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Abstract� The identi�cation of epileptic seizures signi�cantly
relies on monitoring and visual analysis of large amounts of multi-
channel electroencephalographic (EEG) signals. With a goal of
automating this time-consuming and subjective task, we develop a
patient-speci�c seizure recognition model for multi-channel scalp
EEG signals.

We differentiate between seizure and non-seizure periods by
representing multi-channel EEG signals using a set of features
from both time and frequency domains. Our contributions are
threefold: First, we rearrange multi-channel EEG recordings as
a third-order tensor called an Epilepsy Feature Tensor with
modes: time epochs, features and channels. Second, we model
the Epilepsy Feature Tensor using a multi-linear discriminant
analysis based on Multi-linear Partial Least Squares, which is
the generalization of Partial Least Squares regression to tensors.
This two-step approach facilitates the analysis of EEG data
from multiple channels represented by several features from
different domains. Third, our multi-modal approach enables
us to understand the differences between seizures of different
patients by �nding a subset of features capturing the seizure
characteristics of each patient.

We evaluate the performance of our model considering both
sensitivity and speci�city. Our results based on the analysis of 29
seizures from 8 patients demonstrate that multiway analysis of an
Epilepsy Feature Tensor can detect patient-speci�c seizures with
g-means (geometric mean of sensitivity and speci�city) ranging
between 77%-97%. Furthermore, we compare our model with a
two-way model and demonstrate that our multi-modal approach
can improve a two-way analysis approach in terms of detecting
and understanding epileptic seizures.

I. INTRODUCTION

Monitoring and analysis of EEG signals is one of the diagno-
sis tools used in identifying epileptic seizure onsets, localizing
seizure origins and determining the adequate type of treatments
like medications or surgeries. Large amounts of multi-channel
EEG signals are visually analyzed by neurologists with a goal
of understanding when and where the seizures start and how
they propagate within the brain. However, visual analysis of EEG
signals has some drawbacks. It is a time-consuming and subjective
task. Furthermore, it is error-prone due to fatigue, etc. Therefore,
automation of the detection of the underlying brain dynamics in
EEG signals is signi�cant in order to obtain fast and objective
EEG analysis.

A common approach in seizure recognition/detection and also
in prediction is to extract information; in other words, features
that can characterize seizure morphologies, from EEG recordings
[1]�[5]. The procedure for feature extraction from multi-channel

EEG data is often as follows: First, an EEG signal from a channel
is divided into I time epochs (overlapping or non-overlapping)
and then J features are extracted from each epoch. Consequently,
a signal from a single channel can be represented as a matrix
of size I × J . A great deal of effort from different disciplines
has been invested in exploring the features in order to de�ne
the signature of a seizure. These features include statistical com-
plexity measures (e.g., fractal dimension, approximate entropy,
lyapunov exponents, etc.) as well as other features from time
(e.g., higher-order statistics of the signal in time domain, Hjorth
parameters, etc.) and frequency domains (e.g., spectral skewness,
spectral entropy, etc.). A list of features used in characterization of
epileptic seizure dynamics can be found in recent studies [3]�[5].

In the literature, studies use either multiple features from a
single channel or a single feature from multiple channels since
data construction and data analysis techniques are often restricted
to two dimensions. For instance, in [3], seizure dynamics are
analyzed solely on a speci�c recording, which represents the
characteristics of a seizure well. Then the performance of var-
ious features from different domains on that particular signal
is analyzed simultaneously. On the other hand, [5] analyzes
multi-channel EEG data but assesses the performance of each
feature one at a time. Furthermore, different studies extract
different features and employ different algorithms to distinguish
between seizure and non-seizure periods (e.g., [6] and references
therein), which makes it dif�cult to compare the performance
of features. An approach capable of simultaneously analyzing
features would enable the performance comparison of the features
on the same data using the same classi�er. Simultaneous analysis
of features is also important because it may consider linear or
non-linear combinations of features. While a single feature may
not be very effective in discriminating between epileptic periods,
combinations of several features may well be [7]. Taking into
consideration the challenges addressed in the literature, in this
study we introduce a multi-modal data construction and analysis
approach, which rearranges signals from K channels as a third-
order tensor of size I×J×K as shown in Figure 1. We then model
this tensor using multi-linear discriminant analysis by facilitating
simultaneous analysis of EEG data from multiple channels based
on several features from different domains.

In this study, we are particularly interested in distinguishing a
seizure (ictal) period from a pre-seizure (pre-ictal) and a post-
seizure (post-ictal) period. Moreover, we want to be able to
characterize seizures of patients using a subset of features and
understand the differences between seizures of different patients.
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Fig. 1. Epilepsy Feature Tensor. X ∈ RI×J×K represents the multi-channel
EEG data transformed into the feature space by computing certain measures
characterizing seizure dynamics. Each entry of X, xijk , corresponds to the
value of jth feature of ith time epoch at kth channel.

Our ultimate goal is to mark the seizure period but not to predict
an upcoming seizure or to detect the seizure onset with minimum
delay. This study, therefore, differs from the related work on
seizure detection and prediction, e.g., [1], [5], [8]. They either
focus on the identi�cation of features distinguishing between
inter-ictal and pre-ictal periods or aim to detect an epileptic
seizure with possible minimum delay using features from a
particular domain. Nevertheless, multiway data construction and
analysis approach introduced in this paper can be easily extended
to seizure prediction and detection.

Multi-linear models have been previously employed in several
applications in neuroscience. In [9], EEG data and data collected
through experiments with different doses of a drug are arranged
as a six-way array with modes: EEG, patients, doses, condi-
tions, time and channels. The analysis of the six-way dataset
demonstrates that signi�cant information is successfully extracted
from a complex drug dataset by a multi-linear model rather than
two-way models such as Principal Component Analysis (PCA).
Multiway models have become more popular in neuroscience
with the idea of decomposing EEG data into space, time and
frequency components [10]. The three-way array constructed from
multi-channel EEG data in [10] with modes time samples ×
frequency × channels is analyzed using a multi-linear com-
ponent model called Parallel Factor Analysis (PARAFAC) [11].
Components extracted by a PARAFAC model are observed to
demonstrate the temporal, spectral and spatial signatures of EEG.
PARAFAC models with nonnegativity constraints are later used
in another study on event-related potentials (ERP) to �nd the un-
derlying structure of brain dynamics [12]. These studies have also
motivated the application of multiway models for understanding
the structure of epileptic seizures [13]�[15]. Similar to the three-
way array constructed in [10], multi-channel ictal EEG data are
arranged as a third-order tensor with modes time samples ×
frequency × channels using the power of wavelet coef�cients
in [13] and [14] and using pure wavelet coef�cients in [15].
Components extracted by PARAFAC are later used to explore the
signatures of a seizure in the frequency and time domains as well
as localize the seizure origin. Based on the extracted signatures,
artifacts have also been identi�ed and later removed by multi-
linear subspace analysis in [14]. In addition to the applications
of multi-linear component models, multi-linear regression models
have also been previously employed in neuroscience, e.g., in [16]
for extracting the connection between EEG and fMRI (functional
magnetic resonance imaging) recordings.

A. Our Contributions
We address the problem of identifying an epileptic seizure

automatically from multi-channel scalp EEG signals. We intro-
duce a novel approach, which combines the seizure recognition
power of several features from different domains and classi�es
epochs of signals from multiple channels as seizure or non-seizure
periods. This paper is an extension of our preliminary study on
seizure recognition using Epilepsy Feature Tensors [17] and our
contributions are as follows:
• We rearrange multi-channel scalp EEG recordings as a third

order tensor, Epilepsy Feature Tensor, with modes: time

epochs ×features × channels. We extract features from
both the time and frequency domains and represent a signal
using a set of feature vectors. We have omitted some of
the features used in [17] and added new features like mean
absolute slope and spatial information. We do not make any
assumptions about the seizure origin and analyze the signals
from all channels simultaneously.

• We model Epilepsy Feature Tensors using multi-linear
discriminant analysis based on Multi-linear Partial Least
Squares (N-PLS) and Linear Discriminant Analysis (LDA).
We develop a patient-speci�c seizure recognition model
and compare the performance of this multi-modal approach
with that of a two-way approach based on Support Vector
Machines (SVM).

• We extend a feature selection method used in two-way
regression analysis to three-way regression models. Feature
selection enables us to determine a subset of features for
each patient, which can improve our understanding of the
differences between seizures of different patients.

The organization of this paper is as follows: In Section 2,
we include a brief introduction on higher-order datasets and
multi-linear regression models. Features extracted from EEG
signals and the characteristics of the EEG dataset are described
concisely in Section 3 and 4, respectively. We introduce our
seizure recognition model based on N-PLS and LDA in Section
5. The performance of the model on the sample EEG dataset is
discussed in Section 6. We conclude, in Section 7, with future
directions in seizure recognition.

II. METHODOLOGY

Regression models, e.g., multiple linear regression, PLS and
Principal Component Regression, are commonly applied in pre-
diction and classi�cation problems in diverse disciplines. While
these models are employed on datasets of order no higher than two
(vectors or matrices), the independent variable in this study, i.e.,
multi-channel EEG data, is a third-order tensor (Figure 1). This
section brie�y introduces higher-order arrays and the regression
model, i.e., Multi-linear Partial Least Squares, developed for
higher-order data analysis.

A. Notation and Background
Multiway arrays, also referred to as tensors, are higher-order

generalizations of vectors and matrices. Higher-order arrays are
represented as X ∈ RI1×I2...×IN , where the order of X is N

(N > 2) while a vector and a matrix are arrays of order 1 and 2,
respectively. In higher-order array terminology, each dimension
of a multiway array is called a mode (way) and the number of
variables in each mode is used to indicate the dimensionality of
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Fig. 2. Matricization of a three-way array in the �rst mode. A three-way
array X ∈ RI×J×K is unfolded in the �rst mode and a matrix of size
I × JK, denoted by X(1), is formed. Subscript in X(i) indicates the mode
of matricization.

a mode. For instance, X ∈ RI1×I2...×IN is a multiway array with
N modes (called N -way array or N th-order tensor) with I1, I2,
...,IN dimensions in the �rst, second, ... , N th mode, respectively.

A multiway array can be rearranged as a two-way array by
unfolding the slices in a certain mode, e.g., the �rst mode as
shown in Figure 2. This operation is called matricization (or
unfolding/�attening). Rearranging multiway arrays as two-way
datasets enables the application of traditional component and
regression models for two-way datasets on multiway arrays.
However, analyzing multiway datasets with two-way methods
may result in a more complex model harder to interpret and in
some cases with low prediction accuracy if the data are noisy
[18]. Therefore, we preserve the multi-modality of the dataset and
employ a generalized version of a regression model, i.e., PLS, to
higher-order arrays.

We denote higher-order arrays using underlined boldface let-
ters, e.g., X, following the standard notation in the multiway
literature [19]. Matrices and vectors are represented by boldface
capital, e.g., X, and boldface lowercase letters, e.g., x, respec-
tively. Scalars are denoted by lowercase or uppercase letters, e.g.,
x or X.

B. Multi-linear Partial Least Squares (N-PLS)
Multi-linear PLS is introduced as a generalization of PLS to

multiway datasets [20]. This method can handle the situations
where dependent and/or independent variables are multiway ar-
rays. In this study, we con�ne our attention to the case where
the independent variable, X ∈ RI×J×K , is a three-way array of
type Epilepsy Feature Tensor and the dependent variable, y ∈ RI ,
is a vector containing the labels of time epochs (seizure or non-
seizure). Multi-linear PLS models the dataset X by extracting
a component, t ∈ RI , from the �rst mode such that cov(t, y) is
maximized. A pre-de�ned number of components, N , is extracted
iteratively and the matrix T ∈ RI×N , whose columns are the
extracted components (t's), is constructed. In addition to T,
component matrices, WJ and WK , corresponding to the second
and third modes, respectively are also formed. The steps of the
algorithm are brie�y summarized in Algorithm 1 and discussed
in detail in [21].

One advantage of N-PLS over two-way regression analysis
is that when we use N-PLS, we obtain component matrices
corresponding to each mode of a third-order Epilepsy Feature
Tensor: T, WJ and WK corresponding to the time epochs,
features and channels modes. We will see in Section 5 how
extracting components separately from each mode makes feature
selection possible. If we used PLS on an unfolded dataset of type:

Algorithm 1 Multi-linear PLS(X, y, N )
1: y0 = y, X0 = X(1)

2: for i = 1 to N do
3: z = yT

i−1Xi−1

Reshape z as a matrix Z ∈ RJ×K such that Z(m, n) =

z(m + J ∗ (n− 1))

4: {Compute singular value decomposition of matrix Z}
Z = USVT

5: wJ = U(:, 1), wK = V(:, 1)

WJ (:, i) = wJ , WK(:, i) = wK

6: T(:, i) = Xi−1(wK ⊗wJ )

7: Xi = Xi−1 − T(:, i)(wK ⊗ wJ )′

8: bi = (TT T)−1TT yi−1 = T+yi−1

9: {Regression and De�ation}
yi = yi−1 − Tbi = (I− TT+)yi−1

10: end for
*
X(1) stands for the tensor X matricized in the �rst mode. Xi indicates
matricized data in the �rst mode updated/de�ated by the computation
of i components. A(i, j) represents the entry of matrix A at the ith

row and jth column while A(:, j) represents the jth column of matrix
A. WJ and WK correspond to the component matrices in the second
and third modes, respectively. T+ stands for pseudo-inverse de�ned
as T+ = (TT T)−1TT . ⊗ indicates the Kronecker product [22].

time epochs by features− channels, then we would have only
the component matrices T and W, where W would correspond to
both features and channels modes, making the interpretation and
feature selection much harder.

III. FEATURES

An EEG recording from a single channel is a sequence of time
samples. One approach for analyzing a time series is to divide
the time series into time epochs and inspect whether there are
certain underlying dynamics in a particular epoch. This could be
achieved by extracting measures that characterize those dynamics.
Then each epoch can be represented using a set of measures
called features. Let s(j) denote the time sample at time j and
s = {s(1), s(2), ...s(N)} be the time sequence for a particular
epoch of length N . We represent each feature as fi(s), which
denotes the ith feature computed on the time epoch s. In this
section, we give brief de�nitions of the features used in this paper.

A. Time domain
1) Hjorth parameters: Hjorth parameters including activity,

mobility and complexity are computed as de�ned in [3] as
follows:

Activity : f1(s) = σ2
s

Mobility : f2(s) = σs′/σs

Complexity : f3(s) = (σs′′/σs′)/(σs′/σs)

where σs stands for the standard deviation of a time sequence s;
s′ and s′′ denote the �rst and second difference of a time series
s, respectively. dth difference of a time series can be denoted
as follows (1 − B)ds(t), where B is the backshift operator. The
backshift operator applied to a time sample can be represented as
Bjs(t) = s(t− j) [23].
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Fig. 3. Mean Absolute Slope of epochs from all channels for the �fth seizure
of the second patient. Epochs marked with blue and red belong to non-seizure
and seizure periods, respectively. Green epochs are the transition epochs from
pre-seizure to seizure or seizure to post-seizure periods.

2) Mean Absolute Slope: Absolute slope is calculated using the
consecutive differences between time samples in a time sequence:
AS(t) = |s(t+1)−s(t)| for each time sample s(t) in a time epoch
s [24]. In addition to its simplicity and ef�ciency, absolute slope
can capture both high-amplitude slow and low-amplitude fast
activities, that are often observed on seizure onsets. We extract
the mean of absolute slopes computed for each time sample in a
time epoch as the fourth feature, f4(s) (Figure 3). This feature
should be a more reliable feature for intracranial EEG recordings,
which are not contaminated with artifacts and less reliable, in our
case, for scalp EEG recordings often contaminated with artifacts.
However, we have observed that this feature contributes to seizure
recognition in half of the patients in our dataset [Table III].

3) Spatial Information: During visual analysis, neurologists
take into consideration not only the signal from a single channel
but also the activity in other channels, especially in the neighbor-
ing channels and expect to observe synchronization. Therefore,
in order to quantify the similarity between neighboring channels
in each time epoch, we �rst de�ne neighbors for each channel
and then use the covariance between neighboring channels as
a feature (Figure 4). Let X be a matrix of type: time samples
by channels, for a particular time epoch s. We de�ne spatial
information, the �fth feature extracted from an epoch s, for
channel i as f5(s, i) =

P
j∈NEIGHi

|Cij |, where NEIGHi

contains the neighbors of channel i and C is the covariance matrix
corresponding to the channels in X.

B. Frequency domain
1) Frequency Spectrum: We reduce the time series at least to

a mean-stationary time series by taking the �rst difference of the
signal before computing the amplitude spectrum. Given a time
series s corresponding to a particular epoch, we use a Fast Fourier
Transform (FFT) to obtain the Fourier coef�cients, ck, where
ck = 1

N

PN
t=1 s(t)e−i 2πk

N t. Based on the Fourier coef�cients,
we construct the amplitude spectrum using |ck|. The amplitude
spectrum is then used to extract the sixth feature, f6(s), which is
the median frequency.

2) Spectral Entropy: The last feature is a measure used to
quantify the uncertainty in the frequency domain. Five frequency
bands in accordance with the traditional EEG frequency bands
( [25] and references therein) are chosen: δ (0.5 - 3.5Hz), θ
(3.5 - 7.5Hz), α (7.5 - 12.5Hz), β (12.5 - 30Hz), γ (> 30Hz).
We apply continuous wavelet transform between 0.5-50Hz using
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Fig. 4. Spatial Information of epochs from all channels for the second seizure
of the second patient. Epochs marked with blue and red belong to non-seizure
and seizure periods, respectively. We observe a clear increase in similarity
between neighboring channels during a seizure period. Green epochs are the
transition epochs from pre-seizure to seizure or seizure to post-seizure periods.

a Mexican-hat wavelet as the mother wavelet on each epoch.
Wavelet coef�cients are later used to observe the energy spread
across these �ve frequency bands in each epoch. Let Ef be the
estimate of the energy in frequency band f and ET be the estimate
for the total energy in all frequency bands computed as follows:

Ef =

NX
i=1

SX
j=1

|cij |2

ET =

5X
f=1

Ef

where cij denotes the wavelet coef�cient corresponding to the
ith time sample in an epoch and jth scale, N is the length of
an epoch and S is the number of scales. We compute spectral
entropy, H , using Shannon's entropy measure [26] as follows:
H = −P5

f=1
Ef

ET
log(

Ef

ET
), which is the seventh feature extracted

from an epoch s, f7(s).
The list of these features can be easily extended by adding

vertical slices to the three-way dataset given in Figure 1.

IV. DATA

Our dataset contains multi-channel scalp EEG recordings of 29
seizures from 8 patients suffering from focal epileptic seizures.
The EEG data have been collected via scalp electrodes in the
epilepsy monitoring unit of Yeditepe University Hospital and
Albany Medical College. The recording of EEG with referential
electrode Cz is used for computational analysis. The number of
seizures per patient as well as sizes of Epilepsy Feature Tensors
with modes: time epochs, features and channels, are given in Table
I. EEG recordings are not preprocessed to remove artifacts. The
data for the �rst patient are sampled at 200Hz and the data for
other patients are sampled at 400Hz. The signals are �ltered at
50 Hz (for the data from Yeditepe University) and 60 Hz (for the
data from Albany Medical College) to remove the artifacts from
the power source.

The data corresponding to a seizure of a patient contain a
certain amount of data right before the seizure, the seizure period
and a certain amount of data right after the seizure period. We
try to include data from pre-seizure and post-seizure periods,
each as long as the seizure duration. Each signal is divided into
epochs of 10 sec. (an epoch typically contains 2000 or 4000
samples depending on the sampling frequency.). The epochs are
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Fig. 5. Construction of an Epilepsy Feature Tensor from multi-channel EEG
data.

TABLE I
EEG DATASET. MULTI-CHANNEL SCALP EEG SIGNALS FROM EPILEPSY

PATIENTS WITH AT LEAST THREE RECORDED SEIZURES ARE INCLUDED IN

OUR ANALYSIS. THE LAST COLUMN GIVES THE SIZE OF THE

THIRD-ORDER TENSOR CONSTRUCTED FOR EACH SEIZURE OF A PATIENT.
EACH SUCH TENSOR CONTAINS SOME DATA BEFORE AND AFTER SEIZURE

AS WELL AS THE SEIZURE PERIOD.

PatientId SeizureId Size of Epilepsy Feature Tensor
1 302× 7× 18
2 386× 7× 18

1 3 320× 7× 18
4 398× 7× 18
5 444× 7× 18
1 878× 7× 18
2 866× 7× 18

2 3 902× 7× 18
4 986× 7× 18
5 998× 7× 18
1 790× 7× 18

3 2 746× 7× 18
3 1034× 7× 18
1 1174× 7× 18

4 2 1346× 7× 18
3 1170× 7× 18
1 62× 7× 18

5 2 74× 7× 18
3 458× 7× 18
1 226× 7× 18

6 2 186× 7× 18
3 186× 7× 18
4 186× 7× 18
1 638× 7× 18

7 2 630× 7× 18
3 578× 7× 18
1 866× 7× 18

8 2 1082× 7× 18
3 842× 7× 18

formed using a sliding window approach such that consecutive
epochs differ only in 100 samples. Seven features are computed
for each epoch and a matrix of size nb of time epochs × 7 is
created for a signal from a single channel. When all channels
are included in the analysis, this forms a three-way array of
nb of time epochs× 7× 18 for each seizure (Figure 5).

The seizure period is visually identi�ed by neurologists for each
seizure of a patient. In accordance with the markings, the epochs
are divided into two classes: epochs that belong to the seizure
period and the ones outside the seizure period. The dependent
variable, i.e., y-vector in Algorithm 1, corresponding to the time
epochs mode of an Epilepsy Feature Tensor is then constructed

such that: yi = 1 if ith epoch is outside the seizure period
and yi = 2 if ith epoch belongs to the seizure period. Since
epochs are formed using a sliding window approach, some epochs
contain samples from both pre-seizure and seizure periods or both
seizure and post-seizure periods. These epochs are excluded from
training and test sets so that the performance of the model is
not affected by epochs containing the characteristics of different
seizure dynamics.

V. SEIZURE RECOGNITION

We build our model on a training set constructed using all but
one seizure of a patient together with the corresponding labels
of the epochs. Once the training set is formed, we scale the
three-way array within the features mode before the analysis
since features have different ranges of magnitudes (See Figure
3 and Figure 4). Scaling a three-way array within one mode is
different than scaling two-way datasets. Unlike matrices where
columns or rows are scaled, in the three-way case, whole matrices
need to be scaled [27]. Before the analysis, both independent and
dependent data are also centered. We regress the data for all the
seizures in the training set onto the y-vector containing 1's and
2's (for non-seizure and seizure, respectively) using Multi-linear
PLS regression and build a model based on Algorithm 11.

Since N-PLS is a regression method and we need a binary
classi�er to classify time epochs as seizure and non-seizure, we
combine N-PLS with LDA. When we model the training set,
Xtrain ∈ RI×J×K , using N-PLS, we extract the component
matrices corresponding to each mode of a three-way array. Let
Ttrain ∈ RI×N , WJ ∈ RJ×N and WK ∈ RK×N be the
component matrices corresponding to the �rst, second and third
modes, respectively. We can use this model to predict the labels of
the time epochs in other EEG recordings of that particular patient;
in other words the labels of the time epochs in our test set, which
contains the left-out seizure and the recordings before and after
that seizure (Figure 6). Let Xtest ∈ RR×J×K be a third-order
tensor representing the time epochs in our test set. We can then
compute Ttest ∈ RR×N using the component matrices WJ and
WK extracted from the training set based on the general formula
derived in [22]:

R = [w1 (I− w1wT
1 )w2 ... (

N−1Y
n=1

(I−wnwT
n ))wN ]

Ttest = Xtest (1)R

where Xtest (1) is the matrix formed by unfolding Xtest in the
�rst mode and vector wi equals to the Kronecker product of ith

column of matrices WK and WJ : wi = wK
i ⊗ wJ

i . Once we
obtain the t-scores for the epochs in the test set, we can then
determine the class (seizure or non-seizure) of each time epoch by
comparing Ttest with Ttrain through LDA using the discriminant
function given in [28].

A. Feature Selection
Not every feature in our feature set may be a powerful dis-

criminator between seizure and non-seizure dynamics. Therefore,

1Implementation of N-PLS in PLS Toolbox (by Eigenvector Research Inc.)
running under MATLAB is used for the analysis.
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Fig. 6. Patient-speci�c Seizure Recognition Model. Multi-channel EEG signals corresponding to the data before, during and after each seizure of a patient
are arranged as a third-order Epilepsy Feature Tensor. Then training and test sets are constructed by leaving out one seizure (together with data before and
after that seizure period) at a time. The model built on the training set is used to predict the labels of the time epochs in the test set using NPLS and LDA.
Final step is performance evaluation using the average performance of the model on test sets.

we identify the signi�cant features for seizure recognition using
a variable selection approach.

Our variable selection method is an extension of Variable
Importance in Projection (VIP) to three-way datasets. VIP is used
in two-way regression analysis and based on the idea of factor
models. In linear factor models, several components summarizing
the data are extracted either to explain the variance in the data,
e.g., as in PCA, or to capture the correlation between two
datasets, e.g., as in PLS or in Canonical Correlation Analysis.
The components extracted in these linear factor models are linear
combinations of the variables in the data. The variable selection
method, VIP, computes a VIP-score for each variable in order
to quantify a variable's importance by using the coef�cient of
a variable in each component together with each component's
signi�cance in regression. Variables with a VIP-score under a
certain threshold are then removed from the data since they are
considered insigni�cant. Let X ∈ RI×J and y ∈ RI be the
independent and dependent variables, T ∈ RI×N represents the
lower dimensional space X is mapped to and b ∈ RN contains
the regression coef�cients such that we can write y = Tb+ e and
X = TW + E, where e and E contain the residuals. The VIP-score
of the ith variable is then calculated as follows [29]:

V IPi =

vuutI ×
PN

n=1 b2ntTn tn(win/|wn|)2PN
n=1 b2ntTn tn

where wn and tn correspond to the nth column of matrix W and
T, respectively and win is the entry in the ith row of the nth

column of matrix W. bn is the regression coef�cient for the nth

component; in other words, the nth entry of vector b.
Similarly, in N-PLS we extract component matrices corre-

sponding to each mode of a higher-order dataset. Each column of
a component matrix contains the coef�cients corresponding to the

variables in a speci�c mode and represents a component, which
is a linear combination of the variables. Let the independent and
dependent variables be X ∈ RI×J×K and y ∈ RI , respectively
and let T ∈ RI×N , WJ ∈ RJ×N and WK ∈ RK×N be the
component matrices corresponding to the �rst (time epochs),
second (features) and third (channels) modes. In the computation
of VIP scores for variables in one mode of a three-way array,
we replace matrix W with the component matrix in the mode
where we select variables, in our case with WJ corresponding to
the features mode. In addition, we project the data X onto WJ :
F = X(2)WJ and use the columns of matrix F, i.e., fn, instead
of t-scores.

V IPi =

vuutI ×
PN

n=1 b2nfTn fn(wJ
in/|wJ

n|)2PN
n=1 b2nfTn fn

Since the average of squared VIP scores equals 1, a general
criterion is to select the variables with VIP score greater than
1. On the other hand, we just want to remove insigni�cant
variables and include most of the variables contributing to seizure
recognition in our analysis. Therefore, we lower the threshold to
0.7 and this threshold is set to the same value for all patients.

When we analyze Epilepsy Feature Tensors with N-PLS, we
have the chance to select features independent of the channels
because N-PLS models the data by constructing different compo-
nent matrices for each mode. On the other hand, if we matricized
an Epilepsy Feature Tensor, then we would obtain a matrix of
time epochs by features − channels. In that case, we would
not be able to select only features but rather a feature from a
particular channel since each variable would be a combination of
features and channels.
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B. Parameter Selection
As seen in Algorithm 1, the number of components in N-

PLS, N , is a user-de�ned parameter. In order to determine N ,
we use cross-validation on the training set. Each seizure of a
patient in the training set is left out once and tested for different
number of components ranging from 1 to 20. We then compare
the predictions obtained by the model for all seizures in the
training set with their actual labels. The component number,
which gives the best overall classi�cation performance in terms
of both sensitivity and speci�city, is selected to build the model
to be used on the test set.

In addition to the parameter N , there are other parameters to
be determined in our analysis. For instance, we set the duration
of an epoch to 10 seconds. It has been set to different values
in the literature, e.g., 1 second [3], 2 seconds ( [1], [2]), 10
seconds [4] and around 20 seconds [5]. Besides, the duration
of overlap between consecutive epochs, the maximum number
of components in an N-PLS model and the threshold for a VIP
score are other user-de�ned parameters. For each parameter, we
use the same value for each patient. In future studies, we also
plan to study the sensitivity of the performance of the model on
each patient to each one of these parameters.

VI. RESULTS AND DISCUSSIONS

We determine the performance of the model for each patient
by computing the average performance over all seizures of the
patient. We build a training set using all but one seizure of
a patient and use the training set to determine the number of
components in N-PLS and also to select a subset of features.
We then test the model on the left-out seizure of that particular
patient.

As a performance evaluation criterion, we use the geometric
mean of sensitivity and speci�city, which is called g-means.
G-means is de�ned as g =

√
sensitivity × specificity [30].

Sensitivity indicates the proportion of the true-positives to the sum
of true-positives and false-negatives, where true-positives are the
time epochs that belong to the seizure period and are classi�ed as
seizure; false-negatives are the seizure epochs that are classi�ed
as non-seizure. Speci�city, on the other hand, is the ratio of true-
negatives to the sum of true-negatives and false-positives, where
true-negatives are the time epochs that belong to non-seizure
period and are classi�ed as non-seizure; false-positives are the
non-seizure epochs classi�ed as seizure.

Table II demonstrates the performance of the model on eight
patients. We show the average g-means for each patient both with
feature selection and without feature selection. We observe that
feature selection is especially useful for Patient 4, 5 and 6 to detect
seizures. For instance in Patient 5, who has three seizures, �rst
two seizures are not detected at all without feature selection and
this results in very poor performance. On the other hand, when we
select a subset of features based on the EEG signals of the patient
in the training set, we re�ne the model and detect all seizures
of the patient with average g-means around 83%. Table III
shows the subset of features used in seizure-recognition for each
patient. Since we form training sets by leaving-out one seizure
at a time, different features can be selected from each training
set. The features given in Table III correspond to the union of
subsets of features selected from each training set. These subsets
of features can be further used to understand the differences
between patients. For instance, different seizure locations may

result in differences in the features used for seizure recognition.
Nevertheless, we should point out that feature selection may also
result in over�tting the seizures in the training sets. Therefore,
in the cases where there is variation among seizures of a patient,
feature selection may degrade the performance.

We also assess the performance of the multi-modal data con-
struction and modeling approach by comparing its performance
with that of a two-way classi�cation model. We unfold the
Epilepsy Feature Tensor in the time epochs mode as shown in
Figure 2 and then use SVM [31] to classify epochs as seizure
and non-seizure. Similarly, [1] has previously proposed a patient-
speci�c seizure detection model by representing each time epoch
with a feature vector and then classifying the time epochs using
SVMs. When we unfold the Epilepsy Feature Tensor in the time
epochs mode, we have 7 × 18 = 126 features corresponding to
each time epoch. We employ SVM2 to classify the time epochs
based on those 126 features. For each patient, we build a patient-
speci�c model using all but one seizure of a patient and then
test the model on the left-out seizure and recordings before and
after that particular seizure. After each seizure is left-out once, we
compute the average performance of the model for each patient.
We use radial basis function kernel with a parameter adjusted for
each patient. The parameter for each patient is determined using
cross-validation on the training set in the same way the number
of components for an N-PLS model is determined. Table II
demonstrates the g-means corresponding to each patient obtained
using a two-way approach. We observe that while SVM has a
fairly good performance in terms of seizure detection, for the
cases when it performs poorly, our multi-modal approach using
feature selection improves the performance of the model. For
example, in Patient 5, two-way analysis approach cannot detect
one of the seizures at all and this results in low average g-
means while NPLS+LDA with feature selection can capture all
seizures. By preserving the multi-modality of the data, multiway
data analysis keeps the model simple and makes the interpretation
easier so that we can easily select features, which in turn would
improve the performance resulting in some cases in much better
performance than SVM.

VII. CONCLUSION

We have introduced a multi-modal data construction and anal-
ysis approach for patient-speci�c seizure detection using multi-
channel scalp EEG signals. Multi-modality of the data enables us
to represent EEG signals from multiple channels using various
features from different domains as a third-order tensor called
Epilepsy Feature Tensor with modes: time epochs, features and
channels. We analyze these multiway arrays using a multi-linear
discriminant analysis based on N-PLS in order to classify time
epochs as seizure or non-seizure. We combine this multi-modal
approach with a variable selection method to identify a subset of
features with discriminative power in terms of seizure detection
for each patient. Our results demonstrate that multiway data anal-
ysis can detect patient-speci�c seizures with high performance
and improve our understanding of different seizure structures by
giving us the chance to compare seizures of patients through the
features used in seizure detection.

In this study, we have tried to extract various features that
can differentiate between seizure and non-seizure periods. While

2Implementation of support vector machines called SV M light [32] is used
in the analysis.
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TABLE II
SEIZURE VS. NON-SEIZURE. PERFORMANCE OF THREE-WAY (NPLS-BASED) AND TWO-WAY (SVM-BASED) APPROACHES IN TERMS OF GEOMETRIC

MEANS OF SENSITIVITY AND SPECIFICITY OF THE MODEL. THE ROW CORRESPONDING TO NPLS + LDA SHOWS THE RESULTS WITHOUT FEATURE

SELECTION WHILE THE ROW CORRESPONDING TO NPLS + LDA (FS) DEMONSTRATES THE RESULTS OF THE MODEL WITH FEATURE SELECTION.

Seizure vs. Non-seizure Patient1 Patient2 Patient3 Patient4 Patient5 Patient6 Patient7 Patient8 MEAN
NPLS + LDA 85.3% 97.6% 91.3% 75.0% 28.6% 72.3% 97.0% 86.0% 79.1%

NPLS + LDA (FS) 86.6% 96.7% 91.1% 77.3% 83.1% 89.3% 92.1% 78.4% 86.8%

SVM 86.9% 98.6% 98.4% 76.3% 44.8% 88.3% 98.2% 94.0% 85.7%

TABLE III
SUBSETS OF FEATURES USED IN THE PATIENT-SPECIFIC SEIZURE RECOGNITION MODEL OF EACH PATIENT. PATIENT 1, 2, 7 AND 8 HAVE RIGHT

TEMPORAL SEIZURES. PATIENT 3 AND 4 SUFFER FROM LEFT FRONTAL AND LEFT TEMPORAL SEIZURES, RESPECTIVELY. PATIENT 5 IS BILATERAL

CENTRAL FRONTAL AND PATIENT 6 IS BILATERAL OCCIPITAL. WHILE SUBSETS OF FEATURES TEND TO BE SIMILAR BASED ON SEIZURE ORIGINS, IT IS

NOT POSSIBLE TO MAKE GENERALIZATIONS ON A SMALL SET OF PATIENTS.

Activity Mobility Complexity Mean Abs. Slope Spatial Info. Median Freq. Spectral Entropy
Patient1 X X X X X × X
Patient2 X X X X X × X
Patient3 X X X × X × X
Patient4 X X X × X × X
Patient5 X X X × × × X
Patient6 X X X × X × ×
Patient7 X X X X X × X
Patient8 X X X X X × ×

TABLE IV
PRE-SEIZURE VS. POST-SEIZURE (BINARY CLASSIFICATION WITHIN NON-SEIZURE EPOCHS). EACH ENTRY SHOWS THE PERFORMANCE OF THE MODEL

WHEN IT IS TRAINED ON NON-SEIZURE EPOCHS BEFORE/AFTER SOME SEIZURES OF A PATIENT AND TESTED ON NON-SEIZURE EPOCHS BEFORE/AFTER

ANOTHER SEIZURE OF THAT PARTICULAR PATIENT.

Pre-seizure vs. Post-seizure Patient1 Patient2 Patient3 Patient4 Patient5 Patient6 Patient7 Patient8
NPLS + LDA 93.1% 98.0% 94.2% 88.4% 8.1% 64.7% 85.9% 85.3%

these features can re�ect the differences between seizure and non-
seizure dynamics to a certain extent, we also explore whether
these features can capture the differences between pre-seizure and
post-seizure periods. Table IV shows that if we only analyze the
data from pre-seizure and post-seizure periods, we can classify
epochs into pre-seizure and post-seizure classes with very high
performance for most of the patients. These results suggest that
we indeed have a multi-class classi�cation problem at hand or
we should extract features such that they will be different only in
seizure period in order to improve the performance of the model.

Throughout the paper, we have mainly focused on classi�cation
of time epochs and selection of features. On the other hand, we
have one more mode that we can consider: channels mode. The
components in the channels mode can further be explored to see
whether seizure localization can be achieved. Besides, in this
study we have addressed only patient-speci�c seizure detection.
On the other hand, patient non-speci�c seizure detection is the
ideal seizure detection approach since it would be much more
ef�cient to build a model using the previously recorded seizures
of other patients and use that model to detect seizures of new
patients. However, patient non-speci�c seizure recognition is quite
challenging considering that patients suffer from seizures with
different morphologic and topographic characteristics and training
on one type and testing on another may not perform well if the
right features are not identi�ed.
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