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CHAPTER 1

Introduction

1.1 The SALSA Distributed Programming Language

With the emergence of Internet and mobile computing, a wide range of In-

ternet applications have introduced new demands for openness, portability, highly

dynamic reconfiguration, and the ability to adapt quickly to changing execution en-

vironments. Current programming languages and systems lack support for dynamic

reconfiguration of applications, where application entities get moved to different

processing nodes at run-time.

Java has provided support for dynamic web content through applets, net-

work class loading, bytecode verification, security, and multi-platform compatibility.

Moreover, Java is a good framework for distributed Internet programming because

of its standardized representation of objects and serialization support. Some of the

important libraries that provide support for Internet computing are: java.rmi for

remote method invocation, java.reflection for run-time introspection, java.io

for serialization, and java.net for sockets, datagrams, and URLs.

SALSA (Simple Actor Language, System and Architecture) [5] is an actor-

oriented programming language designed and implemented to introduce the benefits

of the actor model while keeping the advantages of object-oriented programming.

Abstractions include active objects, asynchronous message passing, universal nam-

ing, migration, and advanced coordination constructs for concurrency. SALSA is

pre-processed into Java and preserves many of Java’s useful object oriented concepts-

mainly, encapsulation, inheritance, and polymorphism. SALSA abstractions enable

the development of dynamically reconfigurable applications. A SALSA program

consists of universal actors that can be migrated around distributed nodes at run-

time.

1
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1.2 Outline

This tutorial covers basic concepts of SALSA and illustrates its concurrency

and distribution models through several examples. Chapter 2 introduces the actor

model and how SALSA supports it. Chapter 3 introduces concurrent programming

in SALSA, including token-passing continuations, join blocks, and first-class contin-

uations. Chapter 4 discusses SALSA’s support for distributed computing including

asynchronous message sending, universal naming, and migration. Chapter 5 in-

troduces several advanced coordination constructs and how they can be coded in

SALSA. Chapter 6 defines actor garbage and explains how automatic actor garbage

collection works in SALSA. Appendix A introduces how to specify name server op-

tions and how to run applications with different system properties. Appendix B

provides debugging tips for SALSA programs. Appendix C provides brief descrip-

tions of SALSA example programs. Appendix D introduces OverView, a toolkit for

visualization of distributed systems. Appendix E describes the history of SALSA.

Appendix F lists the SALSA grammar.



CHAPTER 2

Actor-Oriented Programming

SALSA is an actor-oriented programming language. This chapter starts first by

giving a brief overview of the actor model in Section 2.1. Section 2.2 describes how

SALSA supports and extends the actor model.

2.1 The Actor Model

Actors [1, 3] provide a flexible model of concurrency for open distributed sys-

tems. Actors can be used to model traditional functional, procedural, or object

oriented systems. Actors are independent, concurrent entities that communicate by

exchanging messages asynchronously. Each actor encapsulates a state and a thread

of control that manipulates this state. In response to a message, an actor may

perform one of the following actions (see Figure 2.1):

• Alter its current state, possibly changing its future behavior.

• Send messages to other actors asynchronously.

• Create new actors with a specified behavior.

• Migrate to another computing host.

Actors do not necessarily receive messages in the same order that they are

sent. All the received messages are initially buffered in the receiving actor’s mes-

sage box before being processed. Communication between actors is weakly fair: an

actor which is repeatedly ready to process messages from its mailbox will eventually

process all messages sent to it. An actor can interact with another actor only if it

has a reference to it. Actor references are first class entities. They can be passed

in messages to allow for arbitrary actor communication topologies. Because actors

can create arbitrarily new actors, the model supports unbounded concurrency. Fur-

thermore, because actors only communicate through asynchronous message passing

and because there is no shared memory, actor systems are highly reconfigurable.

3
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Figure 2.1: Actors are reactive entities. In response to a message, an ac-
tor can (1) change its internal state, (2) send messages to peer
actors, (3) create new actors, and/or (4) migrate to another
computing host.
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2.2 Actors in SALSA

SALSA programmers write behaviors which include encapsulated state and

message handlers for actor instances:

• New actors get created in SALSA by instantiating particular behaviors (with

the new keyword). Creating an actor returns its reference.

• The message sending operator (<-) is used to send messages to actors; mes-

sages contain a name that refers to the message handler for the message and

optionally a list of arguments.

• Actors, once created, process incoming messages, one at a time.

While SALSA supports the actor model, it goes further in providing linguistic

abstractions for common coordination patterns in concurrent and distributed appli-

cations. For concurrency, it provides token passing continuations, join blocks, first-

class continuations, named tokens, and message properties. For distribution, remote

actor creation, and remote referencing, it provides universal naming abstractions,

location-transparent communication, and migration support. Furthermore, SALSA

provides automatic local and distributed garbage collection.



CHAPTER 3

Writing Concurrent Programs

This chapter introduces concepts about basic concurrency coordination. Basic

knowledge of Java programming is required.

3.1 Actor State Modification

SALSA is a dialect of Java, and it is intended to reuse as many features of Java

as possible. SALSA actors can contain internal state in the form of Java objects or

primitive types. However, it is important that this internal state must be completely

encapsulated, that is, not shared with other actors. It is also important that the

internal state be serializable 1

The following piece of code illustrates how the internal state is modified, as

follows:

behavior Cel l {
Object contents ;

Ce l l ( Object i n i t i a lC on t en t s ){
contents = i n i t i a lC on t en t s ;

}

Object get ( ){
return contents ;

}

void s e t ( Object newContents ){
// update the v a r i a b l e ’ con ten t s ’ wi th
// the new value , newContents
contents = newContents ;

}
}

1SALSA, as of version 1.1.2, does not enforce object serializability. Programmers must ensure
that encapsulated objects are serializable.

6



7

3.2 Actor Creation

The actor reference is a new primitive type in SALSA. There are three ap-

proaches to obtain an actor reference: either by actor creation statement, the

getReferenceByName() function, or passed arguments from messages. This sec-

tion concentrates on actor creation and reference passing.

Writing a constructor in SALSA programming is similar to object construction

in Java programming. For instance, one can declare the HelloWorld actor as follows:

// An ac tor r e f e r enc e wi th type HelloWorld
HelloWorld myRef ;

To create an actor instance and return a reference to myRef, one can write

code as follows:

// Assume the cons t ruc tor o f Hel loWorld i s :
// pu b l i c Hel loWorld ( ) {}
myRef = new HelloWorld ( ) ;

In SALSA, actor references are passed by reference, while object variables

by value. Objects are passed by value to prevent shared memory and preserve

encapsulation.

3.3 Message Passing

SALSA actors use asynchronous message passing as their basic form of commu-

nication. A SALSA message handler is similar to a Java method. Message passing

in SALSA is implemented by asynchronous message delivery with dynamic method

invocation. The following example shows how an actor sends a message to itself.

Note that it is not a Java method invocation:

handler ( ) ; // e q u i v a l e n t to ” s e l f <− handler ( ) ; ”

Another type of message passing statement requires a target (an actor refer-

ence), a reserved token <-, and a message handler with arguments to be sent. For

instance, an actor can send a message to the standardOutput actor as follows:

// send a message p r i n t l n ( ) wi th an argument ” He l l o World” ,
// to the ac tor standardOutput .
standardOutput <− p r i n t l n ("Hello World" ) ;

Note that the following expression is illegal because it is neither a Java method
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invocation nor a message passing expression:

// Wrong ! I t does not compi le ! ! !
// Assume ’ a ’ i s an ac tor r e f e r enc e .
a <− someObject . someHandler ( ) ;

Message Passing in SALSA is by-value for objects, and by-reference for actors.

Any object passed as an argument is cloned at the moment it is sent, and the cloned

object is then sent to the target actor.

3.4 Coordinating Concurrency

SALSA provides three approaches to coordinate the behavior of actors: token-

passing continuations, join blocks, and first-class continuations.

3.4.1 Token-Passing Continuations

Token-passing continuations are designed to specify a partial order of message

processing. The token ’@’ is used to group messages and assigns the execution order

to each of them. For instance, the following example forces the standardOutput

actor, a predefined system actor for output, to print out ”Hello World”:

standardOutput <− p r i n t ("Hello " ) @
standardOutput <− p r i n t ("World" ) ;

If a programmer uses ’;’ instead of ’@’, SALSA does not guarantee that the

standardOutput actor will print out ”Hello World”. It is possible to have the result

”WorldHello ”. The following example shows the non-deterministic case:

standardOutput <− p r i n t ("Hello " ) ;
standardOutput <− p r i n t ("World" ) ;

A SALSA message handler can return a value, and the value can be accessed

through a reserved keyword ’token’, specified in one of the arguments of the next

grouped message. For instance, assuming there exists a user-defined message han-

dler, returnHello(), which returns a string ”Hello”. The following example prints

out ”Hello” to the standard output:

// re tu rnHe l l o ( ) i s de f ined as the f o l l ow s :
// S t r ing re tu rnHe l l o ( ) { re turn ”He l l o ” ;}
r e tu rnHe l l o ( ) @ standardOutput <− p r i n t l n ( token ) ;
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Again, assuming another user-defined message handler combineStrings() ac-

cepts two input Strings and returns a combined string of the inputs, the following

example prints out ”Hello World” to the standard output:

// combineStr ings ( ) i s de f ined as f o l l ow s :
// S t r ing combineStr ings ( S t r ing s tr1 , S t r ing s t r 2 )
// { re turn s t r 1+s t r2 ;}
r e tu rnHe l l o ( ) @
combineStr ings ( token , " World" ) @
standardOutput <− p r i n t l n ( token ) ;

Note that the first token refers to the return value of returnHello(), and the

second token refers to that of combineStrings(token, " World").

3.4.2 Join Blocks

The previous sub-section has illustrated how token-passing continuations work

in message passing. This sub-section introduces join blocks which can specify a bar-

rier for parallel processing activities and join their results in a subsequent message.

A join continuation has a scope (or block) starting with ”join{ ” and ending with

”}”. Every message inside the block must be executed, and then the continuation

message, following @, can be sent. For instance, the following example prints either

”Hello World SALSA” or ”WorldHello SALSA”:

join {
standardOutput <− p r i n t ("Hello " ) ;
standardOutput <− p r i n t ("World" ) ;

} @ standardOutput <− p r i n t l n (" SALSA" ) ;

Using the return token of the join block will be explained in Chapter 5.

3.4.3 First-Class Continuations

The purpose of first-class continuations is to delegate computation to a third

party, enabling dynamic replacement or expansion of messages grouped by token-

passing continuations. First-class continuations are very useful for writing recursive

code. In SALSA, the keyword currentContinuation is reserved for first-class con-

tinuations. To explain the effect of first-class continuations, we use two examples

to show the difference. In the first example, statement 1 prints out ”Hello World

SALSA”:
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//The f i r s t example o f us ing Firs t−Class Cont inuat ions
. . .
void saySomething1 ( ) {

standardOutput <− p r i n t ("Hello " ) @
standardOutput <− p r i n t ("World " ) @
currentContinuation ;

}
. . . .
// s tatement 1 in some method .
saySomething1 ( ) @ standardOutput <− p r i n t ("SALSA" ) ;

In the following (the second) example, statement 2 may generate a different

result from statement 1. It prints out either ”Hello World SALSA”, or ”SALSAHello

World ”.

// The second example − without a Firs t−Class Continuation
// Statement 2 may produce a d i f f e r e n t r e s u l t from
// tha t o f Statement 1 .
. . .
void saySomething2 ( ) {

standardOutput <− p r i n t ("Hello " ) @
standardOutput <− p r i n t ("World " ) ;

}
. . . .
// s tatement 2 i n s i d e some method :
saySomething2 ( ) @ standardOutput <− p r i n t ("SALSA" ) ;

The keyword currentContinuation has another impact on message passing

— the control of execution returns immediately after processing it. Any code after

it will not be reached. For instance, the following piece of code always prints out

”Hello World”, but ”SALSA” never gets printed:

// The t h i r d example − with a Firs t−Class Continuation
// One shou ld see ”He l l o World” in the standard output
// a f t e r s tatement 3 i s executed .
. . .
void saySomething3 ( ) {

boolean alwaysTrue=true ;
i f ( alwaysTrue ) {

standardOutput <− p r i n t ("Hello " ) @
standardOutput <− p r i n t ("World " ) @
currentContinuation ;

}
standardOutput<−p r i n t l n ("SALSA" ) ;

}



11

. . . .
// s tatement 3 i n s i d e some method :
saySomething3 ( ) @ standardOutput <− p r i n t l n ( ) ;

3.5 Using Input/Output (I/O) Actors

SALSA provides three actors supporting asynchronous I/O. One is an input

service (standardInput), and the other two are output services (standardOutput

and standardError). Since they are actors, they are used with message passing.

standardOutput provides the following message handlers:

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)
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• println()

standardError provides the following message handlers:

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)

• println()

standardInput provides only one message handler in current SALSA release:

• String readLine()
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Table 3.1: Steps to Compile and Execute a SALSA Program.

Step What To Do Action Taken

1 Create a SALSA program: Write your SALSA code
Program.salsa

2 Use the SALSA compiler to java salsac.SalsaCompiler Program.salsa
generate a Java source file:
Program.java

3 Use a Java compiler to javac Program.java
generate the Java bytecode:
Program.class

4 Run your program using the java Program
Java Virtual Machine

3.6 Developing SALSA Programs

This section demonstrates how to write, compile, and execute SALSA pro-

grams.

3.6.1 Writing SALSA Programs

SALSA abstracts away many of the difficulties involved in developing dis-

tributed open systems. SALSA programs are preprocessed into Java source code.

The generated Java code uses a library that supports all the actor’s primitives —

mainly creation, migration, and communication. Any Java compiler can then be

used to convert the generated code into Java bytecode ready to be executed on any

virtual machine implementation (see Table 3.1).

3.6.2 HelloWorld example

The following piece of code is the SALSA version of HelloWorld program:

1 . /∗ HelloWorld . s a l s a ∗/
2 . module examples ;
3 . behavior HelloWorld {
4 . void act ( S t r ing [ ] arguments ) {
5 . standardOutput<−p r i n t ( "Hello" )@
6 . standardOutput<−p r i n t ( "World!" ) ;
7 . }
8 . }
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Let us go step by step through the code of the HelloWorld.salsa program:

The first line is a comment. SALSA syntax is very similar to Java and you

will notice it uses the style of Java programming. The module keyword is similar to

the package keyword in Java. A module is a collection of related actor behaviors. A

module can group several actor interfaces and behaviors. Line 4 starts the definition

of the act message handler. In fact, every SALSA application must contain the

following signature if it does have an act message handler:

void act ( S t r ing [ ] arguments )

When a SALSA application is executed, an actor with the specified behavior

is created and an act message is sent to it by the run-time environment. The act

message is used as a bootstrapping mechanism for SALSA programs. It is analogous

to the Java main method invocation.

In lines 5 and 6, two messages are sent to the standardOutput actor. The

arrow (<-) indicates message sending to an actor (in this case, the standardOutput

actor). To guarantee that the messages are received in the same order they were

sent, the @ sign is used to enforce the second message to be sent only after the first

message has been processed. This is referred to as a token-passing continuation (see

Section 3.4.1).

3.6.3 Compiling and Running HelloWorld

• Download the latest version of SALSA. You will find the latest release in this

URL: http://wcl.cs.rpi.edu/salsa/

• Create a directory called examples and save the HelloWorld.salsa program

inside it. You can use any simple text editor or Java editor to write your

SALSA programs. SALSA modules are similar to Java packages. This means

you have to follow the same directory structure conventions when working

with modules as you do when working with packages in Java.

• Compile the SALSA source file into a Java source file using the SALSA com-

piler. It is recommended to include the SALSA JAR file in your class path.

Alternatively you can use -cp to specify its path in the command line. If you
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are using MS Windows use semi-colon (;) as a class path delimiter, if you are

using just about anything else, use colon (:). For example:

java -cp salsa<version>.jar:. salsac.SalsaCompiler examples/*.salsa

• Use any Java compiler to compile the generated Java file. Make sure to specify

the SALSA class path using -classpath if you have not included it already

in your path:

javac -classpath salsa<version>.jar:. examples/*.java

• Execute your program:

java -cp salsa<version>.jar:. examples.HelloWorld



CHAPTER 4

Writing Distributed Programs

Distributed SALSA programming involves universal naming, theaters, service ac-

tors, migration, and concurrency control. This chapter introduces how to write and

run a distributed SALSA program.

4.1 Worldwide Computing Model

Worldwide computing is an emerging discipline with the goal of turning the

Internet into a unified distributed computing infrastructure. Worldwide computing

tries to harness underutilized resources in the Internet by providing various Inter-

net users a unified interface that allows them to distribute their computation in a

global fashion without having to worry about where resources are located and what

platforms are being used. Worldwide computing is based on the actor model of con-

current computation and implements several strategies for distributed computation

such as universal naming, message passing, and migration. This section introduces

the worldwide computing model and how it is supported by SALSA.

4.1.1 The World-Wide Computer (WWC) Architecture

The World-Wide Computer (WWC) is a set of virtual machines, or theaters

that host one to many concurrently running universal actors. Theaters provide a

layer beneath actors for message passing, remote communication, and migration.

Every theater consists of a RMSP (Remote Message Sending Protocol) server, a

local cache that maps between actors’ names and their current locations, a registry

that maps local actor names to their references, and a run-time environment. The

RMSP server listens for incoming requests from remote actors and starts multiple

threads to handle incoming requests simultaneously.

The WWC consists of the following key components:

• Universal naming service

16
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Table 4.1: UAL and UAN Format.

Type Example

URL http://wcl.cs.rpi.edu/salsa/
UAN uan://io.wcl.cs.rpi.edu:3000/myName
UAL rmsp://io.wcl.cs.rpi.edu:4000/myLocator

• Run-time environment

• Remote communication protocol

• Migration support

• Actor garbage collection

4.1.2 Universal Naming

Universal naming allows actors to become universal actors. Universal actors

have the ability to migrate, while anonymous actors do not. Service actors are

special universal actors, with universal access privileges that do not get collected by

the actor garbage collection mechanism.

Every universal actor has a Universal Actor Name (UAN), and a Universal Ac-

tor Locator (UAL). The UAN is a unique name that identifies the actor throughout

its lifetime. The UAL represents the location where the actor is currently running.

While the UAN never changes throughout the lifetime of a universal actor, its UAL

changes as it migrates from one location to another. UANs and UALs follow the

URI syntax. They are similar in format to a URL (see Table 4.1).

4.1.2.1 Universal Actor Names (UANs)

The first item of the UAN specifies the name of the protocol used; the second

item specifies the name and port number of the machine where the Naming Server

resides. This name is usually a name that can be decoded by a domain name server.

You can also use the IP of the machine, but it should be avoided. The last item

specifies the relative name of the actor. If a port number is not specified, the default

port number (3030) for the name server is used.
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4.1.2.2 Universal Actor Locators (UALs)

The first item specifies the protocol used for remote message sending. The

second item indicates the theater’s machine name and port number. If a port

number is not specified, the default port number (4040) for the theater is used. The

last part specifies the relative locator name of the actor in the given theater.

SALSA’s universal naming scheme has been designed in such a way to satisfy

the following requirements:

• Platform independence: names appear coherent on all nodes independent of

the underlying architecture.

• Scalability of name space management

• Transparent actor migration

• Openness by allowing unanticipated actor reference creation and protocols

that provide access through names

• Both human and computer readability.

4.2 WWC Implementation in SALSA

This section demonstrates how to write a distributed SALSA program and run

it in the World-Wide Computer run-time environment.

4.2.1 Universal Actor Creation

A universal actor can be created at any desired theater by specifying its UAN

and UAL 2. For instance, one can create a universal actor at current host as follows:

HelloWorld hel loWorld = new HelloWorld ( )
at (new UAN("uan://nameserver/id" ) ) ;

A universal actor can be created at a remote theater, hosted at host1:4040, by

the following statement:

HelloWorld hel loWorld = new HelloWorld ( )
at (new UAN("uan://nameserver/id" ) ,

new UAL("rmsp://host1:4040/id" ) ) ;

2Remember to start the naming server if using UANs in the computation.
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An anonymous actor can be created as follows:

HelloWorld hel loWorld = new HelloWorld ( ) ;

Notice that an anonymous actor cannot migrate.

4.2.2 Referencing actors

Actor references can be used as the target of message sending expressions

or as arguments of messages. There are three ways to get an actor reference.

Two of them, the return value of actor creation and references from messages, are

available in both distributed and concurrent SALSA programming. The last one,

getReferenceByName(), is an explicit approach that translates a string represent-

ing a UAN into a reference. In SALSA, only references to service actors (see Section

4.2.4) should be obtained using this function. Otherwise, SALSA does not guar-

antee the safety property of actor garbage collection, which means one can get a

phantom reference (a reference pointing to nothing). The way to get a reference by

getReferenceByName() is shown as follows:

AddressBook remoteServ ice= ( AddressBook )
AddressBook . getReferenceByName ("uan://nameserver1/id" ) ;

Sometimes an actor wants to know its name or location. An actor can get its

UAL (location) by the function getUAL() and UAN (universal name) by getUAN().

For example:

UAL selfUAL= this . getUAL ( ) ;
UAN selfUAN = this . getUAN ( ) ;

4.2.3 Migration

As mentioned before, only universal actors can migrate. Sending the message

migrate(<ual>) to an universal actor causes it to migrate seamlessly to the des-

ignated location. Its UAL will be changed and the naming service will be notified

to update its entry.

The following example defines the behavior MigrateSelf, that migrates the

MigrateSelf actor to location UAL1 and then to UAL2. The migrate message

takes as argument a string specifying the target UAL or it can take the object new

UAL("UAL string").
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module examples ;

behavior MigrateSe l f {
void act ( S t r ing args [ ] ) {

i f ( args . l ength != 2) {
standardOutput<−p r i n t l n (
"Usage:" +
"java -Duan=<UAN> examples.MigrateSelf <UAL1> <UAL2>" ) ;
return ;

}
se l f<−migrate ( args [ 0 ] ) @
se l f<−migrate ( args [ 1 ] ) ;

}
}

4.2.4 Actors as Network Service

There are many kinds of practical distributed applications: some are designed

for scientific computation, which may produce a lot of temporary actors for parallel

processing; some are developed for network services, such as a web server, a web

search engine, etc. Useless actors should be reclaimed for memory reuse, while

service-oriented actors must remain available under any circumstance.

The most important reason for reclamation of useless actors is to avoid memory

leakage. For example, after running the HelloWorld actor (shown in Section 3.6) in

the World-Wide Computer, the World-Wide Computer must be able to reclaim this

actor after it prints out ”Hello World”. Reclamation of actors is formally named

actor garbage collection.

Reclamation of useless actors introduces a new problem: how to support non-

collectable service-oriented actors at the language level. This is important because

a service-oriented actor cannot be reclaimed even if it is idle. For instance, a web

service should always wait for requests. Reclamation of an idle service is wrong.

Services written in the C or Java programming languages use infinite loops to

listen for requests. A SALSA service cannot use this approach because loops inside

a message handler preclude an actor from executing messages in its message box.

The way SALSA keeps a service actor alive is by specifying it at the language level

- a SALSA service actor must implement the interface ActorService to tell the
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actor garbage collector not to collect it.

The following example illustrates how a service actor is implemented in SALSA.

The example implements a simple address book service. The AddressBook actor

provides the functionality of creating new <name, email> entities, and responding

to end users’ requests. The example defines the addUser message handler which

adds new entries in the database. The example also defines the getEmail message

handler which returns an email string providing the user name.

module examples ;

import java . u t i l . Hashtable ;
import java . u t i l . Enumeration ;

behavior AddressBook implements ActorServ ice {
private Hashtable name2email ;

AddressBook ( ) {
// Create a new hash t ab l e to s t o r e name & emai l
name2email = new Hashtable ( ) ;

}

// Get the emai l o f t h i s person
Str ing getEmail ( S t r ing name) {

i f ( name2email . containsKey (name ) ) {
// I f name e x i s t s
return ( S t r ing ) name2email . get (name ) ;

} else {
return new Str ing ("Unknown user" ) ;

}
}

// Add a new user to the system , re tu rns succe s s
boolean addUser ( S t r ing name , S t r ing emai l ) {

// I s the user a l r eady l i s t e d ?
i f ( name2email . containsKey (name) | |

name2email . con ta in s ( emai l ) ) {
return fa l se ;

}
// Add to our hash t a b l e
name2email . put (name , emai l ) ;
return true ;

}

void act ( S t r ing args [ ] ) {
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i f ( args . l ength > 0) {
standardOutput<−p r i n t l n (
"Usage:" +
"java -Duan=<UAN> -Dual=<UAL> examples.AddressBook" ) ;
return ;

}
else {

standardOutput<−p r i n t l n ("AddressBook at: " ) @
standardOutput<−p r i n t l n ("uan: " + this . getUAN ( ) ) @
standardOutput<−p r i n t l n ("ual: " + this . getUAL ( ) ) ;

}
}

}

The AddressBook actor is bound to the UAN and UAL pair specified in the

command line. This will result in placing the AddressBook actor in the designated

location and notifying the naming service.

To be able to contact the AddressBook actor, a client actor first needs to

get the remote reference of the service. The only way to get the reference is by the

message handler getReferenceByName(). The example we are going to demonstrate

is the AddUser actor, which communicates with the AddressBook actor to add new

entries. Note that the AddUser actor can be started anywhere on the Internet.

module examples ;

behavior AddUser {
void act ( S t r ing args [ ] ) {

try{
i f ( args . l ength == 3 ) {

AddressBook book =
( AddressBook ) AddressBook . getReferenceByName (

new UAN( args [ 0 ] ) ) ;
book<−addUser ( args [ 1 ] , args [ 2 ] ) ;
return ;

}
} catch ( Exception e ) { standardError<−p r i n t l n ( e ) ;}
standardError<−p r i n t l n (

"Usage:" +
"java examples.AddUser <bookUAN> <Name> <Email>" ) ;

}
}
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4.3 Run-time Support for WWC Application

The section demonstrates how to start the naming service and theaters.

4.3.1 Universal Naming Service

The UANP is a protocol that defines how to interact with the WWC nam-

ing service. Similar to HTTP, UANP is text-based and defines methods that allow

lookup, updates, and deletions of actors’ names. UANP operates over TCP connec-

tions, usually the port 3030.

Every theater maintains a local registry where actors’ locations are cached for

faster future access. One can start a naming service as follows:

java -cp salsa<version>.jar:. wwc.naming.WWCNamingServer

The above command starts a naming service on the default port 3030. You

can specify another port as follows:

java -cp salsa<version>.jar:. wwc.naming.WWCNamingServer -p

1256

4.3.2 Theaters

One can start a theater as follows:

java -cp salsa<version>.jar:. wwc.messaging.Theater

The above command starts a theater on the default RMSP port 4040. You

can specify another port as follows:

java -cp salsa<version>.jar:. wwc.messaging.Theater 4060

4.3.3 Running an Application

Whenever a WWC application is executed, a theater is dynamically created

to host the bootstrapping actor of the application and a random port is assigned to

the dynamically created theater. A dynamically created theater will be destroyed

if no application actor is hosted at it and no incoming message will be delivered to

the theater.

Now let us consider a WWC application example. Assuming a theater is

running at host1:4040, and a naming service at host2:5555. One can run the

HelloWorld example shown in Section 3.6 at host1:4040 as follows:
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java -cp salsa<version>.jar:. -Duan=uan://host2:5555/myhelloworld

-Dual=rmsp://host1:4040/myaddr examples.HelloWorld

As one can see, the standard output of host1 displays ”Hello World”. One

may also find that the application does not terminate. In fact, the reason for non-

termination at the original host is that the application creates a theater and the

theater joins the World-Wide Computer environment. Formally speaking, the appli-

cation does terminate but the host to begin with becomes a part of the World-Wide

Computer.



CHAPTER 5

Advanced Concurrency Coordination

This chapter introduces advanced constructs for coordination by using named to-

kens, join block continuations, and message properties.

5.1 Named Tokens

Chapter 3 has introduced token-passing continuations with the reserved key-

word token. In this section, we will focus on the other type of continuations, the

named tokens.
� �

Warning :
Tokens can ONLY be used as arguments to messages . SALSA

1 . 1 . 2 does not a l l ow to use tokens as par t o f
e x p r e s s i o n s ( e . g . , x+2) or to be used as re turn v a l u e s
( e . g . , r e turn token ) .

� �

In SALSA, the return value of an asynchronous message can be declared as

a variable of type token. The variable is called a named token. Named tokens are

designed to allow more expressibility by allowing explicit definition of continuations.

For example, a token-passing continuation statement can be re-written by name

token continuations:

// l i n e 1 i s e q u i v a l e n t to l i n e s 2−3
1 . h e l l o ( ) @ standardOutput<−p r i n t ( token ) ;

2 . token x = h e l l o ( ) ;
3 . standardOutput<−p r i n t (x ) ;

Name tokens can be used to construct a non-linear partial order for compu-

tation, which cannot be expressed by token-passing continuations. The following

example cannot be re-written by token-passing continuations:

token x = a<−m( ) ;
token y = b<−o ( ) ;
token z = c<−p ( ) ;

d<−p(x , y ) ;

25
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e<−q (y , z ) ;
f<−r (x , z ) ;

The following example uses name tokens to implement the Fibonacci number

application:

module examples ;

behavior Fibonacc i {
int n ;

Fibonacc i ( int n) { this . n = n ;}

int add ( int x , int y ) {return x + y ;}

int compute ( ) {
i f (n == 0) return 0 ;
else i f (n <= 2) return 1 ;
else {

Fibonacc i f i b 1 = new Fibonacc i (n−1);
Fibonacc i f i b 2 = new Fibonacc i (n−2);
token x = f ib1<−compute ( ) ;
token y = f ib2<−compute ( ) ;
// us ing name tokens and f i r s t −c l a s s con t inua t i ons
add (x , y ) @ currentContinuation ;

}
}

void act ( S t r ing args [ ] ) {
n = In t ege r . par s e In t ( args [ 0 ] ) ;
// us ing token pass ing con t inua t i ons
compute ( ) @ standardOutput<−p r i n t l n ( token ) ;

}
}

Named tokens may be assigned to non-primitive type values, message sending

expressions, or other named tokens. Examples are shown as follows:

1 . token y = a<−m1( ) ;
2 .
3 . token z = y ;
4 .
5 . y = b<−m2(y ) ;
6 . se l f<−m() @ c<−m3(token , z , y ) ;

The following example shows how to use named tokens. Lines 1-2 are equiva-

lent to lines 3-5 using fewer token declarations:
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// l i n e s 1−2 are e q u i v a l e n t to l i n e s 3−5
1 . token x = a<−m1( ) ;
2 . x = b<−m2(x ) ;

3 . token x = a<−m1( ) ;
4 . token y = b<−m2(x ) ;
5 . x = y ;

The following example demonstrates how named tokens are used in loops:

1 . token x = a<−m1( ) ;
2 . for ( int i = 0 ; i < 10 ; i++) x = b<−m2(x , i ) ;

The previous example is equivalent to the following example:

a<−m1( ) @
b<−m2( token , 0) @
b<−m2( token , 1) @
b<−m2( token , 2) @
b<−m2( token , 3) @
b<−m2( token , 4) @
b<−m2( token , 5) @
b<−m2( token , 6) @
b<−m2( token , 7) @
b<−m2( token , 8) @
token x = b<−m2(token , 9 ) ;

To learn more about named tokens, we use the following example to illustrate

how the named token declaration works and to prevent confusion:

1 . token x = a<−m1( ) ;
2 .
3 . for ( int j = 0 ; j < 10 ; j++) {
4 . b<−m2(x ) ;
5 . x = c<−m3(x ) ;
6 . d<−m4(x ) ;
7 . }

The token is updated as soon as the code is processed. In the for loop on

lines 3-7, for each iteration of the loop, the value of token x in b<-m2 and c<-m3 is

the same. However, the value of token x in d<-m4 is the token returned by c<-m3,

and thus equal to the value of token x in the message sends on lines 4 and 5 in the

next iteration of the loop.
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5.2 Join Block Continuations

Chapter 3 skips some details of join blocks. This section introduces how to

use the return values of statements inside a join block and by implementing message

handlers which can receive the result of a join block.

A join block always returns an object array if it joins several messages to a

reserved keyword token, or a named token. If those message handlers to be joined

do not return (void type return), or the return values are ignored, the join block

functions like a barrier for parallel message processing.

The named token can be applied to the join block as follows:

1 . token x = join {
2 . a<−m1( ) ;
3 . b<−m2( ) ;
4 . } ;

The following example illustrates how to access the join block return values

through tokens. In lines 16-20, the message multiply will not be processed until

the three messages add(2,3), add(3,4), and add(2,4) are processed. The token

passed to multiply is an array of Integers generated by the three adds messages.

The message handler multiply(Object numbers[]) in lines 3-7 receives the result

of the join block.

1 . behavior JoinCont inuat ion {
2 .
3 . int mult ip ly ( Object numbers [ ] ) {
4 . return ( ( I n t eg e r ) numbers [ 0 ] ) . in tValue ( ) ∗
5 . ( ( I n t eg e r ) numbers [ 1 ] ) . in tValue ( ) ∗
6 . ( ( I n t eg e r ) numbers [ 2 ] ) . in tValue ( ) ;
7 . }
8 .
9 . int add ( int n1 , int n2 ) {
10 . return n1 + n2 ;
11 . }
12 .
13 . void act ( S t r ing args [ ] ) {
14 .
15 . standardOutput<−p r i n t ("Value: " ) @
16 . join {
17 . add ( 2 , 3 ) ;
18 . add ( 3 , 4 ) ;
19 . add ( 2 , 4 ) ;
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20 . } @ mult ip ly ( token ) @ standardOutput<−p r i n t l n ( token ) ;
21 . }
22 .
23 .}

5.3 Message Properties

SALSA provides four message properties that can be used with message send-

ing: priority, delay, waitfor, and delayWaitfor. The syntax used to assign to

a message a given property is the following, where <property name> can be either

priority, delay, waitfor, and delayWaitfor:

actor<-myMessage:<property name>

5.3.1 Property: priority

The priority property is used to send a message with high priority. This is

achieved by placing the message at the beginning of the actor’s message box when it

is received. For instance, the following statement will result in sending the message

migrate to the actor, book, with the highest property.

book<−migrate ("rmsp://europa.wcl.cs.rpi.edu:4040/" ) : p r i o r i t y ;

For example, Let us assume that the local host is overloaded, the message box

of Actor book is full, and the remote host to migrate has extra computing power.

Using the priority property by attaching it to the migrate message may improve

the performance.

5.3.2 Property: delay

The delay property is used to send a message with a given delay. It takes

as arguments the delay duration in milliseconds. The property is usually used as a

loose timer. For instance, the following message awaken will be sent to the actor,

book, after a delay of 1s.

// The message awaken () w i l l be d e l i v e r e d to Actor book
// a f t e r a de lay o f 1 second .
book<−awaken ( ) : de lay (new I n t eg e r ( 1 0 0 0 ) ) ;
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5.3.3 Property: waitfor

The waitfor property is used to wait for the reception of a token before

sending a message. The property can add variable continuation restrictions dy-

namically, enabling a flexible and-barrier for concurrent execution. The following

example shows that the message compare(b) can be delivered to Actor a if Actors

a and b have migrated to the same theater:

token x = a<−migrate ("rmsp://europa.cs.rpi.edu:4040" ) ;
token y = b<−migrate ("rmsp://europa.cs.rpi.edu:4040" ) ;
a<−compare (b) : wa i t f o r (x , y ) ;

5.3.4 Property: delayWaitfor

SALSA 1.1.2 does not support multiple properties. delayWaitfor is a tempo-

rary solution to support delay and waitfor in the same message. The delayWaitfor

property takes the first argument as the delay duration in milliseconds, and the re-

mainder as tokens. For instance, the message compare(b) can be delivered to Actor

a if Actors a and b have migrated to the same theater and after a delay of 1 second:

// The message compare ( b ) w i l l be d e l i v e r e d to Actor a
// i f Actors a and b has migrated to the t a r g e t t h e a t e r
// and a f t e r a de lay o f 1 second .
token x = a<−migrate ("rmsp://europa.cs.rpi.edu:4040" ) ;
token y = b<−migrate ("rmsp://europa.cs.rpi.edu:4040" ) ;
a<−compare (b) : de layWait for (new I n t eg e r (1000) , x , y ) ;
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Actor Garbage Collection

Actor garbage collection is the mechanism used to reclaim useless actors. A system

can fail because of memory leakage, resulting from uncollected garbage actors. Man-

ual garbage collection can solve this problem if an application does not require a lot

of dynamic memory allocation operations, however it is error-prone and can reduce

programmers’ efficiency. As the size of the application becomes larger and more

complex, automatic garbage collection becomes preferable, because faulty manual

garbage collection can cause memory security issues. Additionally, manual garbage

collection is contrary to high-level programming. From the perspective of software

engineering, there should be a focus on the development of functionalities, not on

concerns which can be effectively automated. The garbage collection mechanism

used by SALSA is automatic.

Many object-oriented programming languages support automatic garbage col-

lection, such as Smalltalk, Scheme, and Java. Unfortunately, these garbage collec-

tion algorithms cannot be used for actor garbage collection directly, because actors

encapsulate a thread of control that repeatedly waits for incoming messages to pro-

cess, and these approaches do not collect active objects. The encapsulated thread

of control results in the essential difference of actor garbage collection and object

garbage collection.

6.1 Actor Garbage Definition

The definition of actor garbage relates to meaningful computation. Meaningful

computation is defined as having the ability to communicate with any of the root

actors, that is, to access any resource or public service. The widely used definition

of live actors is described in [4]. Conceptually, an actor is live if it is a root or it can

either potentially: 1) receive messages from the root actors or 2) send messages to

the root actors. The set of actor garbage is then defined as the complement of the

set of live actors. To formally describe the SALSA actor garbage collection (GC)

31
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model, we introduce the following definitions:

• Blocked actor: An actor is blocked if it has no pending messages in its

message box and it is not processing any message. Otherwise it is unblocked.

• Reference: A reference indicates an address of an actor. Actor A can only

send messages to actor B if A has a reference pointing to B.

• Inverse reference: An inverse reference is a conceptual reference from the

target of a reference to its source.

• Acquaintance: Let actor A have a reference pointing to actor B. B is an

acquaintance of A, and A is an inverse acquaintance of B.

• Root actor: An actor is a root actor if it encapsulates a resource, or if it is

a public service — such as I/O devices, web services, and databases (i.e., a

service actor).

The original definition of live actors is denotational because it uses the concept

of “potential” message delivery and reception. To make it more operational, we use

the term “potentially live” [2] to define live actors.

• Potentially live actors:

– Every unblocked actor and root actor is potentially live.

– Every acquaintance of a potentially live actor is potentially live.

• Live actors:

– A root actor is live.

– Every acquaintance of a live actor is live.

– Every potentially live, inverse acquaintance of a live actor is live.

6.2 Actor Garbage Collection in SALSA

This section introduces the assumptions and the actor garbage collection mech-

anism used in SALSA.
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6.2.1 The Live Unblocked Actor Principle

In actor-oriented programming languages, an actor must be able to access

resources which are encapsulated in service actors. To access a resource, an actor

requires a reference to the service actor which encapsulates it. This implies that

actors keep persistent references to some special service actors — such as the file

system service and the standard output service. Furthermore, an actor can explicitly

create references to public services. For instance, an actor can dynamically convert

a string into a reference to communicate with a service actor, analogous to accessing

a web service by a web browser using a URL.

Without program analysis techniques, the ability of an actor to access resources

provided by an actor-oriented programming language implies explicit reference cre-

ation to access service actors. The ability to access local service actors (e.g. the

standard output) and explicit reference creation to public service actors make the

statement true: every actor has persistent references to root actors. This statement

is important because it changes the meaning of actor GC, making actor GC similar

to passive object GC. It leads to the live unblocked actor principle, which says every

unblocked actor is live. Since each unblocked actor is: 1) an inverse acquaintance of

the root actors and 2) defined as potentially live, it is live according to the definition

of actor GC. With the live unblocked actor principle, every unblocked actor can be

viewed as a root. Liveness of blocked actors depends on the transitive reachability

from unblocked actors and root actors. If a blocked actor is transitively reachable

from an unblocked actor or a root actor, it is defined as potentially live. With per-

sistent root references, such potentially live, blocked actors are live because they are

inverse acquaintances of some root actors.

Notice that the live unblocked actor principle may not be true if considering

resource access restrictions. This implies that different security models may result

in different sets of actor garbage, given the same actor system. At the programming

language level, SALSA assumes the live unblocked actor principle.
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6.2.2 Local Actor Garbage Collection

The difficulty of local actor garbage collection is to obtain a consistent global

state and minimize the penalty of actor garbage collection. The easiest approach

for actor garbage collection is to stop the world: no computation or communication

is allowed during actor garbage collection. There are two major drawbacks of this

approach, the waiting time for message clearance and a degradation of parallelism

(only the garbage collector is running and all actors are waiting).

A better solution for local actor garbage collection is to use a snapshot-based

algorithm [7], which can improve parallelism and does not require waiting time for

message clearance. SALSA uses a snapshot based algorithm, together with the

SALSA garbage detection protocol (the pseudo-root approach) [6], in order to get

a meaningful global state. A SALSA local garbage collector uses the meaningful

global snapshot to identify garbage actors.

One can observe the behavior of the local actor garbage collector by specifying

the run-time environment options -Dgcverbose -Dnodie as follows:

java -cp salsa<version>.jar:. -Dgcverbose -Dnodie examples.HelloWorld

To start a theater without running the local actor garbage collection, one can

use the option -Dnogc as follows:

java -cp salsa<version>.jar:. -Dnogc examples.HelloWorld

6.2.3 Optional Distributed Garbage Collection Service

Distributed actor garbage collection is more complicated because of actor mi-

gration and the difficulty of recording a meaningful global state of the distributed

system. The SALSA garbage detection protocol and the local actor garbage collec-

tors help simplify the problem — they can handle acyclic distributed garbage and

all local garbage.

The current SALSA distributed actor garbage collector is implemented as a

logically centralized, optional service. When it is triggered to manage several hosts,

it coordinates the local collectors to get a meaningful global snapshot. Actors refer-

enced by those outside the selected hosts are never collected. The task of identifying
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garbage is done in the logically centralized service. Once garbage is identified, a

garbage list is then sent to every participating host.

A distributed garbage collection service collects garbage for selected hosts

(theaters). It collects distributed garbage providing a partial view of the system.

SALSA also supports hierarchical actor garbage collection. To build the garbage

collection hierarchy, each distributed garbage collection service requires its parent

(at most one) and its children. The usage of the distributed garbage collection

service is shown as follows:

java -cp salsa<version>.jar:. gc.serverGC.SServerPRID <n> <par-

ent> <child1 or host1> <child2 or host2> ......

n specifies that the service should be activated every n seconds. n = −1

means that the service only executes once and then terminates. parent specifies

the address of the parent service, with the format <ip>:<port>. Invalid format

indicates that the service is the root service. <child1 or host1> indicates the

address of the child service or the target theater, with the format <ip>:<port>.

Notice that a theater is always a leaf.

To run the distributed garbage collection once, one can use the command as

follows:

java -cp salsa<version>.jar:. gc.serverGC.SServerPRID -1 x <host1>

<host2> ......

To run it every 40 seconds, use:

java -cp salsa<version>.jar:. java gc.serverGC.SServerPRID <40>

x <host1> <host2> .....

Note that n should be large enough, or else performance can be severely de-

graded. The default is n = 20.
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APPENDIX A

Name Server Options and System Properties

A.1 Name Server Options

The name server can be run with several arguments. Running the name server

with the command -h provides all the possible options.

java wwc.naming.NamingServer -h

usage:

java ...WWCNamingServer

java ...WWCNamingServer -h

java ...WWCNamingServer -v

java ...WWCNamingServer -p portNumber

options:

-h: Print this message.

-v: Print version number.

-p portNumber: Set the listening port to portNumber. Default port

number is 3030.

A.2 System Properties

SALSA programs can be executed with a set of system properties:

-Dport=<port number>: To specify the port number that the automatically

started theater will listen to. Otherwise, a random port number is

used.

-Didentifier=<id>: To specify the relative locator of the bootstrapping

actor’s UAL.
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-Duan = <uan>: To specify the UAN of the bootstrapping actor.

-Dual= <ual>: To specify the UAL of the bootstrapping actor.

-Dnogc: The local garbage collector will not be triggered

-Dgcverbose: To show the behavior of local GC

-Dnodie: Making a dynamically created theater alive

Here comes the example:

java -Dport = 5050 -Didentifier = actor/hello HelloWorld

A theater is started at the current host (e.g. europa.wcl.cs.rpi.edu). The

dynamically created theater listens on port 5050, and the HelloWorld actor has the

UAL:

rmsp://europa.wcl.cs.rpi.edu:5050/actor/hello



APPENDIX B

Debugging Tips

• Make sure you really understand the actor model, its message passing seman-

tics, and the concurrency coordination abstractions built in SALSA.

• Message passing and remote procedure calls are totally different. A named

token variable does not have the result immediately. It has the result only

after the message gets executed.

• Objects in messages have pass-by-value semantics. This means that object

arguments are cloned and then sent. A latter modification on these object

arguments does not change the objects which were originally sent.

• Since the SALSA compiler does not support type checking in this version,

you may need to go through the Java source code. The code related to your

program is on the bottom of the generated Java source code. Do not try to

modify other parts irrelevant to your SALSA source code.

• Please note that a typo in a message sending statement does not generate

Java or SALSA compile-time errors. You have to be very careful with that.

A run-time error will be generated instead.

• Most people confuse self with this. this means ”this actor”, while self

”the actor reference” pointing to itself. self can only be used as a target of

messages, or an argument to be passed around. this can be used for object

method invocation. To send your references to other actors, use self. Using

this is wrong.
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APPENDIX C

Learning SALSA by Example Code

One can download the SALSA source code at

http://wcl.cs.rpi.edu/salsa/,

which includes several good examples.

C.1 Package examples

Package examples are useful for learning SALSA. Examples consist of:

• examples.addressbook: The address book example shown in Section 4.2.

• examples.cell: It implements a cell actor that has two message handlers:

set to set the value, and get to get the value of the cell. Both versions of

distributed and single host examples are provide.

• examples.chat: Two Speaker actors run as services and start a chat session

which is triggered by the Chat actor.

• examples.fibonacci: The recursive fibonacci application.

• examples.Heat: A simple simulation of heat flow. Both distributed and single

host versions are provided.

• examples.helloworld: The HelloWorld example.

• examples.messenger: An example showing message delivery.

• examples.migration: An example to show how to migrate an actor.

• examples.multicast: A group of examples showing how to implement several

multicast protocols.

• examples.nqueens: A program that tries to solve the N-Queens problem.
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• examples.numbers: Examples of actor inheritance and concurrency coordina-

tion.

• examples.ping: An example showing the echo server and the ping client.

• examples.ticker: A ticker example: a non-terminating actor

• examples.trap: This numerical application approximates the integral of a

function over an interval [a, b] by using the trapezoidal approximation.

C.2 Package tests

Package tests is used for testing SALSA, including language and run-time

environment tests.

• tests.language: Tests for SALSA language constructs.

• tests.language.babyfood: Tests for inheritance.

• tests.localgc: Correctness tests for local actor garbage collection.

• tests.distributed: Correctness tests for distributed actor garbage collec-

tion.



APPENDIX D

Visualization of SALSA Applications with OverView

D.1 Introduction

OverView is a toolkit for visualization of distributed systems, and is designed

to be generic (that is, able to be applied to many different distributed systems),

scalable (that is, to scale up to very large distributed systems), and dynamic (that

is, functioning as well online as it does offline). OverView is written in Java and

is designed to work with any arbitrary Java system via a custom unintrusive pro-

filing mechanism and a simple declarative language (called the Entity Specification

Language) which describes how to map Java method invocations into a high-level

description of visualization events. Figure D.1 shows how OverView visualizes an

actor creation event.

Please note that OverView requires Java 1.5 to compile and run.

D.2 Using OverView with SALSA Programs

To visualize SALSA programs, SALSA has been instrumented by including

event-sending behavior. In this way, any executed SALSA program may be visual-

ized without any additional configuration.

Figure D.1: These three figures, from left to right, were captured from
OverView when an actor was created. The outer square rep-
resents a SALSA theater, while the inner circles represent
SALSA actors. Lines between actors represent SALSA mes-
sage sending behavior.
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The easiest way to use OverView to visualize SALSA programs is to download

the latest OverView-instrumented SALSA binary, which can be found at:

http://wcl.cs.rpi.edu/overview/

You should download overview<version>.jar and salsa<version>i.jar,

and place them in a convenient location. When executing your SALSA application,

simply ensure that both JAR files are in your Java classpath (by either using the

CLASSPATH environment variable, or by using the -cp command line switch).

If you wish to compile OverView and SALSA from source and instrument

SALSA yourself, please see the respective documentations for OverView and SALSA.

To run OverView and visualize your SALSA application, you must keep in

mind that event sinks must be started before event sources; in practical terms,

this means that the OverView visualization must be running before you start your

SALSA program.

To do so is relatively simple: you will need an OverView Daemon (OVD)

to collect and forward events, and an OverView Presenter (OVP) to display the

visualization.

java overview.ovd.OverViewDaemon

java overview.ovp.OverViewPresenter <host:port of OVD>

If you are running OVP and OVD on the same machine, OVD’s host:port will

generally be localhost:6060.

After OverView is running, you may start your SALSA theaters, name servers,

and so on. Merely note that every SALSA program that is run (including theaters!)

must have the command line switch -DovHost=<host:port of OVD> to enable event

sending, and to tell SALSA where to send events.

If you wish to use the instrumented version of SALSA without OverView,

simply don’t specify -DovHost! SALSA programs will then run as usual, without

trying to send events.

You can test OverView and SALSA with the following SALSA example:

java -DovHost=<host:port of OVD> examples.fibonacci.Fibonacci 6
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You should begin to see a visualization of the sequence of Fibonacci numbers

being calculated recursively, using SALSA actors.



APPENDIX E

History of SALSA

SALSA has been developed since 1998 by Carlos A. Varela, who was a Ph.D. stu-

dent directed by Gul Agha at University of Illinois at Urbana-Champaign (UIUC).

During the UIUC period, Gregory Haik, a student of Jean-Pierre Briot from the

University of Paris 6, visiting Gul Agha’s lab, made contributions to the transport

layer of SALSA from versions 0.2 to 0.3.3. Carlos A. Varela founded the Worldwide

Computing Laboratory and continued the development of SALSA when he became

a faculty member at Rensselaer Polytechnic Institute in 2001. Many of his students

have participated in the SALSA project since then, including Wei-Jen Wang, Travis

Desell, Kaoutar El Maghraoui, Jason LaPorte, Abe Stephens, and Robin Toll. Abe

Stephens and Travis Desell were the major contributors of SALSA 0.4 to 0.5. They

worked together from 2001 until Abe Stephens graduated. Robin Toll also made

contributions to the SALSA compiler during this period of time. During 2003 and

2004, Travis Desell worked on SALSA 0.6 and 0.7, which then became the founda-

tion of SALSA 1.0. Advanced features such as message properties, name tokens, and

join block continuations were introduced at that time. Wei-Jen Wang and Kaoutar

El Maghraoui joined the SALSA project since 2003. Kaoutar El Maghraoui made

major contributions to the development of the communication layer of the SALSA

0.7. Wei-Jen Wang has been a major developer since 2004. He made another major

change on SALSA in 2004 and released SALSA 1.0 to 1.1.2 (the current release) in

2005 and 2006. He introduced actor garbage collection, fault-tolerance communica-

tion using persistent sockets and messages, actor name deletion support for naming

services, and passing-by-value message delivery. Jason LaPorte joined the SALSA

project in 2006. His contributions relate to the interface between SALSA and the

OverView project. In 2007, Travis Desell redesigned SALSA from the ground up

with performance and concurrency in mind, and named it SALSA Lite 2.0.
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APPENDIX F

SALSA Grammar

The SALSA grammar is listed as follows:

CompilationUnit : :=
[ ModuleDeclarat ion ]
( ImportDec larat ion )∗
Behav io rDec la rat i onAtt r ibu te s
( Behav iorDec larat ion | I n t e r f a c eDe c l a r a t i o n )
<EOF>

ModuleDeclarat ion : :=
"module" Name ";"

ImportDec larat ion : :=
"import" <IDENTIFIER> ("." (<IDENTIFIER> | "*" ) )∗ ";"

Behav io rDec la rat i onAtt r ibu te s : :=
("abstract" | "public" | "final" )∗

I n t e r f a c eDe c l a r a t i o n : :=
"interface" <IDENTIFIER> [ "extends" Name ] Inter faceBody

Name : :=
<IDENTIFIER> ("." <IDENTIFIER>)∗

Inter faceBody : :=
( "{"

( S tateVar iab l eDec l a ra t i on | MethodLookahead ";" )∗
"}"

)∗

BehaviorDec larat ion : :=
"behavior" <IDENTIFIER>

[ "extends" Name]
[ "implements" Name ("," Name) ∗ ]
BehaviorBody

MethodLookahead : :=
MethodAttributes ( Type | "void" )
<IDENTIFIER> FormalParameters
[ "throws" Exceptions ]
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BehaviorBody : :=
"{"

( I n i t i a l i z e r | NestedBehav iorDec larat ion |
StateVar iab l eDec la ra t i on | MethodDeclaration |
Cons t ructorDec la rat i on

)∗
"}"

NestedBehav iorAttr ibutes : :=
("abstract" | "public" | "final" | "protected" |
"private" | "static"

)∗

NestedBehav iorDec larat ion : :=
NestedBehav iorAttr ibutes Behav iorDec larat ion

I n i t i a l i z e r : :=
[ "static" ] Block

S tateVar iab l eAt t r i bu te s : :=
("public" | "protected" | "private" | "volatile" |
"static" | "final" | "transient"

)∗

StateVar iab l eDec l a rat i on : :=
StateVar iab l eAt t r i bu te s
Type
Var iab l eDec la rat i on
("," Var iab l eDec la rat i on )∗ ";"

PrimitiveType : :=
"boolean" | "char" | "byte" | "short" | "int" |
"long" | "float" | "double"

Type : :=
( PrimitiveType | Name) ( "[" "]" )∗

Var iab l eDec la rat i on : :=
<IDENTIFIER> ("[" "]" )∗
[ "=" ( Express ion | Ar r a y I n i t i a l i z e r ) ]

A r r a y I n i t i a l i z e r : :=
"{"

[ ( Express ion | Ar r a y I n i t i a l i z e r )
("," ( Express ion | Ar r a y I n i t i a l i z e r ) )∗

]
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"}"

AssignmentOperator : :=
"=" | "*=" | "/=" | "%=" | "+=" | "-=" |
"<<=" | ">>=" | ">>>=" | "&=" | "^=" | "|="

Express ion : :=
Value
(
( ( Operator | AssignmentOperator ) Value ) |
("?" Express ion ":" Value )

)∗

Operator : :=
"||" | "&&" | "|" | "^" | "&" | "==" | "!=" |
">" | "<" | "<=" | ">=" | "<<" | ">>" | ">>>" |
"+" | "-" | "*" | "/" | "%" | "instanceof"

Value : :=
[ P r e f i x ] Var iab le [ S u f f i x ] ( Pr imarySuf f ix )∗

Pr e f i x : :=
"++" | "--" | "~" | "!" | "-"

Su f f i x : :=
"++" | "--"

Var iab le : :=
[ "(" Type ")" ]
(

L i t e r a l | Name | "this" | "super" |
Al locat i onExpres s i on | "(" Express ion ")"

)

Pr imarySuf f ix : :=
"." "this" | "." Al locat i onExpres s i on |
"[" Express ion "]" | "." <IDENTIFIER> |
Arguments

ResultType : :=
Type | "void"

L i t e r a l : :=
I n t e g e r L i t e r a l | Floa t i n gPo in tL i t e r a l |
Char ac t e rL i t e r a l | S t r i n gL i t e r a l |
Boo l eanL i t e r a l | Nu l l L i t e r a l |



49

TokenLitera l

Arguments : :=
"(" [ Express ion ("," Express ion )∗ ] ")"

Al locat i onExpres s i on : :=
"new" PrimitiveType ArrayDimsAndInits |
"new" Name

( ArrayDimsAndInits | ( Arguments [ BehaviorBody ] ) )
[ BindDec larat ion ]

BindDec larat ion : :=
"at" "(" Express ion [ "," Express ion ] ")"

ArrayDimsAndInits : :=
( "[" Express ion "]")+ ("[" "]" )∗ |
("[" "]")+ A r r a y I n i t i a l i z e r

FormalParameters : :=
"("

[ [ "final" ] Type <IDENTIFIER> ( "[" "]" )∗
( "," [ "final" ] Type <IDENTIFIER> ( "[" "]" )∗ )∗

]
")"

Exp l i c i tCon s t ruc t o r Invoca t i on : :=
"super" Arguments ";"

Cons t ructorDec la rat i on : :=
MethodAttributes <IDENTIFIER> FormalParameters
[ "throws" Exceptions ]
"{"

[ Exp l i c i tCon s t r uct o r I nvoca t i on ] ( Statement )∗
"}"

Cons t ructorAtt r ibu te s : :=
("public" | "protected" | "private" )∗

MethodDeclaration : :=
MethodAttributes
(Type | "void" ) <IDENTIFIER> FormalParameters
[ "throws" Exceptions ] Block

MethodAttributes : :=
("public" | "protected" | "private" | "static" |
"abstract" | "final" | "native"
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)∗

Exceptions : :=
Name ("," Name)∗

Statement : :=
ContinuationStatement |
TokenDeclarat ionStatement |
Loca lVar iab l eDec la rat i on ";" |
Block |
EmptyStatement |
StatementExpress ion ";" |
LabeledStatement |
SynchronizedStatement |
SwitchStatement |
I fS tatement |
WhileStatement |
DoStatement |
ForStatement |
BreakStatement |
ContinueStatement |
ReturnStatement |
ThrowStatement |
TryStatement |
MethodDeclaration |
NestedBehav iorDec larat ion

Block : :=
"{" ( Statement )∗ "}"

Loca lVar iab l eDec la rat i on : :=
[ "final" ] Type
Var iab l eDec la rat i on ("," Var iab l eDec la rat i on )∗

EmptyStatement : :=
";"

StatementExpress ion : :=
Value [ AssignmentOperator Express ion ]

LabeledStatement : :=
<IDENTIFIER> ":" Statement

SwitchStatement : :=
"switch" "(" Express ion ")"

"{" ( SwitchLabel ( Statement )∗ )∗ "}"
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SwitchLabel : :=
"case" Express ion ":" | "default" ":"

I fS tatement : :=
"if" "(" Express ion ")" Statement [ "else" Statement ]

WhileStatement : :=
"while" "(" Express ion ")" Statement

DoStatement : :=
"do" Statement "while" "(" Express ion ")" ";"

For In i t : :=
[ Loca lVar iab l eDec la rat i on |

( StatementExpress ion
("," StatementExpress ion )∗

)
]

ForCondition : :=
[ Express ion ]

ForIncrement : :=
[ StatementExpress ion

("," StatementExpress ion )∗
]

ForStatement : :=
"for"

"(" For In i t ";" ForCondition ";" ForIncrement ")"

Statement

BreakStatement : :=
"break" [<IDENTIFIER>] ";"

ContinueStatement : :=
"continue" [<IDENTIFIER>] ";"

ReturnStatement : :=
"return" [ Express ion ] ";"

ThrowStatement : :=
"throw" Express ion ";"

SynchronizedStatement : :=
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"synchronized" "(" Express ion ")" Block

TryStatement : :=
"try" Block
(

"catch" "(" [ "final" ] Type <IDENTIFIER> ")" Block
)∗
[ "finally" Block ]

ContinuationStatement : :=
( MessageStatement "@" )∗
( MessageStatement | "currentContinuation" ) ";"

MessageStatement : :=
[ NamedTokenStatement ] ( MessageSend | JoinBlock )

JoinBlock : :=
"join" Block

NamedTokenStatement : :=
(<IDENTIFIER> | "token" <IDENTIFIER>) "="

MessageSend : :=
[ Value "<-" ] <IDENTIFIER> MessageArguments
[ ":" MessageProperty ]

MessageProperty : :=
<IDENTIFIER> [ Arguments ]

MessageArguments : :=
"(" [ Express ion ("," Express ion )∗ ] ")"

TokenDeclarat ionStatement : :=
"token" <IDENTIFIER> "=" Express ion ";"

I n t e g e r L i t e r a l : :=
<INTEGER LITERAL>

Floa t i n gPo in tL i t e r a l : :=
<FLOATING POINT LITERAL>

Char ac t e rL i t e r a l : :=
<CHARACTER LITERAL>

S t r i n gL i t e r a l : :=
<STRING LITERAL>
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Boo l eanL i t e r a l : :=
"true" | "false"

Nu l l L i t e r a l : :=
"null"

TokenLitera l : :=
"token"

<IDENTIFIER> : :=
<LETTER> (<LETTER>|<DIGIT>)∗


