(1), H(1),1(1), based on the three
stored and the one of the remaining items is lost from onesclagccurrences. Sinde= 2, VGS would stop after mining sequences
to the next. The solution proposed in [88] is to keep infoiorat Of length 2. Otherwise, VGS would continue mining sequences
about the difference “diff” between the eid of the first ane thof lengthk > 3, until all sequences witlk elements are mined.

last item of the sequence at each step of the process. Thimés d Before we start describing VGS, we will provide definitiorfs o
by adding an extra column in the id-list calleliff to store that Some terms that will be used in this section and in the restisf t

information. thesis:

Item constraints for including or excluding certain items: k-seqg sequence of lengtlk, i.e. k& elements. For ex-
The use of a vertical format of the data set and the equivelenc ample, A — B is 2-seq whereB occurs afterA and
classes in cSPADE makes it easy to add constraints on items A — B — (Cis a3-seq and so on.
within sequences [88]. For instance, if the constraint iweking min_sup: Minimum support, is the minimum threshold
a certain item from the frequent sequences, then removiingnit for the frequency count of sequences.
parent classes takes care of that. Therefore, no frequgnesee maxgapg maximum gap allowed between any two ele-
will contain that item. The same procedure will apply in tlese ments of ak-seq.
of including an item. Fy: the set of frequent-seq (single items).

Whereas cSPADE essentially ignores the length and symbol Fy: the set of allk-seq which frequency is higher than
distributions of gaps, the new mining sequence algorithat we the minimum thresholdnin_sup and the gap between
present in the workVGS (Variable-Gap Sequences), is specially their elements is at most of lengthaxgap.

designed to extract such patterns within one or more segsgenc C}.: the set of candidaté-seq.



TABLE VI

scanning it incrementing the support for eagld encountered
SUBSEQUENCES OF LENGTH2 MINED BY VGS 9 9 PD !

even if it repeats, for eack:d. This is different from SPADE
where only newsid are taken into considerations to look for

suzsi?lgnce frgq i 019 = 119 - 2 patterns across only the sequences. In VGS we look for patter
Y 3 g I 5 within and across the sequences in the data set.
) 5 T 0 T Computation of F»: we compute all the-seq with a gap of
=B 5 5 0 0 length g between its elements, € {0,--- ,mazgap} in which
CSD 3 0 1 1 frequencies are greater than thén_sup. g = 0 corresponds to
S A 3 0 1 i no elements between two main elements of tkeeq, andy = 1
B=D 2 1 1 0 corresponds to one element between two main elements of the
B— A 2 1 1 0 elements of thek-seq and so on. This computation is done by
D= A 2 1 0 1 scanning the id-list of each item in the alphabet into meméoy
each pair(sid, eid) we insert it in the list for the input sequence
whose id issid. We, then, form a list of alk-sequences in the
TABLE IX list for eachsid, and increment the frequency if the difference
ID-LIST FOR THE ITEMA between the tweid events is less than theazgap allowed.
Enumeration: of all other frequentk-seq, with frequency at
SID | EID least min-sup, with variable gaps between each two of itnefts
L 1 via Depth First Search (DFS) within each class. For exanipte,
} g 3-sequenced -2 B 2% ¢ has with gapy; € {0, - - - , maxgap}
T 3 betweend and B and gapgs € {0, - ,mazgap} betweenB and

C. Where “4 £ B” meansA is followed by B after g; elements

in between them. Likewise,Z 22 ¢” meansB is followed by

C after g elements in between them. The procedure is described
The first step of VOGUE uses VGS to mine the raw data-set fiit Algorithm 3.

variable gap frequent sequences. It takes as input the maxim

gap allowed maxgap between the elements of the subsequengggorithm 3 VGS

the maximum length (k) of the subsequences, and the minimu”‘procedure VG S(min_sup,maxgap)

frequency thresholdn{in_sup) for sequences to be considered p_ tel o1

frequent. The mined subsequences from VGS are of the form = { parent classes; };

Bifk =2, 0rA— B — C if k = 3, and so on. The frequency for each parent clasB; € P do
of the subsequences is calculated either across the segugnc Enumerate-Frequent-Segj(min_sup,maxgap);
the data-set and/or within the sequences in the data-se¢heas end for

application may require. Only those sequences that areidreq  end procedure

within a gap range of0, mazgap] are reported. As a running ex- ; } - .
ample, letS =< A, C, B, D, A,H,C, B, A, D, F,G, A,I,E, B > fun?gf';”E.'t“eUn“fsER_AT';ZF;EQUENTSEQ(S'mm-wp'maxgap)
be a sequence. Lebazgap = 2, min_sup = 2 andk = 2. The : vi €

results of VGS are shown in Table VII. For example,— B is Ty =0

a frequent sequence withreq = 3, since we have< A, C, B > for all itemswv; € S with j >4 do

foragap of 1, andk A, H,C,B > and< A,I, E, B > for a gap R = new candidate sequence framanduv;;

of 2. In the table, the columng= 0, g = 1, andg = 2 show the L(R) = L(v;) N L(v;); > with

gap distributions. For this subsequence we have no ocagsen

0 < (vi(eid) —v;(eid)) < , Wherew; (eid) is the event
atg =0, one atg = 1 and two atg = 2. < (vi(eid) — vy (eid)) < mazgap vi(eid)

The key features of our approach are: (i) Use of a vertical id- id of v; . .
list database format, where each sequence is associatedawit if freq(R) > minsup then
list of objects in which it occurs, and its relative timessias, T; = T; U{R};
and (ii) employeed a lattice-theoretic approach to dec@mpbe Fig| = Fig| U{R};
original search space (lattice) into smaller sub-lattiebich can end if
be processed independently in the main memory. This redbees end for

I/O cost, since the algorithm requires only three scans efdta } . .
set. Refer to [21] for a detailed introduction to Latticeahe Enumerate-Frequent-Seqf;

VGS is, therefore, cost efficient by reducing the datasetsca end fqr
and using an efficient depth first search, as described in yge] __end function
use, as in [89], a vertical database format, where an iddist
each item in the dataset.Each entry in the id-list (Sid eid) The input to the procedure is a set of items of a sub-lattice
pair. Fid is where th_e item exists in sequence whighis sid.  §, along with their id-lists and thenin_sup and mazgap. The
sid is the sequencgl in the data set andid is the eventd where sequences that are found to be frequent form the atoms cfeslas
the item exists. for the next level. This process is done recursively untiltiad

In our example we have 9 different items frequent sequences are computed.
{A,B,C,D,E,F,G,H,I}. The corresponding id-list ofA
is shown in Table IX. This allows checking the frequency af th
sequences via joins of the items. Using our running exantipée,

IV. DATA MODELING USING VARIABLE -ORDER STATE

join of A and B would beA v B = {A — B, B — A}; this give MACHINE

us the maximal sub-sequences existing in the data set fooyjed HMMs are a powerful statistical tool that have been applied

A and B with a maximum gap length of mazgap. in a variety of problems ranging from speech recognition, to
The main steps in VGS are: biological sequence analysis, to robot planning, to welfeprk-

Computation of Fy: we compute all frequent-seq (single ing. Speech recognition, however, is the area of researdrevh
items) in the whole data set and their frequencies regarddés a considerable amount of papers and books on using HMM have
the minsup. This is done by reading the id-list of each item antbeen produced [51], [70]. The best description of how HMMs



have been used in Speech recognition is described in the well) Structure of the HMM: Define the number of states,
referenced tutorial by Rabiner [67]. As biological knowded how they are connected, and the numbhgf, of output
accumulates, HMMs have been used as one of the statistical symbols in each state.

structures for biological sequence analysis, a growingd fiefl 2) Parameters value estimationEstimate the transition prob-
research, from human genomes to protein folding probler28]. [ ability matrix A, the emission probabilitieB, and the initial
In [28], Profile HMMs have been used for multiple alignment of probabilitiesII.

conserved sequences. HMMs have been used as well in iferrin For hoth categories we will assume that the data at hand is

phylogenetic trees [63], and in splice site detection [R&ftially composed of example sequences (training sequence), deaste
Observable Markov Decision Process (POMDP) models haye_'(,, o,...0.}, that are independent. Thus:

been used in robot planning to allow the robots to act andhlear
even if they are uncertain about their current location, ].[4® T
[66], all K" Markov model have been used to predict web surfing P(OJN) = z P(o|N) 1)
behavior. A hidden markov model was defined for each characte =1

in a text recognition application from grey level images 1. [
In [56], an HMM was used for automatic gait classification in

medical image processing. We assume the reader is famitar A g : -
HMM terms %mg definitiogs. or estimatingX to globally maximizeP(O|)). Instead, iterative

There are three basic problems to solve while applying HMMB&thods that provide a local maxima £10|)) can be used such
to real world problemgi) Evaluation: Given the observation 25 the frequently used Baum-Weilch estimation algorithm].[13
sequenced — o102 ---op, and a model\ = (A, B,II), how Besides the well known Viterbi and Baum-Welch methods [67],
do we efficiently compute?(O|A)? The solution to this problem N [70], the authors used a gradient descent method to estima
will enable us to evaluate different models and choose tis¢ bd1® HMM parameters, and a back-propagation neural netvrk t
one according to the given observation. The main issue, veenve determine the states of the HMM. In [58], associative minies
in this problem is that the hidden states tend to complicat$€d to estimate the parameters of anfé‘lf‘-order Prediction-
the evaluation. This problem can be solved using the Forvargy-Partial-Match (PPM) Markov Predictors. We will look neor
Backward algorithm [67](ii) Decoding: Given the observation Cl0Sely at this method later on and compare it to the method we
sequence = {o10s...or}, and the modeh, how do we choose Present in this work.
a corresponding state sequeftige= {q1g2...gr } which is optimal
in some meaningful sense? The solution to this problem woggd .
explain the data. An optimization criterion has to be degide>: Baum-Welch Algorithm
(e.g., maximum likelihood). An efficient dynamic progranmgi We will describe in more detail the Baum-Weltch algorithm
method, as the Viterbi algorithm [67], is used to solve thigl0]-[14], since we use it as a base against which we compare
problem.(iii) Learning: How do we adjust the model parameter®ur method. Recall that we want to estimate= (A, B,II) to
A = (4,B,II) to maximize P(O|\)? This problem is about maximize P(O|\). An overview of the iterative Baum-Welch
finding the best model that describes the observation at.haatborithm is described in Algorithm 4.
Of all the three problems, the third one is the most crucial an
challenging to solve for most applications of HMMs. The Workyjgorithm 4 Baum-Welch Algorithm
presented here focuses on this problem. -

The main problem with HMMs is that they depend on the Proceédureé FORWARD-BACKWARD(I, min._conf)
Markov property, i.e., the current state depends only on the Start with an initial modehg
previous state. In general patterns may display longer erang Compute new\ based on\y and the observation sequence
dependencies, and one needs a higher-order HMM [25] (wherep = o4, - - - op
the order denotes the number of previous states the curaet s ; _ ; :
depends on) to model such patterns. Thus, in addition to HMMSthrelfskl%gldl)Dt(hOel’?) log P(OlAo) < A (whereA is & predefined
(of order 1), there are other types of Markov models used in

Due to the complexity of the problem and the finite number
f observations, there is no known analytical method so far

prediction. For example, am—order Prediction-by-Partial Match stop

(PPM) predictor maintains a Markov model of ordgrfor all else

1 < j < m. This scheme is also referred to as Alrm-Order set)\g < A and goto step 2
Markov Model[58]. This model uses the pagevents to compute end if

the probability of next event to come. Mixed-order HMMs have
also been proposed [72]. The main challenge here is thatibgil end procedure
higher order HMMs [25] is not easy, since we have to estimate
the joint probabilities of the previous: states (in anm-order The training mechanism, step 2, of the Baum-Welch algorithm
HMM). Furthermore, not all of the previous states may predict uses the Forward-Backward algorithm [10] to compute the
the current state. Moreover, the training process is exthem expected number of times each transition or emission is,used
expensive and suffers from local optima. This leads us tsiden given the training sequence O. This computation is in thesrord
a novel approach of usingariable-orderHMMs via data mining. O(N?T). The A, IT , A and B values are iteratively computed,
The basic idea is to use data mining to mine frequent patterasid converge in a continuous space until a converging ieriter
which may be of different lengths, and then use these frequenet, typically stopping when the difference in the log ofelik
patterns as the estimates of the joint probabilities, witigh be hood [log(P(O|)\)) — log(P(O|)\g))] is smaller than a predefined
used to seed the variable-order HMM. There has been almosttheeshold A or the maximum number of iterations is reached.
work on variable-order HMMs. The closest work is that of [58]At each iteration, the log likelihood of the modzglis increased,
who proposed using frequent associations for support,demée converging the model to a local maximum. As pointed out in the
and error pruned markov models (S/C/E-PMMs). However, wseginning of this section, in a continuous-valued spaceeti®
plan to use other higher order patterns (sequences) [89]. no known method to get a global optimum, but rather a local
maximum can be reached. The values of the initial parameters
L used in the Baum-Welch algorithm, influence heavily the lloca
A. Estimation of HMM parameters maximum that the model converges to. This becomes a severe
The parameters estimation problem can be divided into tvpwoblem when dealing with large scale HMMs, which is the case
categories: in most of real-world applications, if not all of them.




TABLE X

> 1. ;= i
SUBSEQUENCES OF LENGTHL MINED BY VGS gapg > 1. Thus G; 8 ¢ — I is the only sequence that

has all consecutiveg( = 0) occurrences. With one universal
gap state7,, = 1, our model yieldsV = 4+8+4+1 = 17 states.

Index | Element | freq
; g ; Transition Probability Matrix ( A): The transition probability
3 T T matrix between the states:
4 J 1 .
L A= {alai,q)I1 <i,j < N} ®)
6 F 1 where: . .
! “ . a(gi,q5) = P(¢" = ¢;ld" = @) @)
9 B 3 gives the probability of moving from statg to ¢; (wheret is

the current position in the sequence). The probabilitiggedd on

the types of states involved in the transitions. The badigition

is to allow transitions from the first symbol states to eithies
C. Modeling: Variable-Order State Machine gap states or the second symbol states. The second symied sta

VOGUE uses the mined sequences to build a variabf@n go back to either the first symbol states or to the unilersa

order/gap state machine. The main idea here is to model e&@p State. Finally the universal gap state can go to any of the
non-gap symbol in the mined sequences as a state that em#&rting states or the intermediate gap states. We distese t
only that symbol and to add intermediate gap states betwegn &ases below.
two non-gap states. The gap states will capture the disimibu  « Transitions from First States: Any first symbol statey; €

of the gap symbols and length. L&t be the set of frequent
subsequences mined by VGS, and#ebe the maximum length

of any sequence. While VOGUE can be generalized to use any

value of k > 2, for clarity of exposition we will illustrate the
working of VOGUE using mined sequences of length= 2.
We consider the general case in the next section. fietand
F, be the sets of all frequent sequences of lengtland 2,
respectively, so thaF = F; U F,. Thus, each mined sequence
s; € Ry is of the forms; : vy — vs, Wherevy,vs € X. Let

I' = {vflvy — vs € R} be the set of all the distinct symbols
in the first position, and® = {vs|lvy — vs € F2} be the set of
all the distinct symbols in the second position, across fa t
mined sequences € . The VOGUE model is specified by the
6-tuple A = {Q, %, A, B, p, 7} where each component is defined
below:

Alphabet (X): The alphabet for VOGUE is given as:

Y= {v1, -om} 2
where |X| = M is the number of observations emitted by any

state. The alphabet’s size is defined by the number of symbols

that occur at least once in the training data, obtained asltre
of the first iteration of VGS, as shown in Table X. For our
example S in Section2.3 of Chapter2, we have nine distinct
frequent symbols, thus/ = 9.

Set of States ): The set of states in VOGUE is given as:

Q={q, - ,an}, (3)

where:

|Q|:N:Nf+Gi+Ns+Gu. (4)

Here,N; = |I'| and N5 = |©]| are the number of distinct symbols
in the first and second positions, respectively. Each freque
sequences; €  having a gapg > 1 requires a gap state to
models the gap<~; thus gives the number of gap states required.
Finally G, = 1 corresponds to an extra gap state, callatVersal

gap, that acts as the default state when no other state satisfies a

input sequence. For convenience let the partitioydbe:
Q=QfUQ;UQsUQu ®)

where the firstV, states belong t@), the nextG; states belong
to @;, and so on.

For our exampleS in Section 2.3 of Chapter2, we have
Ny = 4, since there are four distinct starting symbols in
Table VIII (namely, A, B,C, D). We also have four ending
symbols, givingNs = 4. The number of gap states is the number

of sequences of length 2 with at least one occurrence with

Qy may transition to either a second symbol states Qs
(modeling a gap ofy = 0) or to a gap state;; € Q;
(modeling a gap of € [1, mazxgap]). Lets;y :v; — vy € Ry
be a subsequence mined by VGS. lfetq!(y) denote the
frequency ofs;, for a given gap valug, and let freq;(y)
denote the total frequency of the sequence, i.e.:

maxzgap

freqi(y) = Y freq!(y) (8
g=0

Let the fraction of gap-less transitions frapto ¢; over all
the transitions fromy; to ¢, € Qs be denoted as:

freq?(j)
> freqi(y)

YEQs

The transition probabilities from; € Q¢ are given as:

R= )

R, q; € Qs
freqi(j)
a(gi,q5) = > freqi(y) S
YEQs
0,

'GQ UQu
K (10)

Transitions from Gap States. Any gap statey; € Q; may
only transition to second symbol stajge Qs. Forg; € Q;
we have: '
1,
0,

q; € Qs

otherwise (1)

a(gi, q5) = {
Transitions from Second States; A second symbol state
¢; € Qs may transition to either first symbol staje € Q¢
(modeling a gap ofy = 0), or to the universal gap state
qj € Qu (modeling other gaps). Lel' = 3" o freq(sz)
be the sum of frequencies of all the sequenceginFor
q; € Qs we have:

> freq;(y)
lgpg) = 099X g€ Qy
0.01, q; € Qu
0, q; € Qi UQs

(12)
Transitions back to first states are independeny; pfe., the

same for all;; € Qs. In fact, these transitions are the same as

the initialization probabilities described below. Theyoal

the model to loop back after modeling a frequent sequence.
Note, that we are primarily modeling the frequent sequences
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mined by VGS. However, we need to account for symbolsrobability matrix is then given as:

that may appear between the frequent sequences but are not
picked up as frequent. In a statistical model such as HMMEB =
if a position or a subsequence of positions in an observatigf e

sequence is not present, then the probability of the sequenc
with respect to the model will be very small, regardless of
how well it may match the rest of the model.

re:

b(gi, vm) = P(vmlq:) (15)

is the probability of emitting symbad,,, in stateg;. b(q;, vm)

For example, assume a model built on two frequent subsgiffers depending on whetheg is a gap state or not. Since there

quencesA — B andC — D. The sequencé’ = ABRCD

is a chance that some symbols that do not occur in the training

should be clearly identified to be a good match to the modehta may in fact be present in the testing data, we assign éhem
since both subsequences— B and C' — D are present very small probability of emission in the gap states.

in it. However, after being in the state that will generate
the symbol B we need to generate the symbal that is

not in any of the two frequent sequences. Therefore, we
need a transition to the universal gap state. However, since
R — B was not identified as being frequent by VGS
we need to assign a small probability to this transition.
Therefore, we assign an empirically chosen valug %fto

the transition from the “second states” to the universal gap e

N
state. Furthermore, sincg” a(g;,q;) = 1 we assign the
=1

j_
remaining99% to the transition to the “first states”.
Transitions from Universal Gap: The universal gap state
can only transition to the first states or the intermediage ga
states. Fog; € Q. we have:

> freq;(y)
deQf .
a(gi,q) = 09 T GE€9 gy
0.1 x et q; € Q;
0, otherwise

Since the first states can emit only one symbol, we allow
transitions from universal gap to intermediate gap stdtes,
allow for other symbol emissions. For example, assuming,
as before, the same frequent sequencesre- B and

C — D that are used to build the model. If we have a new
observation sequenc®’ = ABRFCD, clearly we need to
generate two symbols® and F, between the two frequent
sequencesi — B and C — D. After generatingB from a

+ Non-gap States: the emission probability is:

1, ¢€QrUQs
0, otherwise

b om) = { (16)

For example, the first and second states are labeled by their
emission symbol in Figure 2.

Universal Gap: For g; € Q. we have:

Jregi(vm)

> freqi(vm)

Vm EX

where¢ = 901

This means%at;m is emitted with probability proportional
to its frequency in the training data. Theterm handles the
case wheny,, does not appear in the training set.

Gap States: If ¢; € Q; its emission probability depends on
the symbol distribution mined by VGS. Lét,, be the set
of symbols that were observed by VGS in the ggpWe
have:

b(g;, vm) = X 0.99 + ¢ (17)

Z freqg(vm, ¢;)

b(qi, vm) = 921 x 0.99 + ¢ (18)
Z Z freqg(vm, qi)
U7n62qi g=>1
wherec = 301

g [

second state, we can gener&tdrom the universal gap state Note that the above summations are for gap rangess

however we need to generate one more symbolf’ does

not belong to any of the frequent sequence before generat®ite

[1, mazgap], since gapy = 0 is treated as a direct transition from

state to another. Note that the values 0.99 and 0.01 above

the other frequent sequence — D. Therefore there is a arise from the pseudo-count approach used for previousigem
need to transit from the gap state to an intermediate g&pmbols. _

state since the first and second symbols can only generatén our running example, for the symbo}, = C' and the gap
symbols that belong to the frequent sequences. Moreovgiate g4 between the states that emit and B, we have the
since generating” after R was not identified as frequent byfrequency ofC' as 2 out of the total number (5) of symbols seen
VGS, we need to assign a small probability to the transition the gaps (see Sectiah3 of Chapter2). Thus C’s emission
from the universal gap to the intermediate gap states. Tigsobability is% x 0.99 + 0—'2—1 = 0.385.

probability is at most 10% (empirically chosen) across all

the gap states. In the remaining 90% cases, the univer&dp Duration Probabilities (p): The probability of generating

gap transitions to a first state with probabilities propnél
to its frequency.

Figure 2 shows transitions between states and their
probabilities in VOGUE for our running example. Note,
that each gap state’s duration is considered explicithhiwit
a state. The notatiom;, for examplegs, in the graph is
the name of the gap state between the elements of
sequence, in this case — D, and not the value of the gap.
The symbol states, on the other hand, are named after
only symbol that can be emitted from them, for examgle
is theonly symbol that is emitted from the first symbol state.

p(ai,g9) =

fie

a given number of gaps from the gap stafgsis given by the
gap duration probability matrix:

p=A{p(a,9)la € Qi, g € [1, mazgap]} (19)

Let ¢; be the gap state between a statec Q; and a state
€
ation probability is proportional to the frequency ofebving
%given gap value fog, i.e.:

Qs corresponding to the sequencev; — vy € F,. The gap

freq] (y)

> freg (y)

g€{1,--- ,mazgap}

; q; € Q;
(20)

Symbol Emission Probabilities 8): The symbol emission prob- 1, ¢ € Q\Q;.

abilities are state specific. We assume that each non-gép sta )

(¢; € Q; UQs) outputs only a single symbol, whereas gap staté® our running example, for the gap state between the states
(¢; € Q; U Qy) may output different symbols. The emissiorthat emit A and B, we havep(g4,2) = % = 0.67, since we
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Fig. 2.  VOGUE State Machine for Running Example

observe twice a gap of 2, out of three occurrences.

Initial State Probabilities (7): The probability of being in state
q; initially is given by = = {n(i) = P(¢;|t = 0),1 < i < N},
where:

> freaiy)
€Q
xi) = 09x T—Lr—— g eQy 1)
0.01, i € Qu
0, qi € QiU Qs

We use a small value for the Universal Gap state as opposed to

the states irQ s to accentuate the patterns retained by VGS while

still providing a possibility for gaps after and before them

Note that the value$.99, 0.1, 0.01, etc., used in the transi-
tion and emission probabilities, are obtained by using geeu
counts [17] to allow for symbols that are unseen in the tragjni
data set.

D. Generalization of VOGUE té > 2

Here, we generalize the model ko> 2. Let S be the set of
subsequences mined by VGS, and#ebe the maximum length
of any sequence. We denote kyseq a sequence of length,
such asv;, ,vi,,- - ,v;,. Let Ty (j) be the set of symbols in the
i position in all subsequences s € S, of length up tok,
j=1,---,k—1,; T'y(k) is then the set of different last symbols
in all subsequences of length up #oFinally, let.S(j) be the set
of subsequences i of length at leasy.

The VOGUE’s state machine is denoted asnd is made up
of the 6-tuplex = {Q,V, A, B, p, 7} where each component is
defined as follows:

e Q=1{q1, - ,qn} — the set of states of VOGUE, whené

is the number of states of VOGUE such that:= Ny +
Gi+- -+ Nj—1+Gi—1+ -+ N + G, where:

- N, =| Tyx(%) | ,i=2,---,k — 1. This denotes the
number of distinct symbols in positioh over all the
sequences. Thusv; is the number of distinct first
symbols andV,, is the number of distinct last symbols.
G; (for i < k) is the number of distinct pairs of symbols
in positions: — 1 and:. This corresponds to the number
of gap states required between states at positichs
andq.

G, = 1, corresponds to an extra gap state, called
Universal Gap state, that will capture elements not
captured by any of the above.
For convenience we let:

- 2(Gy) =3 ; (N + Gy) for all j € {2,--- ,k} and

>-(G1) = 0.

- > (N;) = Zl<j(Gj) + N; forall j € {1,---,k}.

The states of VOGUE are, then, given as follows:

©0.01

— For} (N;) <i <Y (Gjy1), ¢; corresponds to the gap
of variable length between thig—1)*" and;j" elements
in the subsequenceg, € {1, -,k — 1}. These states
will be called “Gap” states.

For >>(G;) < i < >(Nj), ¢; corresponds to the
elements in'y(5), 7 € {1,---,k}. These states will
be called “Symbol” states.

Fori =>"(Gky1), gi corresponds to the Universal Gap
state.

V = {v1,---vp} — the alphabet of the symbols, wheké

is the number of observations emitted by a stat&int is

the number of different subsequences of length 1 retained
by VGS, unless stated differently by the application at hand
A = {a;} — the transition probability matrix between the
states inQ. For convenience we let:

— R,;(m): frequency of subsequenees € S, wherem is
the index of the symbab,, € T';(j) at the;*" position
of s.
W,q(m,m’): frequency of subsequenees € S, where
m andm’ are, respectively, the indexes @f, andv,,,..
vm is at the;*" position of s and,,,’ is at thej + 1"
position of s.g is the value of the gap between thé
andj + 1*" positions ofs, g € {1,--- ,maxzgap}.
Each element of the matrix is given ag = P(q+1 =
llgt =4), for 1 <i,l < N.

—if 32(Gy) <i < 32(Nj), j €{1,---,k—1}, (Non-Gap

(Symbol) states):

Z;n:azgap Wig(m,m') . .
Wzlsesfjtsxm) y (NG <1< 2 GG+);
W SR it S2(Gj1) <1< S(Nj);

0, Otherwise;

(22)
wherem andm’ are the indexes, respectively, of sym-
bols v, and v,y € V such that3v; € T'y(j) and
Jup € Tp(G + 1) (vp = vm and vp = wv,,), and
(' =i->(Gy) andl” =1~ 3(Gjt1)).
if Z(NJ) <i< Z(GjJrl)l J€ {17"' k= 1}1 (Gap

states):
0.9 if 33(Giy1) <1< 3(Nig);
ay = Ngﬁiﬂ !f > (Ng) <1< 3(Gry)
N1 if >2(G1) <1 <30(N)
0, Otherwise;

(23)
if S (Gk) <i <> (Ng) (last Symbol states):



ZseSR j(mi)
ZmEFk(J) zses Rsj(m)
if S(G1) <1 <3 (Ny);
0.Lif I =3 2(Grq1);
0, Otherwise;

x 0.9,
(24)

a;p =

whereR,;(m;) is as defined earlier and,; is the index
of symbolv,,; € V such thativ; € Ty (5): vy = vm,,
andl!’ =i — > (G;).

if i =5 (Gry1) (Umversal Gap state):

ZSES st (mi)
> omer, () 2ses Rsi(m)

if S°(G1) <1< 3(N1);
S i (V) <1< 3 (Gjya), § # K

0, Otherwise;

x 0.9,

aj =

(25)

12

TABLE XI
VGSWITH k = 2, maxgap = 2 AND min_sup = 2

Subsequencdg freq | g=0 ] g=1] g=2
A— B 4 1 1 2
B— A 3 1 1 1

where freqgap;(g) is the frequency of;, s; € S(j) and
l=1i—-3(G;) , such that the gap between th@ and
the (j + 1)*" elements is equal t6g”.
o m={n(i) = P(q0 = i),1 <4 < N}- the initial probabilities
are estimated as follows:

<z

Z.SES Rsj(m;)
meTy (4) ZS€S R (m)

) x 0.99,

m(i) = if 32(Gj) <i<3Nj), =1, (31)
0.01,if i = 3 (Gry1);
0, otherwise ;

Note: Since each gap state’s duration is considered explicitly

within a state, there is no self-transition to any state. The
state transition probabilities to the same state is, then,

a;,1 <i< N, are setto 0.

B = {bj(m) = P(ot = vmlgt = 3),1 <i < N andl <
m < M} - the emission probability of state It is defined
as follows:
= if >2(G;) <@ < 32(N;), j € [1, k] (Non-Gap (Symbol)
states):
1,if Jv; € Th(j) s.t:v; = v @and
bi(m) = l=i-Y(Gy); (26)
0, otherwise;
—if 35(N;) <i <3 (Gjy1), J € [1, k] (Gap states):
‘ _ ZMAXG'AP fregg(m,l)
bi(m) = <zvmew @ﬂZﬁi‘}XGAPfrqu(m-,l)]) X099 +¢
(27)

where fregqy(m,l) is the frequency ofv,, such that
Um € \I’j(sl), S| € S(]) andl =i — Z(GJ), c= OG—()Jl
— if S°(NVg) < i <33 (Ggy1), (Universal Gap state):

) fregi(m)
bi(m) (—vaev Freq(m)

where freq(m) is the frequency of.,, v € V and
v is also thel-seq retained by VGS/ = %01,
Note: We will consider that each state, excegnp states,
generates either only one symbol from the alphabaet all

) x099+c  (28)

eq=
times or generates an element from a subclass of symbols

of the alphabet.
e p={pig =,1<i<N,1<g < mazgap} - the gap states
duratlon probablhty matrix:

— if 32(G5) <i <Y (Nj), j € [1,k] (Non-Gap (Symbol)
states)’ anaZ(Nk) < i < Y (Gky1) (Universal Gap
state):

1, if g=0;
Pig = { 0, otherwise; (29)

—if 32(N;) <i < 3(Gjy1), J € [1, k] (Gap states):

M
)> freagapi(g)  (30)

g=1

pig = freqgap(g

where Ry;(m) is as defined earlier anek, is the index of
symbol v,,; € V' such that3v; € Ty (j): vy = vm,; , and

=i-3(G)).

V. VOGUE VARIATIONS

Here, we describe two variations of VOGUE, namely,
Canonical VOGUE C-VOGUE), and Knowledge VOGUE K-
VOGUE). C-VOGUE intends to decrease even more the state
space complexity by pruning frequent sequences mined by VGS
that are artifacts of other “primary” frequent sequencésist
pruning the states and transitions from and to those states.
Therefore further decreases the state space complexitth®©n
other hand, in some domains, such as in biological sequence
analysis, the patterns that are supposed to be frequent do no
have an exact match in all the sequences in the original data
set. In fact, some elements of these patterns could be etitfer
however, they share some common characteristics and thad ca
“similar”. Therefore, the sequences in the data set that have a
sequence of elements that are not similar but share some @omm
characteristics could be incorporated into the model. KSUE
is an extension of VOGUE that takes into consideration these
constraints.

A. C-VOGUE: Canonical VOGUE

Some patterns mined by VGS are artifacts of other pat-
terns. For example, let us consider the sequertte =
ABACBDAEFBGHAIJB. Using VGS with mazgap 2,
min_sup = 2 andk = 2, the frequent subsequences are shown in
Table XI. For the frequent subsequende— B, its frequency is
fre

Once with a gap of length: that is (AB).

« Once with a gap of length: that is the subsequen¢d C B)
where A is followed by B but with one element in between,
namelyC.

o Twice with a gap of length2: that is the subsequences

(AEFB) where A is followed by B with two elements

and F, between them, and the subsequefdé.JB) where

A is followed by B with two elements] and J, in between.

On the other hand, the frequent sequeite> A was mined
by VGS as being frequent under the constraimtgzgap = 2,
min_sup = 2 andk = 2. In fact, its frequency idreq = 3:
« Once with a gap of length: that is the subsequen¢® A)
where B is followed directly by A.

« Once with gap lengtht: that is the subsequendgDA)
where B is followed by A with one element,D, between
them.
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TABLE Xll
THE eid OF THE DIFFERENT ITEMS INS

item (Sid, Eid)

A [ (L), (1,3), (1,7), (1,13)
B[ (1,2), (1,5), (1,10), (1,16)
C (1,4)

D (1,6)

E (1,%)

F (1,9

G (1,11)

H (1,12)

T (1,14)

J (1,15)

« Once with gap lengtf2, that is the subsequend®GH A)
where B is followed by A with two elementsG and H in
between.

This frequent subsequence seems to be legitimate under VGS
constraints, however, all the elemenis,and A4, involved in this
sequence are already in the frequent subsequéneceB. Indeed,
this makesB — A not a new pattern but arattifact” pattern of
A — B sinceA — B is more frequent thalB — A. Moreover,
the position of the items involved i — A are the same as
those of A — B. For instance, in the subsequerceB), one of
the subsequences in the count of the frequent sequéneeB,
the positionor eid of A is 1 and theeid of B is 2. While for the

Fig. 3. VOGUE State Machine before pruning the artifat -~ A” for the
example sequencg.

TABLE XIlI
VGSWITH k = 2, mazgap = 2 AND min_sup = 2 FOR SEQUENCES’

frequent sequenc® — A, in the subsequenc@BA) the eid of SUb T — 0T =1 —)
B is 2 and the theeid of A is 3. Therefore, theB that is at the UAsiqu;nce '§q g 1 ? 1 g T
eid 2 is the same and hensharedbetween the two subsequence B A ) 1 0 1

(AB) and(BA). Table XII shows the items it5' and theireids.

The items in S that are shared between A — B
and B — A in the format of (items,eid) are
{(372)7 (A73)7 (375)7 (A77)7 (37 10)7 (A7 13)} Therefore’ Ca C Cp and (||) 3 (e/,eid'), (e”,eid”) € CP SUCh thateid/ <

the subsequenceBA) is an artifact of (AB) and (ACB). The

. ' id < eid’, where (e, eid) € (,. This constraint is necessary. As
subsequencéBDA) is an artifact of(ACB) and (AEF B). The A (¢,eid) € Ca y

\ - consequence of this constraint we have the following cardit
subsequenceBGHA) is an artifact of(AEFB) and (AIJB).  condition 1: The artifact patterns are less frequent than the
Hence, the frequent subsequenge- A is an “artifact’ pattern  corresponding primary ones. In fact, for our running exampl
of the “primary” pattern A — B. _ _the frequency of therimary patternA — B is freq = 4, while
Figure 3 shows the structure of VOGUE State Machine witfpq frequency of thartifact patternB — A is freq = 3.
N =7 being the number of states for our example sequence. In, the case of when the mined patterns by VGS are of length
fact, N, = 2 since there are distinct starting symbols in Table . _'5 the following condition is a consequence of the constraint
VIl (namely A and B). We also have2 ending symbols giving o artifact patterns:

(namelyA and B)N; = 2. The number of gap states is the number' cqngition 2:The elements of the primary and the artifact

of sequences of lengththat has at least one occurrence with 93Batterns arerhirrored”. In fact, let — 3 be the primary pattern

g > 1, thus,G; = 2. Since we have one universal géh, = 1,
our model yieldsN = Ny + G+ Ns + Gy =2+24+2+1="T.
We can see clearly that the patdls— B and B — A can be
merged into one patM — B and the information of gags

andx — v be the artifact pattern. On one hand, the first element,
K, in the artifact pattern is the same as the second last etegen
in the corresponding primary pattern € ). On the other hand,
the last element, of the artifact pattern is the same as the first

and g3 can be also contained in one gap state instead of WQement,, in the corresponding primary patterm £ v). In fact,

In fact, for our example, by eliminatingg — A, and hence the i, oyr running example, the first element of the artifact quatt
states associated with the path— A from the frequent mined p " 4 is B, which is the last element in the corresponding
sequences to build the Variable-Order state machine thé@umpimary patternd — B. Likewise, the last element of the artifact
of states drops fronV = 7to N = 4. By doing so, we reduce the hatern B . 4 is A, which is the first element of the primary

state space complexity significantly while conserving teecage pattern 4 — B. Therefore, we consider that the artifact pattern
and accuracy as we will show through experimental results ¥ 4 'is a mirror of the primary patternt — B.

Chapters. ) . . . However, if these two conditions hold they are not sufficient
After showing the benefits of pruning the states associat#d Wrpe necessary condition is the constraint defined earliagt,

the artifact patterns, we need a special pruning mechanism & s assume that the data set in our example consists o&the n
separate primary patterns from artifact patterns. sequence:

We define the constraint that distinguish thifnary” patterns

from the artifact as follows: S = ABRSTACBVDWAEFBGHBIJAKLMBA.
Definition: Let ¢, = {(e,eid)|e in Sp} be the set of pairs,

(e, eid), of elements: in the “primary’ S, and their corresponding Then the frequent sequences ate- B and B — A under the

eid in the original sequencs. Let (, = {(e, eid)|e in S,} be the  conditionsmin_sup = 2, maxzgap = 2 andk = 2, as shown in

set of pairs,(e, eid), of elementse and their correspondingid  Table XIII. ,

in the artifact patterns,. Therefore, the third constraint is that The frequency ofA — Bis freq= 3:

for a candidate sequence to beaatifact” pattern to a primary’ « Once with a gap of length: that is the subsequencel B)

pattern the following conditions have to be satisfied as :w@ll where A is followed directly by B in positions1 and 2
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TABLE XIV

respectively in sequenc¥ . .
p y q THE eid OF THE DIFFERENT ITEMS INS’

« Once with gap lengthl: that is the subsequendedCB)
where A is followed by B with one element(, between
them.

« Once with gap lengtl?, that is the subsequencel EF' B)
where A is followed by B with two elementsE and F' in
between.

While the frequency ofB — Ais freq = 2:

« Once with a gap of length: that is the subsequen¢® A)
where B is followed directly by A in the positions25, 26
respectively.

« Once with gap lengtf2: that is the subsequend®GH A)
where B is followed by A with two elementsG and H,
between them.

Although B — A is amirror of A — B and the frequency
of B — A is freq = 2 which is less than the one of — B
(freq = 3), B — A cannot be considered an artifacts pattern of
A — B. This is because the positions erd of the elements
A and B in A — B are different and far from those iB —
A. Therefore,B — A is not in the span ofA — B or vice
versa. Indeed, as shown in Table XIV, the elemefitand B in
A— B (CP = {(A7 1)7 (A> 6)7 (A7 12)7 (B7 2)7 (B7 8)7 (B7 15)}) all
have eids that are different and less in value than the ones in
B — A (¢ = {(4,21),(4,26), (B,18),(B,25)}). Note that we reproduced. In fact once in statg that produces3, we can go
are considering patterns withraazgap = 2 that is why(4,21) directly to staten; that producesA. If there is a need to produce
(B,25) are not in¢4_.g because in this casé is followed by some elements betwedB and A, then there is a possibility to
B with 3 elements in between. Therefore, the two sequences #ansit from staten, to the universal gap;, and produce an
not interleaved. On the other hand, as shown in Table Xlllier t element or several elements, then transit to statéo produce
example sequencg, the set, of the pairs of elements and theirA.

item (sid, eid)
(1,1), (1,6), (1,12), (1,21), (1,26)
(1,2), (1,8), (1, 15), (1,18), (1, 25)

1,6
1,8

T,10

N7 Nub? N Nau? Nius? N7 Neusb? A Nab? (N’

»—two‘%wwwww»—w—-»—w—w—n

|~
= =] =] =

= <N v | = e R~ T ) | | O |
OGN E EE D

—
[
—|

eids of B — A is: The pruning process is added between Bagtern Extraction
and theData Modelingsteps in VOGUE. We call this extension
Ca ={(4,3),(A,7),(A,13),(B,2),(B,5),(B,10)} of VOGUE, Canonical VOGUE (C-VOGUE). All the steps in
and the one ofd — B is: C-VOGUE except the Artifact Pruning process, are the same

as in VOGUE. The mined frequent sequences from VGS that
¢ ={(4,1),(4,3),(A,7),(A,13),(B,2),(B,5), (B,10), (B,16)} are pruned satisfy the following constraints that sumneattze

. We see clearly that, C ¢p. Moreover,B in A — B has an observations discussed earlier:

eid that is greater than any ones identifiedcin that is (B, 16). 1) The artifact sequence iswirror of the ‘primary’ sequence.

Likewise, the elementd has an extreeid in A — B, which 2) If freq, is the frequency of the artifact sequence

corresponds t@A, 1) the smalleseid value in S. the frequency of the primary sequence, tffieg, < freg,.

3) Ca C ¢p, and3 (¢, eid'), (", eid”) € ¢p such thateid’ <
eid < eid” where (e, eid) € (a.

B. K-VOGUE: VOGUE Augmented with Domain Specific Knowl-
edge
In some domains such as in biological sequence analysis [24]
[26], the patterns that are supposed to be frequent do not
have an exact match in all the sequences that belong to
the same family or class, but instead we need to allow
inexact matches among some elements. These elements,
however, share some common characteristics and thus called
“similar”. In fact, in proteins, the motifs (patterns or frequent
subsequences) that characterize a family or class of peotei
is a pattern that is found in all the sequences where some
elements could be different. In this case the pattern or fmoti
looks more like a grammar. For example, given the motif
P ={G[IVT|[LV AC||LV AC|[IVT|D[DE][FL][DNST]},
the  subsequences: (GICCIDEFD), (GVCLIDEFD),
(GVCLIDEFD), (GVVCIDEFD), and (GVVCIDEFD)
can interchange[/V'T] means that eithef, V/, or T could be
found. The elements that are grouped together are in general
amino acids that have similar structure. For exampleand V/
belong to the same subgroup, thah@n-polar andhydrophobic
Fig. 4. C-VOGUE State Machine after pruning the artifa@® “> A” for ~amino acids group [52].
the example sequencg Regular methods that look for exact matches in subsequences
to declare them frequent will miss a pattern such as the motif
Figure 4 shows the new Variable-Order state machine that Therefore, there is a need for methods that allow for stubsti
results from this pruning. The path corresponding to thdaatt tions among similar elements to capture such patterndsndi
patternB — A was pruned. However, the path— A can be still bioinformatics, substitution matrices, [7], [27], haveebeused
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to estimate the rate at which each possible element in a seque respectively. Then the emission probability from state
changes to another element over time. Substitution matiéce q1 for I is b(q1,l) = % = % = 0.54, for V
used in amino acid sequence alignment, [18], [57], [76],,[80 is b(q1,V) = 0.36, and for T is b(q1,T) = 0.09.
where the similarity between sequences depends on theiomutat On the other hand, for any symbe}, € >>\C; its
rates as represented in the matrix. Aligned sequencesacalty corresponding emission probability $q;,v,m) = 0.
written with their elements (amino acids) in columns, anggga In this case, the VG-Viterbi will be used directly on
are inserted so that elements with identical or similar abiers the original testing data set with no replacement.

are aligned in the successive columns.

Thanks to the adaptability of VOGUE, it can be extende Svmbol clusteri
to accommodate inexact matches. We will extend VOGUE & ym 0 FUS erlng. ]
allow for domain knowledge specific information to be taken This section describes the clustering method that we use for
into consideration during the pattern extraction and theleting clustering the symbols that will be used in K-VOGUE. Somesm

process. The extension of VOGUE that we propose in thisaectithe clusters of the symbols are available from the experhén t
to allow for substitutions among similar elements is called domain at hand and sometimes they are not. In the latter case

KnowledgeVOGUE (K-VOGUE). where the information from the domain expert is not avadable
The main extensions made to VOGUE to allow for substitutiorgan use a clustering method to get the cluster from some gomai
are as follows: information. K-means is one of the most popular clustering

1) Get the clusters of symbols used in the data set from tRJOrthms in data mining. A major drawback ©o-means is that
domain expert. Otherwise, cluster the alphabet symbats i} cannot separate clusters that are non-linearly semaiabhput
clustersC; based on similarity depending on the problenyPac®: 'B rlnarll[yr/] ree}I v:orld prolt()jlegns whtalre W? need tqbglau?ter
domain at hand using the domain knowledge. The clusterifigf, SYMPO!S, the Clusters could beé non-inearly Separake
method we propose is described in some more detail fs (N€ case of amino acids. Therefork:means, as it is, wil
Section V-C not be a good clustering algorithm. Two recent approaches ha

2) Replace each element in the data set that belongs tcgraerged for tracking the problem. One is kerfiemeans, where,
clusterC;, by a symbole; that represents the cluste. efore clustering, points are mapped to a higher-dimeasion

Therefore, the symbol alphabet now becomes thé Yet- feature space using a nonlinear function, and then kérmeéans
{ci,i{1 - L}}, where L is the number of clusters; partitions the points by linear separators in the new spabe.
Therefore the alphabet symbol is no longer the origingEcond approach is spectral clustering algorithms, whsehthe
symbol sefs” but the new symbol alphabgt’ igenvectors of a similarity matrix to partition pointsardisjoint
3) Mine the data set for frequent subsequences using V(glﬁsters, with points in the same cluster having high sirtyla

: . } d points in different clusters having low similarity. $pal
chordlng to a user definedin_sup, maxgap and length clustering has many applications in machine learning,@spbry

: . . . data analysis, computer vision and speech processing [&H],
4) Modelmg the mme_d patterns could be done |n_two WaySyost techniques explicitly or implicitly assume a metric ar
a) Build the variable-order gap state machine directlyimiarity structure over the space of configurations, whi&then
from the mined patterns by VGS with the symbolseq by clustering algorithms. The success of such algosith
stateng and Qs still emitting only one symbol gepends heavily on the choice of the metric, but this choice
with probability 1. In this case, the symbols are thes generally not treated as part of the learning problem.sThu
representatives; of the clustersC;, i € {1,---,L} time-consuming manual feature selection is often a neoessa
and not the original alphabet symijpl. For example, precursor to the use of spectral methods. Several recertrpap
let's consider the cluster that has been identified 3gve considered ways to alleviate this burden by incorpayat
C1 ={I,V,T} and the representative symbolds= prior knowledge into the metric, either in the setting of K-
I. In this case, the symbol stat€g; and Qs, in means clustering [79], [84] or spectral clustering [86]1][9
the variable-Order state machine, produce only ongeyeral algorithms have been proposed in the literature], [46
symbol. That symbol is the representative symbol q&g] (73], each using the eigenvectors in slightly differevays.
one of the cluster®;. In our example, one of the A popular objective function used in spectral clusteringtds
sates inQ, emits I the representative of the clusterminimize the normalized cut [73]. The-way normalized cut
C1. Therefore, for thdnterpretationstep we need to nhroplem is considered in [87] to partition the data set into
replace the elements in the testing data set with t'%«‘ clusters. We will describe in some more detail thavay
cluster representatives, i € {1,---, L} then use VG- normalized cut spectral clustering since it is the one theill
Viterbi with the modified testing data set. be using as clustering technique. If we represent the datsose
b) Build a variable-order gap state machine that allowse clustered as a gragh = (V, £), whereV is the set of vertices
several emissions from the symbol stafgs andQs.  yepresenting data points; is the set of edges connecting the
In order to build the variable-order state machine, Wgertices indicating pair-wise similarity between the gsinThe
use the frequent sequences mined by VGS from thgsfinition of a “good” clustering is that points belonging ttee
modified data set,but the only difference is that thgame cluster should be highly similar while the points bgiog
state symbol), and Qs can emit any symboky., o different clusters should be highly dissimilar. Thenresent
from the corresponding clustéy, rather than emitting the similarity graph as a matrix called edge similarity matrix,
only one symbol from the modified symbol alphabehssymed to be nonnegative and symmetrica I |€], then A
22 In our running example, a state @, can emit s any, x n matrix andA,; is the edge weight between vertex
any symbolv,, from C; = {I,V,T}. The emission and;. The eigenvalues and eigenvectors of the matrigrovide
probability in this case, is computed as follows:  global information about its structure. Let's consideand « as
two subsets oV, alink is defined as:

fregi(vm)
2ovec, freai(vm) link(u,0) = 3 A, ) (33)
Note that only the symbols belonging to the cluster i€u,jEv

C; will be emitted. The symbols from the alphal}el  Then the normalized link-ratio of and v is:
that do not belong to the clusté; will be emitted

with probability 0. For example, let's assume that
the frequency ofl, V, and T, were 6, 4, and 1

normallinkratio(u,v) = % (34)
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The k-way normalized cut problem is to minimize the links in Note that:
a cluster relative to the total “weight” of the cluster. Hemway

partitioning of the vertices, solving the following probieis of N )
interest: > (i) =1 (39)
=1
k
.1 , , Now the most likely statey at timet¢ can be solved using:
min 231 normalinkratio(Vj, V\V;). (35) +:(i) as follows: y eyt g
j=
This problem was relaxed in [87] by the following spectral %= arglrgn%XNht(z)]’ l=t=T. (40)

relaxation: LetD be the diagonal matrix wher®;; = Zj Agj.

Therefore, the normalized cut criterion is equivalent to: Although choosing the most likely state for each titr@ppears

to maximize the states that will explain the observatiorusege
T O, this could result in a problem since it looks at the mostljike
max Etmce(z AZ) (36)  state at each time and ignores the probability of occurrence
. o ~of sequences of the states. For instance, if a model has some
whereZ = X (X7 DX)~!/2, andX is annxk indicator matrix transitions with zero probability between some statesy te
for the partitions andz* DZ = I. optimal sate sequence could be an invalid, since the tramsg
If we defineZ = D'/2Z and relaxing the constraint tha not possible. To solve this problem, the optimization sticog
is an indicator matrix, then the problem becomes a maximoizat on the state sequence or path. This is equivalent to maxigizi
of the trace ofZD~Y2AD~1/27Z where the constraints og P(Q,0 | A). The most widely used method to solve for this
are relaxed such that” Z = I,.. This can be solved in turn by optimization problem is the Viterbi algorithm [38], [78], a
setting the matrixZ to be the topk eigenvectors of the matrix technique based on dynamic programming.
D~Y/2AD~1/2 Therefore the clustering algorithm is described For VOGUE, we can use the same concept to answer the
as follows: question of interpretation. However, because of VOGUEIigue

1) p ina: Construct th led adi matri structure and needs, we modified the Viterbi algorithm todien
) Pre-processing: Construct the scaled adjacency matix o notion of duration in the states. This is very importante

D~Y2AD ,1./2 VOGUE’s gap states have the notion of duration. This changes
2) Decomposition: the search for the optimal path to traverse the model's stage
« Find the eigenvalues and eigenvectorsAof opposed to a regular HMM. We call this new proposed algorithm
« Build embedded space from the eigenvectors corres, Variable-Gap Viterbi (VG-Viterbi).
sponding to thek largest eigenvalues. The remainder of this chapter is organized as follows: first w
3) Grouping: Applyk-means to reducedx k space to produce give a description of the Viterbi algorithm since it is theslsafor
L clusters. our VG-Viterbi. Then, we describe our proposed method, VG-
Viterbi.

VI. DECODING AND INTERPRETATION

After extracting the patterns and modeling the data, theahod®: Viterbi Algorithm
is ready to be used talecodeor interpret new observation  Finding the best sequence of statgs for the observation
sequences to answer some questions. For instance in thandomeaquenceD = {oj02---or} given the model), in the Viterbi
of biological sequence analysis, there is a need to knowhehnet algorithm [38], [78], is equivalent to solving:
or not a protein shares similar properties with a number bé&iot
proteins. This is equivalent to asking if that protein camgathe gk =arg mgxP(qM,O) (41)
same patterns as the proteins belonging to the same fanaity th ] )
is summarized in the model. Another question, in the doméin Wheregx = {41, 43, -- ,¢7}. Now we need to define the highest
image segmentation, could be finding the “best” segmemtatfo Probability along a single path, at timewhich accounts for the
scanned images of printed bilingual dictionaries [47] agaia first observations irO and ends in state; by the quantity:

built model. . _ 0t(i) = max P(qiq2---qt =1,qt4+1 71,0102 - 0t|A)
These questions are equivalent to finding the best statesegu 1q2+ Qi1 » At ’
in the model. This problem is referred to in HMMs [67] as the (42)

decodingproblem. This problem is difficult to solve since it hasBy induction:

several possible ways of solving it. In fact, finding the betste ) .

sequence is equivalent to finding the optimal state sequirate Sr1(i) = [m?x St(d)aiz] - bj(or+1)
will decode or interpret the new observation sequence.€fboe, ) .
there are several optimality criteria. One possible sofutiould 1O retrieve the best state sequengg the arguments which
be to choose individually the most likely states. Let the Maximize Equation 43 need to be accounted for emehd ;.
probability of being in state; at timet, given the observation This can be done by using:

sequence, and the model, be defined as follows: e(j) = arg max [6:-1(i)ai;] (44)

(43)

(i) = Plgr = 5il, ) G The procedure for finding the optimal path (sequence of State
The partial observation sequeneg; - - - o; accounts for (i) that describes the observation seque@ge[78] is as follows:
from the forward-backward algorithm, see Section2 in Chap- 1) Initialization:
ter 3. On the otherhand, the remainder of the observation se- ) )
quence, o; 410442 - - - o, accounts forp:(i) given states; at 01(i) = mibi(01),1 <i < N (49)
time ¢. Therefore, Equation 37 can be in terms of the forward- (i) =0 (46)
backward variables as follows: '

t(l) _ O;;Egﬁtil)) _ at(i)ﬂt(i) (38)

2) Recursion:

04(3) = x [6i—1(3)a;;]b; L 2<t<T, 1<j<N
gﬁ at (1) B (4) o(0) = max [0r-1(D)aslb; (or) J(M)
=1
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Pi(j) = arg max [6;—1(i)a;;], 2<t<T, 1<j<N Applying the “Markovian” assumption, the current state de-
IsisN (48) pends only on the previous state, therefore we obtain :

3) Termination: 8@ = max P(o1,--+ ,0t—g, 51, »8r—2
* — . ) 7‘,,75..7 e S ) I gr> I ) )
Pt = e r (D) (49) oo s
. , 915 5 Gr—1 | Sr—1=1%,A)
q = arglgli%XN[ciT(z)]- (50) P0r_g, 41, 01,50 = jogr | Sp_1 =1, A)
4) Path (state sequence) backtracking: Plsr—1=112) (57)
@ =1 (gt t=T—-1,T—-2,--- 1. (51) By combining the first and last terms, and using Bayes’ rule on
the second term in Equation(57), we obtain:
B. VG-Viterbi: Variable Gap Viterbi o(y) = o max P(o1, - ,0t—g.,51, ", Sr—2,
b7 ]y815 " s Sr—
Once VOGUE is built to model a data set, and given a new g 917,---1,“4 ?
sequence of observatiots= o105 - - - o, there is a need to know Sp—1=1%,01, " yGr—1 | \)
wh_et_her this sequence belongs to the same class/familyeof th P(0t—g, 415" 101, Gr | 87 = J,$r—1 =i, \)
training data sequences. In other words, there is a neettipiat Plsr =7 | $p_1=14,)))
the new sequence based on the built makelThis problem is " ’ (58)

equivalent to finding the best sequence of states from thehlod | a5 assume that the duration distribution of a state is in-
and gap state duration length that will describe the newessopI i

in an optimal and meaningful way. That is finding a sequence @¢Pendent of the observations of that state. Si}’lﬁ‘fgh =

statesqx = {q1,¢5,- - , g7} from the modelx such that: min(t, mazgap) theng, < min(t, maxgap). Moreover, since the
g+ = argmax P(g|), O) (52) Svtésgg\{g}ir?ns are independent from each other given tregiesst
q .

This is equivalent to finding the most probable path to bes.(j) = max 0t—g. (1) - P(sr =7 | spr—1 =1, A)
traversed in\ that would produce). The algorithm that is mostly gr<min(t,mazgap)
used to solve this problem is the Viterbi algorithm [38], 78 7 .
Due to the unique structure of VOGUE, where gap states have a - Plgrlsr=532 - [ 1I P(os | sr = j, \)]
notion of duration, we adjusted the Viterbi algorithm actingly. s=t—gr+1
We will call this method Variable-Gap Viterbi (VG-Viterbi)Ve ) t
start from the basic formula in Equation52 that is used ireNAt o Ot—g, (1) - Bij - Pig, - | _tl_[ +1bjs]
Algorithm and adjust as follows: ‘ = 59)

a) Definition: Let &;(;j) be the highest probability path thatrqr simplicity we denotey, by ¢, then we get the following
produces the subsequen@g = o0z - - - o, and terminates in state ygcyrsive relationship:

j at timet:
t
0t(j) = max Plor, - or,q1, ,@—1,00 =)  (53)  5,(j) = max 81—g(i) - Bij - pig- | T[] bys) (60)
Qg1 g<min(‘t,1rlw,mgap) ’ s=i—g+1
Equation( 53) is equivalent to: 7
. where
5t(]): maX P(Ol7"' ,0t,q1 = - = (g = S1, .
TS S B, = { a;j, it g < min(t,maxgap) (61)
Qgr+1 = """ = Qgi+gs = 52, " t anj, if g=min(t,mazrgap) ort=1
q1+rf o7 qhil P [ A) The initialization for VG-Viterbi is:
h=1 L= e
| | s ) ={ o) oo (62)
whereg,, € {1,--- ,maxgap} is the duration of staying in a state. 0, otherwise
The maximum of the probability in Equation(54) is taken such kN
T . s | =
that > g, = min(¢, mazgap), sp, € {1,--- ,N} h=1,---,r, Yo(j) = { f) otﬁerwise (63)
h=1 )
sp# si41,0=1,--- ,r—1andl <r < min(¢, mazgap). i . . . . ]
if we omit the gs from Equation(54): Thle)relfr?i;?a”\lz(zti\g;?rb| algorithm is defined as:
5: (1) = P ves ce _1=1 . .
t(.]) gr,l#JI?laX Srs (017 ,O0t, S1, ;Sr—1 1, 5 ( ) 3 17 if ] - N (64)
gt . 07 =1 0, otherwise
57‘:]7917"'797‘|)\) (55)
) j, ifj=N
Applying Bayes rule we obtain: Yo(d) = { é ottjwerwise (65)
=, Plon oz = ) Reaursion
91> s 9r—1 t
J2g1 e gr [sro1 =8 A)  Ploro1 =i [ A) @)= max 6 g(i) By il [ byl
= ., max P(017 e 70t*gr7 S1y 38 r—2,91," ", dr | g<min(t,mamgap) ’ ’ —— 1
Gr 17,81, ,Sr—2 i s=t—g+
, (66)
Srflzivot—gri-lf" , Oty Sr :.7797‘7)\) Whel’e:
'P(Ot—(]~+17"' 7Ot787‘:j7g’r‘ |5’r‘—1 217)‘) . .
ar : a;i, if g <min(t,mazxga
Plsy_1 =1\ J:{ i ifg— 'Et gpgort—l (67)
(56) ANy, g = min(t, maxgap =
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C. VG-Viterbi: optimization Viterbi:

<min1(lza;$1(am ap) (Ut(g,i), i1 s J = Qf
g Qf<1i"§]\7*lg P
Since VG-Viterbi is based on the Viterbi algorithm [78], it g<mm18%amgap) wi(g,1), 1 Qp <j<Qr+@Q
inherits its advantages and drawbacks. One of the drawbaglﬁsj) _ Qp+Qi<i<N—1
of the Viterbi algorithms is that it exhaustively searchée t max wi(g,3), FQr+Qi<j<N-1
state space of the HMM to find the bestp{ima) path of state g<min(t,mazgap)
sequences to describe the observation sequéncé N is the ’ n;af wilg,i), if j=N
number of states of the moda| and T is the length of0, then g<min(t mazgap) 0D TI=
the Viterbi algorithm’s time complexity i©(N? x T') [38], [78]. 1SiSQf
This is obviously expensive when the number of stateis large (69)
and the observation sequence is very long. In fact in songsare Where:
like in biological sequence analysis [26], where the lenoftta t
seguence varies betwean0 and 1000 elements, and when the we(g,i) = 6¢—g(i) - Bii - pia - b 70
HMM is about 900 states the estimated time complexity of the 19:8) = 0t=g0) B g [S:tljgﬂ i) (70)
Viterbi algorithm is on the order of x 10%. The time complexity
of the VG-Viterbi algorithm is comparable to that of the vitie and
algorithm. In fact, letN' be the number of states in VOGUE, and aij, if g < min(t, mazgap)
the length of the observation sequen@ebe 7. In the case of Bij = { U ) _ (71)
anj, it g=min(t,mazrgap) ort=1

an exhaustive search of the model for every elemen; in
O (0 <t < T), we need to check for the highest probability In this case, we don't iterate through all the valuesiof
of O; to be emitted by a statg; wherel < ¢ < N. This is {1,... N} since some of the values af; and hences;; are
done by taking into consideration the stajethat has the highest zero depending on the stage (i.e. the value of in {1,--- ,/N}).
probability of emittingO;_1. Moreover, some of the states areror example, ifl < j < Qy, Bij #0,0nly whenQ, <i < N—1
“gap” states, and they have a notion of duration uprtezgap as shown in the transition matrit in Equation(68).

times. Hence, we need to explore the numberOs elements  Therefore, the time complexity of the optimized VG-Viteisi
that will be emitted from the same “gap” state, i.e., “st@yin

in the same state for up towaxzgap. Therefore, the estimated ™ = O({[Q X (Qi+Qs)]+[Qf X Qs]+[Qs x (Q p+1)} x T xmazgap)
time is O(N x N x mazgap x T). In order to reduce the time (72)
complexity we need to reduce eithat, mazgap or T. Since we Which becomes:

cannot reducd’, which is the length of the observation sequence, - = O({[Q: % (Qf + Qs)]+
we have to explore reducing eithetazgap or N. 2Qs x [Q + 1]} x T x mazgap)

VOGUE is not a fully connected graph, since all the states are =0({Qi x (Qf + Qs)} x T' x mazgap)+
not connected to all the states. In fact, the only possilaasir 20({Qs x (Qf + 1)} x T x maxgap)
tions, whose probability is nonzero are the following tidoss:

(73)

@+ and Qs never exceedV/ the number of observations in
VOGfUE since they are the number of “distinct” first and second
. . . symbols in the mined sequences by VGS, respectively. In fact
« Transitions from theUniversal Gapstate to thefirst state tpere could be at most/ different symbols identified by VGS.

symbolsg; € @, and to theintermediate gap stateg; € since / is always a fixed number as opposed to the number of

Qi. Therefore the number of allowed transitions (nonzer@equences retained by VGS, reflecteddhy when N is largeQ;

transitions) from théJniversal Gap statés | Qy | + | Qi |- Jarge. ThereforeQ(Q; x (Qf + Qs) x T X mawgap) < O(Q; x
« Transitions from thirst state symbolg; € Q0 asecond 9,7 7y mazgap), andO(Q; x 2M x T x mazgap) ~ 2MO(Q; x

state symbol;; € Qs (modeling a gap of = 0) or to an mazxgap) ~ O(Q; x T x mazgap). Likewise, O(Qs x (Qf +

intermediate gap state; € Q;. Therefore the number of 1) x T x mazgap) < O(M(M+1) xT xmazgap) andO(M (M +

allowed transitions (nonzero transitions) from first state 1) x T x mazgap) ~ O(T x mazgap).

Symbolsis | Qs | +1Qi |- Therefore,r < O((Q; + 1) x T x mazgap) < O(N? x T x
o Transitions from thentermediate gap state; € @; to only mazgap), SINCEQ; < N

asecond state symbg} € Qs. Therefore the number of al- 9ap) ¢ ’

lowed transitions (nonzero transitions) from theermediate

gap stateis | Qs |. VII. EXPERIMENTAL RESULTS AND ANALYSIS

« Transitions from thesecond symbol statg; € Qs to a Several real world applications, such as in bioinformatics
first state symboly; € Q; (modeling a gap ofy = 0) wep accesses, finance, and text mining, encompass seduentia
or to the Universal Gap stateg; € Qu. Therefore the 54 temporal data with long range dependencies. The fatt tha
number of allowed transitions (nonzero transitions) frév t \yoGUE has been designed to capture and model such long range
intermediate gap states | Q¢ | + | Qu |- dependency patterns, makes it a very good tool to model some

of those applications. In [2], we developed a toolkit to litate
the sharing and long term use of different types of geoldgica

Therefore the transition matri¥d is a sparse matrix as showndata sets across disciplines. Geoscientists are confravite an

in Equation 68. For every observatiah in O we don't need to enormous quantity of diverse data types. These data sét&lénc
do an exhaustive search of all the states in VOGUtE to find tip@iblished data, geological and topological maps, saéftingery,

state that will emitO, such thats,— . (3)- 3. - p... - p..] Structural, seismic, geophysical, petrologic and geaubiagic

K t=9(0) - B - Pig [s:tl:[gﬂ js] data. The time when the data are added or accessed by users
is maximal, as described in Equation 60. In fact, not all this recorded. While each piece of data originates at a specific
transitions from statg; to the stateg; € Q are nonzero. user, each user is allowed to add new annotations to the data

as they wish. Finding where the data is and what type of data
Considering some of the transitions in VOGUE are non-eritstea user should access next is a challenging problem. We use
(a;; = 0), we propose the followingRecursion step of VG- VOGUE as the core of this toolkit to model user access pattern
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Qr Qi Qs Qu

0 0 atj+1 ... A1k a1, k+1 ai,N—-1 0
Qy .
0 e 0 aj 541 cee GGk a5 k+1 N aj N—1 0
0 0 0 0 Qi1 k+1 cee Q41 N—1 0
A= Qi : ;
0 0 0 0 ak,k+1 N ak,N_l 0
ak+171 a;H_Lj 0 0 0 0 ak+17N
Qs . . : .
aN—1,1 cee GN-—14 0 0 0 0 aN—-1,N
Qu G,N71 aN,j 0 0 0 0 0

(68)

Fig. 5. VG Viterbi Matrix wherej = Q¢ andk = Qs + Q.

of the data in the database. Moreover, it allows a new user ieed for efficient algorithms to extract periodic pattemosrf long
visualize the most common patterns of use or the latest comneequences.
patterns of use based on the data set used to construct thelOG |n recent years, a large amount of work in biological seqaenc
state machine. When a user accesses and adds new data taia@sis has focused on methods for finding homologous ipsote
database, he/she starts a new project. A specific projech@ay [26].” Given a database of protein sequences, the goal isil bu
multiple patterns of use at the same granularity correspgnd a statistical model so that we can determine whether a query
to different research activities or problems being inges®d. protein belongs to a given family or not. HMMER [29], a profile
We built different VOGUE state machines to accommodate tiigMM, is one of the state-of-the-art approaches to this bl
multiple views corresponding to different interpretasoof the that depends heavily on a good multiple sequence alignnient.
data. models gaps, provided that they exist in the alignmerdlbthe
Here, we describe several experiments that we conductedirigining sequences. However, if a family of sequences haale
compare the performance of VOGUE, C-VOGUE and K-VOGUverlapping motifs, which may occur in different sequentesse
to those of two popular techniques in the domain of bioldgicaequences will not be aligned correctly, and HMMER will not
sequence analysis: HMMER and aflh-order HMM. We used perform well. Here, we analyze the performance of VOGUE
two data sets, a real data set from the PROSITE database, acenpared to HMMER and higher-order HMMs with various
quential data base of families of proteins, and the SCOPs#ita ordersk < [1,10].
a manually derived comprehensive hierarchical classificadf Computationally, protein sequences are treated as loilgstr
known proteins structures that has secondary structureledge  of characters with a finite alphabet of 20 amino acids. Namely
embedded in the data set. A, C, D, E, F,G, H, I, K, L, M, N, P, Q’ R, S, T, V,
W, and Y. There are many patterns depending on the issues
_ _ ) ) considered, for example the number of periods of the pati¢he
A. Protein modeling and clustering using VOGUE maximality of the patterns, whether errors (insertiondetitens
The completion of the whole genome sequencing of vario@gd Substitutions) are allowed and palindromic reverse¢sa],
organisms facilitates the detection of many kinds of irgéng e authors provide a survey on studies to extract pattekisg
patterns inDNA and protein sequences. It is known that th¥t0 consideration one of the issues mentioned earlier.
genomes of most plants and animals contain large quantfies In this work, we are particularly interested in extractiregtprns
repetitive DN A fragments or, in the case of proteins, Amino Acidhat identify a family of proteins. The first method focuses o
fragments. For instance, it is estimated that one third@htiman €Xxtracting those patterns from the sequences formed oRahe
genome is composed of families of repeating sequences [33[nino acids and not allowing any substitutions between tfidra
[32], [93]. The amino acids are thus far from being pieces @econd method, extracts patterns while allowing for suligins
random sequences, and a substantial amount of currenthoumk Petween amino acids that have similar structure and fumality
information can be extracted from the sequences in the fofflydrophobicity, Charge, Polarity, etc).
of patterns. The abundance and variety of periodic patterns We apply VOGUE(C-VOGUE, andK-VOGUE to a real world
genome sequences drove a lot of studies on genome sequemoblem, namely, finding homologous proteins. Given a detab
analysis and mining. In fact, periodic patterns of différemgths of protein sequences, the goal is to build a statistical hede
and types are found at both geneomic and proteomic leveks. Tthat we can determine whether a query protein belongs toemgiv
short three base painy) periodicity in protein codingDNA family or not. Statistical models for proteins, such as pesfi
[37], and the medium-length repetitive motifs found in somposition-specific scoring matrices, and hidden Markov n®de
proteins [20], to the mosaic of very lon@N A segments in the [26] have been developed to find homologs. However, in most
genome of warm-blooded vertebrates [15], are some of thdsielogical sequences interesting patterns are periodtb gap
patterns. It is very important to identify some of thesegmais due requirements. Therefore a method like VOGUE that specifical
to their biological significance. For instance, some repdwve takes these kind of patterns into consideration can be \iggg-e
been shown to affect bacterial virulence to human being.[7fjve. We show experimentally that VOGUE’s modeling power is
On the other hand, the excessive expansions of some Variatlgerior to higher-order HMMs while reducing the lattettats-
Number of Tandem Repeat® (VT Rs) are the suspected cause obpace complexity, and improving their prediction. VOGUEaeal
some nervous system diseases [68]. Therefore, there issngro outperforms HMMER [29], a HMM model especially designed
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for protein sequences that takes into consideration iesett in decreasing order, we use a threshold on the scores tmassig
deletions and substitutions between “asimilar” amino acids. sequence to a given family.

We will give a an overview of HMMER in Section VII-A.1. Then, For evaluation of the classifiers, we use Receiver Operating
we will describe the scoring and evaluation measure we use foharacteristic (ROC) curves [33], that represent the ioalahip
evaluating the performance of the methods used. Afterwavds between the false positive rate and true positive rate adfoes
describe the data sets that we use for our experimentatioallys full spectrum of threshold values. Further, we plot the Adealer

we provide the performance results of VOGUE, C-VOGUE anithe Curve (AUC), to evaluate the goodness of the classifldrs.

K-VOGUE vs HMMER and higher-order HMM. AUC is calculated using the following equation [33]:
1) HMMER: HMMER [29] is a HMM model especially de- v
signed for protein sequences that takes into consideratiger- 1 -
tions, deletions and substitutions between “simular” amino AUC = p_n ZZ‘P(R%RJ’)' (74)
acids. It is called a “Profile” HMM, a well suited HMM for i=17=1

multiple alignments of sequences. We will to first descrildeatv
a multiple alignment is, and then describe a “Profile” HMM.
Multiple Alignment : the problem of multiple alignment is

Here Ntest = n + p is the number of testing sequencesis
the number of sequences from a given classaigthe number

described as follows: Given a set of sequences. producetitaul of sequences that don't belong to the class. These sequarees
' WS: LIV qu , Producetraul ., 1o pased on their score fromo Nies:, assigningl to the

alignment which corresponds as well as possible, to thedicdl testing sequence with the highest score Ahg; to the one with

relationships between the corresponding bio-moleculéd. [2vo the lowest ScoreR;, i — 1---p represent the rankings of the

amino acids should be aligned (on top of each other) in ﬂ%%quences and;, j — 1---n represent the rankings of the
following conditions: J

; ) __sequences angd(R;, R;) is defined as:
« if they are homologous (evolved from the same residue in a

common ancestor). 1 if R < R,
« if they are structurally equivalent. ¢(Ri, R;) = { to (75)
To identify whether an alignment is good fimessfunction is 0 otherwise

used where the biological relationships are taken into idens-

! . : Note that AUC for each class is calculated separately, by
tions. For example, assuming the following three sequences

treating each class gs and the remaining as. We score the

I N D U S T R Y testing sequences by computing the log-odds score, tieratio

I N T E R E S T I N @ of the probability of the sequence using a given model, aed th

I M P O RT A N T probability of the sequence using\all model, given as follows:
One alignment could be : Log-Oddgseq) = log, <P(86Q|M0d€l)> ‘ (76)

I|N|-|D|U|-|S|T|R|Y |- P(seqNul)

I\N|T|E|R|E|S|T|I|N|G P(seq/Model) is computed using the Viterbi algorithm that

I MmMl=lPlOoOlRIl=|TlAINIT computes the most probable path through the model) as Viterb
) ) ) is the default method used for scoring in HMMER. Theill
_But the following is not a good alignment based on thghodel is a simple one state HMM that emits the observations
biological characteristics of the amino acids: (the amino acids) with equal probability (|=|). Since we have
20 amino acids the emission probability for each symbal/i).

I\ N|—-|D|U|-|—-|S|T|R|Y |- . .
Il rlelrlEel2lslzlT NG The log-odds ratio measures whether the sequence is a better
match to the given model (if the score is positive) or to thé nu
M- |P|O|R|-|—-|T]A|N|T hypothesis (if the score is negative). Thus, the higher tees
For a more detailed description of the multiple alignmerih© better the model. ) )
process and the different available methods refer to [61]. 3) Datasets: We used in our experiments two different data
Profile HMM : One of the general features of protein familys€ts: a set of families downloaded from the PROSITEt{p:
multiple alignment is that “gaps” tend to line up with eacH/Www.expasy.org/prosite ) database of protein family

other, leaving solid blocks of either exact matches or adw and domains, and SCOP [19] data set, a manually derived com-
substitutions between the amino acids. These positiongare Prehensive hierarchical classification of known protemcitres,
sidered to be the “ungapped” states of the HMM. The emissiéh@t are organized according to their evolutionary andcsiral

probability is based on position specific score matrigSSM).  relationships. -
More details can be found in [26]. Thus, the HMM is built The PROSITE families that we used are® DOC00662,

with a repetitive structure of states but different probiies FDOC00670, PDOCO0561, PDOC00064, PDOC00154,
in each one in a left-to-right manner. The PSSM is a HMM DOC00224, PDOC00271, PDOC00397, PDOC00443. We

with a series of identical states, called “match statesr;), Will refer to these families asy, %, ---, Fy, respectively. The
separated by transitions of probabilityAlthough PSSM captures humber of sequences in each family is, respectivaly: = 45,
some conservation information, it is does not representhail N? =225, N3 =85 N* = 56, N° = 119, N® =99, N = 150,
information in a multiple alignment of a protein family. Tieéore, N°® = 21, N = 29. The families consists of sequences of lengths
“Insertion” states {;) are introduced in the HMM, where each ofranging from 597 to 1043 characters, taken from the alphabet
the I; states is used to match insertion after the element emitté@ 20 amino acidst = {A, C, D, E, F, G, H, I, K, L, M,

by the matching staté/;. “Deletion” states ;) are also added N, P, Q, R, S, T, V, W, Y'}. Each family is characterized by a
to act as silent states that do not emit any symbol. Thereforeell-defined motif. FamilyF, for example, shares the consensus
it is possible to use them to “jump” from any “match” state tdnotif [G] — [IVT] - [LV AC] - [LV AC] - [IVT] - [D] - [DE] —
another one without emitting any symbol in between. HMMERF'L] — [DNST], which has9 components. Each component
is a software that is based on building profile HMMs to modelan contain any of the symbols within the square brackets. Fo
protein families. example, for the second component, nam@ly 77, either, V/

2) Evaluation and Scoring:We built three models for each Or 7 may be present in the sequences. We treat each PROSITE
family, namely VOGUE, HMMER, and:--th order HMMs, using family as a separate class. We divided the data set of eadly fam
the training set of that family. We score the test sequengamst F; into two subsets: the training datsi;,.,;, consists of 90%
the model for each of the nine families, and after sortingsttires of the data, while the testing dafsy,.,; contains the remaining
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TABLE XVI ROC Curve for Family F1
RUN TIMES

-

VOGUE [AMMER [ k=1 ] k=2 [ k=4 [ k=10 T
4.6s 34.42s 2s 5205 | 6.40s | 11465 | = EO0%F-e--emeeeooen

4
©

o
o

True Positive Rate
o
S

10%. For exampleN,..;,, = 40 and N, = 5. There are a total
of 103 test sequences across all families.

The Scop data setis divided into four hierarchical levels:
Class, Fold, Superfamily and Family. For SCQR1 (from % 02 04 05
2002), the44327 protein domains were classified into1 folds, False Positive Rate
resulting in an average of4 domains per fold. The number ROC Curve for Family F2
of domains per fold varies in SCOP, where some of the folds,
such asT'IM barrels, are highly populated, while some of the
folds, such as théfSP40/DnaJ peptide-binding fold that only
contain one protein, contain a few examples. Therefore, the
SCOP is an imbalanced data set. This imbalanced proportion
of examples in each fold contributes to the poor performance
of classical machine learning techniques such as suppe# ve
tor machines and neural networks [23]. When learning from
such data sets, existing machine learning approaches tend t 02
produce a strong discriminatory classifier or "high accytadth
very low sensitivity or completeness. We uskd superfamilies o 02
from the SCOP data seftyf://ftp.rcsb.org/pub/pdb/
derived_data/pdb_seqres.txt ) namely, family 49417, ROC Curve for Family F3
46458, 46626, 46689, 46997, 47095, 47113, 48508, 69118, and 1
81296. We will refer to them asSFy, SFy, SF3, SFy, SFy, SF,
SFg, SF7, SFg, SFy and SFyq respectively. Each family hag)
sequences. We divided each family data set %06 (9 sequences
for each family)for training and0% for testing ( for each family
to a total of 10 sequences).

o
N

— VOGUE (AUC = 1.000)
-~ HMMER (AUC = 0.847)
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440 Fig. 7. ROC Curve of VOGUE and HMMER for the familigs;, F»> and
420 Fs.
400
8 sg0l mentioned above. We also built sevedath order HMMs for
g e - various values of using an open-source HMM softwarett(p:
5 3601 e 1 /Iww.cfar.umd.edu/kanungo/software ). We tried
5 340 | T | different values for the number of states ranging from tiee si
2 e of the protein alphabet() to roughly the size of VOGUE5()0)
S 320+ E and HMMER 000). A k-th order HMM is built by replacing
= A each consecutive subsequence of dizeith a unique symbol.
300 | T These different unique symbols across the training anthtesets
280 L i were used as observation symbols. Then we model the regultin
sequence with a regular 1st order HMM.
260 ‘ ) ‘ ‘ ) ‘ Score Comparison: We first compare VOGUE withk-order
2 8 4 5 6 7 8 ° HMMs and HMMER. Table XV shows the comparison on the 5
maxgap test sequences for family; when scored against the model for
) ) Fy. For VOGUE we usethinsup = 27 (75%) andmazgap = 20.
Fig. 6. VOGUE: Number of States for Different Parameters. For k-th order HMMs we tried several values of the order

(shown ask = 1, k = 2, k = 4, k = 8 and k = 10) in the

We built VOGUE state machines with different values ofable with 20 states for eaclt-th order HMM. The number of
minsup corresponding t60%, 75% and100% of the number of observations) for the k = 1 case was set t@0 since it is
instances in the training data, andizgap (10, 15, 20, 25, 30) but  the number of amino acidsd = 394; 17835; 20216; 19249 were
with the constank = 2 for the length of the mined sequences ithe number of observations used o= 2; 4; 8; 10, respectively.
VGS. We then choose the best set of parameters and fix them Toeese values were obtained from a count of the different new
the remaining experiments. To model the data using HMMERymbols used for each value bf
we first need to align the training sequences using CLUSTAL- The best score for each sequence is highlighted in bold.
W (http://www.ebi.ac.uk/clustalw ). We then build a Looking at the scores in Table XV, we find that in genétah
profile HMM using the multiple sequence alignment and compubrder HMMs were not able to model the training sequences well
the scores for each test sequence using HMMER, which djrecAll their scores are large negative values. HMMER did fawigil,
reports the log-odds scores with respect to thell model which is not surprising, since it is specialized to handlet@n



TABLE XV
TESTSEQUENCEL OG-ODDS SCORES FORVOGUE, HMMERAND k-TH ORDERHMM s

Seq

S1

Sa

S3

Sy

S

VOGUE

7081

7877

2880

5763

5949

HMMER

912.4

155

—345

9.8

—21.3

k-th order HMM
k=1

—4 % 10°

—3.4x 103

—2.2 % 10°

—4.7 x 10°

—4.7 x 103

M =20
k-th order HMM
k=2
M = 394
k-th order HMM
k=4
M = 17835
k-th order HMM
k=8
M = 20216
k-th order HMM
k=10
M = 19249

—-13x10% | —1.3x10* | —1x10* | =1.5x10* | —1.5 x 10*

—23x10% | —22x10* | —1.8x10* | =24 x 10* | —2.4 x 10*

—2x10* | —1.9x10* | —1.6x10* | —2.2x 10* | —2.2 x 10%

—26x10* | —29x10* | —2.3x 10* | —3.0 x 10* | —3.1 x 10*

sequences. Moreover, for all the 5 testing sequences VOGP left corner of the ROC graph, illustrating that this cléisr
vastly outperforms HMMER. This is a remarkable result when whas high coverage of true positives with few false positives
consider that VOGUE is completely automatic and does not hatrivial rejector will be at the bottom left corner of the ROC
explicit domain knowledge embedded in the model, excepttwhgraph and a trivial acceptor will be at the top right corner of
is recovered from relationship between symbols in the padte the graph. Each one of the graphs in Figures 7, 8, and 9
via mining. has two ROC curves for VOGUE and HMMER, respectively, for
Time Comparison: In Table XVI, we show the execution different threshold values. The total AUC for the two method
time for building the three models for family;. The time for is given in the Figure legend. VOGUE was run with typical
VOGUE includes the mining by VGS, and for HMMER, theparameter values ofinsup = 75% and mazgap = 20; there
alignment by CLUSTAL-W. In general, for VOGUE, the highetwere some minor variations to account for characteristits o
the minimum support, the lower the running time, and the éighdifferent families. The ROC curves of all the families shdeecly
the maximum gap, the higher the running time; the runningetinthat VOGUE improved the classification of the data over HMMER
of VOGUE varied from 2.6s (fofinsup = 36, mazgap = 10) to  because the AUC of VOGUE is constantly higher than HMMER.
4.6s (ninsup = 18, mazgap = 30). We can see that VOGUE's In the case of familyFy the AUC of both VOGUE and HMMER
execution time is in general much better than HMMER and lgere comparable. In two cases, for familigs and F, the AUC
also better than higher-order HMMs (except fler= 1). Thus was1 for VOGUE showing that VOGUE was able to capture the
not only is VOGUE more accurate in modeling the input, it alspatterns of those families perfectly. Moreovertiout 9 families
executes faster. the AUC for VOGUE was higher tham9 as opposed to HMMER
Size Comparison:We also compared the state space comple}(h0se AUC was greater thar in only 3 out of 9 families. This
ity of the three methods. The number of states in HMMER wadain shows that VOGUE outperforms HMMER.
N = 971, while for higher-order HMMs it ranged fromo0 to
900. VOGUE on the other hand was able to reduce the state sphcePerformance of VOGUE vs C-VOGUE vs HMMER on
complexity by only modeling the mined sequences and not tRROSITE data

full data set thus eliminating noise. Figure 6 shows the remb |n this section, besides the models of VOGUE and HMMER
of states in VOGUE for variousnazgap and minsup values. from the previous section, we also built a C-VOGUE state
We find that varying the parameters for VOGUE does not altgfiachine for the PROSITE data set. We first run VGS on the
the state space complexity considerably. The biggest nuwibe training data set with different values efinsup corresponding
states,V = 425, is for minsup = 18 andmazgap = 9; and the to 50%, 75% and100% of the number of instances in the training
smallest,N = 274, for minsup = 36 and mazgap = 2. This data set, anchazgap (10, 15, 20, 25, 30) but still with the constant
follows from the fact that the higher thevinsup the less the r — 2 as the length of the mined sequences by VGS. Then we
frequent sequences mined by VGS, and vice versa. prune the “artifacts” from the set of frequent sequences\aed
Full Comparison (ROC Curves and AUC): Figures 7, 8 build the new model C-VOGUE. We then choose the best set of
and 9 present the ROC curves of thdamilies generated from parameters, and fix them for the remaining of the experiments
all the testing sequences. Here we focus on comparing HMMBRe then compare C-VOGUE to VOGUE and to HMMER. The
and VOGUE, sincé-th order HMMs gave highly negative scoresresults of C-VOGUE as opposed to VOGUE and HMMER are
for all the testing sequences. The ROC curves representatie-t shown in Figures 10, 11 and 12.
off between coverage (TPR on thexis) and error rate (FPR on  These figures show clearly that VOGUE's and C-VOGUE's
the zaxis) of a classifier. A good classifier will be located at thdROC curves overlap for alp families, hence have the same
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Fig. 8. ROC Curve of VOGUE and HMMER for the familigs,, F5 and Fig. 9. ROC Curve of VOGUE and HMMER for the familigs;, F3 and

F6- Fg.
TABLE XVIII
TABLE XVII THE 9 CLUSTERS FOR THE AMINO ACIDS PROVIDED BY THE DOMAIN
THE NUMBER OF STATESN USING VOGUE VS C-VOGUEFOR THE9 EXPERT
PROSITEFAMILIES
Cluster Elements Description
Family | VOGUE | C-VOGUE Ch H R K Positively charged
? ggé ;’gg Cs ALV, I, M Aliphatic. M is the exception,
7 o T but it is hydrophobic and
3 -
I 93 309 can fit h_ere _
Iz 375 268 Cs FY W Aromatic amino acids
Fo 108 290 Cly D, E Negatively charged
F; 2908 222 Cs P Aliphatic with a pseudo ring
Fy 421 318 Cs S, T With hydroxyl side chains
Fy 420 319 Cr Q,N Polar uncharged
Cs C Sulphur containing, slightly charged
(&) G Smallest and the most flexible

AUC. Therefore, C-VOGUE also outperforms HMMER. This
experiments reinforces the claim that C-VOGUE keeps a go
coverage and an increased accuracy. Concerning the state sp” Performance of K-VOGUE vs VOGUE vs HMMER on SCOP
complexity, Table XVII shows the number states using VOGUEata

and C-VOGUE for the) families. In this section we conducted experiments on the SCOP data
The number of states of the families models using C-VOGU&et on VOGUE and K-VOGUE vs HMMER. We first collected

is clearly smaller by27% than that of the families models clusters of the20 amino acids from the expert in the field based

using VOGUE. Therefore, these experiments show the berfefitan several chemical characteristics. Afterwards, we obacke

pruning using C-VOGUE in reducing the state space complexiéfficiency of the clustering of the symbols by using the spect

while preserving the good coverage and accuracy of VOGUE.clustering method previously described. The clusters ef 2
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Fig. 10. ROC Curve of VOGUE, C-VOGUE and HMMER for the familie Fig. 11. ROC Curve of VOGUE, C-VOGUE and HMMER for the familie

Fy, F> and F3. Fy, F5 and Fg.
TABLE XIX
AMINO ACIDS GROUPING 0.128 to 0.180 it belongs to group and if it ranges from
ST o3 s 0.210 to 0.409 it belongs to grougs.
HYDROPHOBICITY e o el T ydiophabie 4) Charge: an amino acid could be either positive, negative
FOLARITY 191062 501002 .00 13.0 or carrying a small charge or no charge, called other.
LIFWCMVY PATGS HQRKNED i i
POLARIZABILITY 01t00.108 0.128 10 0.186 0.219 10 0.409 5) Normallzed Van DerWaals Vo'ume If the VOIume Of the
GASDT CPNVEQIL | KMHFRYW amino acid ranges fror to 2.8 it belongs to the group,
CHARGE v negaive M o if it ranges from2.95 to 4.0 it belongs to groug and if it
NVOQILN ranges from4.43 to 8.08 it belongs to grouys.
NORMALIZED VAN 0t02.8 2.95t04.0 4.43 10 8.08
DERWAALS VOLUME | GASCTPD NVEQIL MAKPRYW We used K-means with different values of the number of

clustersK (5,6,7,9). The best results of the clustering was for
K =9 and is shown in Figure 13. Th& axis represents th&

. i ) . eigenvectors that correspond to tkidargest eigenvalues. The last
amino acids suggested by the expert wereluster as given in column represents the cluster index in color to which thenami
Table XVIIL. o ) acid belongs to. The& axis represents the amino acid index.
_ In order to check the efficiency of the clustering of the sylaboThe amino acids indexes are represented ftaim 20. Clustering
in case the expert’s clustering is not available, we usedpeetral ysing the spectral clustering using eigenvectors and Kasiedth
clustering method described in ChapterAs domain knowledge i — 9, we obtained the following clusters as described in
we input the amino acids specifications which groups the amifrable XX. Figure 14 shows the amino acid indexes sorted to
acids in3 groups based on the following five criteria: group the amino acids belonging to the same cluster together

1) Hydrophobicity : an amino acid can be either polar, neutraFor example the last cluster whose color is dark red corredgpo
or hydrophobic. to the clusterC; that contains the amino acid#/, K, R).

2) Polarity: if the polarity of an amino acid ranges from9 This clustering is very close to that of the expert. In fact,
to 6.2 it belongs to the group, if it ranges from8.0 to 9.2  clustersCy, Cs, C7, Cg were exact match with the experts clusters.
it belongs to grou® and if it ranges fromi10.0 to 13.0 it  ClustersCs, Cs, C4, andCg Were partially identified correctly. In
belongs to groups. fact, L and I were identified to belong to the same clusfier

3) Polarizability : If the polarizability of the amino acid ranges F, W were identified as belonging to the same cluster S, T
from 0 to 0.108 it belongs to the group, if it ranges from were identified to belong to the same clusty; while G, Y,
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Fig. 12. ROC Curve of VOGUE, C-VOGUE and HMMER for the familie ‘ z ‘ i B
Fr, Fg and Fy.

A, M, andV were misclassified. Therefore,in the absence of tt
expert’s clustering we can use cluster the alphdb& symbols
using domain information (knowledge) and Spectral clusteas
described in Chaptet.

1) K-VOGUE vs HMMER PerformanceOnce we have the
clusters of amino acids from the expert, we transform the d¢
set by replacing the amino acids belonging to one clustehn wi
the representative of that class. For example, for the alus
C; = {H, K, R}, we replace any instance df, R, H in the
data set with the representative of the class whichZisWe
built K-VOGUE state machines with different values@fnsup

Clustered Amino Acids

corresponding t60%, 75% and100% of the number of instances 1 2 3 4 5 6 7 8 9 10
in the training data, anthaxgap (10, 15, 20, 25, 30) but with the K eigenvectors that correspond to K largest eigenvalues.
constantk = 2 for the length of the mined sequences in VGS. The last column represents the cluster index

We then choose the best set of parameters and fix them for ik
remaining experiments. To model the data using HMMER,
first align the training sequences using CLUSTAL-Wt://
www.ebi.ac.uk/clustalw ). We then build a profile HMM
using the multiple sequence alignment and compute the score
for each test sequence using HMMER, which directly repdrés tthe family. Therefore, a very low negative score for seqeenc
log-odds scores with respect to tNelll model mentioned above. Sy on model of family SFyy means it does not belong. Thus
Score Comparison: We first compare K-VOGUE HMMER. the smaller that score it is the better it is. Looking at theres
Table XXI shows the comparison on thetesting sequences fromin Table XXI, we find that in general HMMER did well since
all the 10 families when scored against the model for familieg classified all the sequences as not belonging to farfily;
SFy and SF5. For K-VOGUE we usedninsup = 6(75%) and (all scores were negative). However, sequefgeshould have a
mazxgap = 20. The best score for each sequence is highlightebsitive score § belonging toSF») but it has a negative score
in bold. Note that a negative score mean does not belong db—4.20. Moreover, for all thel0 testing sequences K-VOGUE
the family and that a positive score means that it belongs vastly outperforms HMMER for familySFs. All the scores by

ge. 14. Eigenvectors after sorting withi = 9 and using the Amino Acids
rouping.
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TABLE XXI ROC Curve for Family SF4
TESTSEQUENCEL OG-ODDS SCORES FORK-VOGUE AND HMMER N
Seq | HMMER | K-VOGUE | HMMER K-VOGUE s
SF, SF, SF;s SFs5 &
S; | —87.20 | —4760.38 | —166.70 | —4,286.09 $06
S, —4.20 537.62 —141.60 | —1,896.44 7
S; | —44.70 | —1709.69 | —76.70 | —4,523.37 L 04
Sy | —31.60 | —1903.78 | —74.50 | —4,525.66 2
S5 | —32.50 —1.42 95.80 197.39 0.2
Se —46.70 —259.53 37.70 —20.37 o mvh?&ux\cu?g%g?a)
S7 | —89.50 | —2210.78 | —140.60 —220.44 03 o1 o6 o8
Ss | —268.60 | —704.71 | —348.80 | —13,520.02 " False Positive Rate
Sy | —108.40 | —940.51 | —179.00 | —4,642.94 ROC Curve for Family SF5
Si0 | —66.20 | —1764.22 | —113.90 | —6,367.38
1
£os
ROC Curve for Family SF1 %
206
1 3
204
Q Q™
<08 =
P "oz
2 0.6 K-VOGUE (AUC = 0.944)
g — HMMER (AUC = 0.804)
e, % 0.2 0.4 0.6 0.8 1
he False Positive Rate
= 02 ROC Curve for Family SF6
. K-VOGUE (AUC = 0.944) . -
— HMMER (AUC = 0.884)
G0 0.2 0.4 . 0.8 1
False Positive Rate Los
ROC Curve for Family SF2 in
2 0.6
1 K3
204
Q [
<08 = S
[l
% 0.2
2 0.6 K-VOGUE (AUC = 0.804)
'g 0 — HMMER (AUC = 0.75)
a4 0 0.2 04 06 0.8 1
R False Positive Rate
=
0.2 Fig. 16. ROC Curve of K-VOGUE and HMMER for the famili€sFy, S F5
s - e and .
OO 0.2 0.4 0.6 0.8 1
False Positive Rate
ROC Curve for Family SF3 Full Comparison (ROC Curves and AUC): Figures 15 and
1 16 present the ROC curves 6ffamilies generated from all the
testing sequences. Here we focus on comparing HMMER and K-
£os VOGUE. A good classifier will be located at the top left coroér
« the ROC graph, illustrating that this classifier has highecage of
£06 true positives with few false positives. A trivial rejectwill be at
g the bottom left corner of the ROC graph and a trivial accepitr
g 04 be at the top right corner of the graph. Each one of the graphs
oz in Figures 15, 16 has two ROC curves for K-VOGUE and
' K-VOGUE (AUC = 0.884) HMMER, respectively, for d.iffer.ent threshold values. Thutat
o —— HMMER (AUC = 0.804) AUC for the two methods is given in the legend. K-VOGUE
0 02 oshice RabY was run with parameter typical values ofinsup = 75% and

mazgap = 20; there were some minor variations to account for
Fig. 15. ROC Curve of K-VOGUE and HMMER for the familiesF, SF> characteristics of different families. The ROC curves dfthe
and SF3. families show clearly that VOGUE improved the classificataf
the data over HMMER because the AUC of VOGUE is constantly
higher than HMMER.

K-VOGUE were better than those of HMMER in this case,

except for sequencss. The score of55 (—1.42) was higher than VIII. C ONCLUSIONS ANDFUTURE WORK

that of HMMER (-32.50) but still negative classifyingSs as We introduced a new state machine called VOGUE to discover

not belonging taSF,. Concerning familySFs, K-VOGUE again and interpret temporal dependencies in the analyzed daga. W

outperformed HMMER, since it only classifief}, as belonging formally defined the two steps of this technique, where thst fir

to SF5 but the remaining of the testing sequences not belongirgtep uses a new and efficient sequence mining algorithmablari

HMMER classified correctly all the sequences but sequefice Gap Sequence mining (VGS), to mine frequent patterns, aad th

With a score 0f37.70, sequenceSs was classified as belongingsecond step uses these mined sequences to build VOGUE.

to family SFs. An important contribution of our new technique is that we are
able tosimultaneously modehultiple higher-order HMMs due
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to the inclusion of variable length gaps allowed in the minedo] L. E. Baum. An inequality and associated maximizatieahnique in
sequences. Once the model is built, it can be used to intarpve
observation sequences. Therfore, we modified the widely use
Viterbi algorithm into VG-Viterbi, to take into consideran the
special topology of VOGUE. We showed experimentally, using

real protein sequence data, that VOGUE’s modeling power j
superior to higher-order HMMs, as well as a domain-specif

algorithm HMMER.
We further generalized VOGUE to any length,> 2, of the

sequences mined by VGS. Furthermore, some patterns mined by

VGS are artifacts of other patterns, for example,4Af — B
is frequent, then there is a good chance that— A will be
frequent as well. We developed a special pruning mechanisitg]
called,C-VOGUE, to separate primary patterns from artifacts.We

showed through experimental results thetVOGUE reduces
further the state space complexity of VOGUE while maintagni [16]
a good coverage and accuracy. Moreover, there are applicati

where there isn't always an exact match for the subsequences

to be mined, such as in bioinformatics or in user data acce
We extended VOGUE td<-VOGUE, to allow for approximate

matches for the mined sequences and st&fegOGUE takes into

consideration that some elements in the alphabehare similar ;g
characteristics and hence are similar. These elementsustered
either by a domain expert or by using domain information and
spectral clustering as clustering technique. Then, VG&ddor

frequent patterns whose elements belong to the same cluster

instead of an exact match between the elements.

We used pseudo-counts in the transition, emission andidnrat(20]
probabilities, to account for the symbols that were not gmésn
the training data set but might be present in the testing skt

The values of these pseudo-counts were heuristically chbse
they were fixed for all the symbols. We need to automate t

[11]

]
[13]

[14]

gy

[19]

[21]

e

process and allow for pseudo-count values that reflect thealv |3
distribution of the symbols. In fact, a symbol might havehgg
occurrences than others and hence its pseudo-count sheuld b
higher. Moreover, we need to understand what is the impact [ofi]
the chosen pseudo-count value on the performance of VOGUE.
Finally, we demonstrate that VOGUE and its variations were
able to outperform the state-of-the-art techniques indgicil
sequence clustering and analysis. VOGUE can be further used
in other applications such as user access behavior [2], web
prefetching [8], security [75], and many more interestingd a (26]
challenging real world problems.
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