
Robust Partitional Clustering by Outlier and Density
Insensitive Seeding

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed J. Zaki
Dept. of Computer Science, Rensselaer Polytechnic, Troy, NY, 12180

{alhasan, chaojv, salems, zaki}@cs.rpi.edu

ABSTRACT
The partitional clustering technique, k-means, is one of the
most computationally efficient clustering methods. How-
ever, it produces a local optimal solution that strongly de-
pends on its initial seeds. Bad initial seeds can also cause
the splitting or merging of natural clusters even if the clus-
ters are well separated. In this paper, we propose, ROBIN,
a novel method for initial seed selection in k-means types
of algorithms. ROBIN is a deterministic and robust ini-
tialization method that is virtually insensitive to outliers in
the data, and it can also handle variable density or multi-
scale clusters. Since it is deterministic, only one run suf-
fices to obtain good initial seeds, as opposed to traditional
random seed selection approaches that need many runs to
obtain good seeds that lead to satisfactory clustering. We
did a comprehensive evaluation of ROBIN against state-of-
the-art seeding methods on a wide range of synthetic and
real datasets. We show that ROBIN consistently outper-
forms existing approaches in terms of the clustering quality
(squared error).
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1. INTRODUCTION AND BACKGROUND
Clustering is one of the most fundamental tasks in ex-

ploratory data analysis that groups similar points in an un-
supervised fashion. The clustering problem has been studied
in many disciplines such as statistics, pattern recognition,
signal processing (e.g., vector quantization), biology, and so
on. As a consequence numerous clustering algorithms had
been proposed in these different communities, spanning dif-
ferent clustering paradigms such as partitional [12, 19, 18],
hierarchical [14], spectral [24], density-based [11], mixture-
modeling [13], and so on. Subspace clustering methods [22]
have also been proposed, but in this paper our focus is on
full-dimensional clustering methods.
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k-means is one of the earliest clustering algorithms which
has been proposed independently in [12, 19] and in [18]. The
typical formulation of k-means is as follows: Given k, the
number of clusters to find, and a set of n data points in R

l,
the goal is to choose k points as centers so as to minimize
the sum of the distance between each point and its closest
center. This formulation, which we adopt in this paper, is
also named as distortion minimization clustering. Consid-
ered in an optimization framework, the objective function
is non-convex and hence, it is difficult to obtain a global
optimal solution. In fact, if we require that the cluster cen-
ters be actual data points, the problem is NP-Hard even for
k = 2 [10].

Even though it is difficult to obtain a global optimal so-
lution for k-means, finding a local optimal solution is very
cheap. Lloyd’s algorithm [18] can be used to obtain such a
solution. It chooses a set of random k data points as centers.
All the remaining data points are assigned to their nearest
centers. This forms the initial clusters. Then, for each clus-
ter, its center is recomputed as the center of mass of all
points assigned to it. These two steps, cluster assignment
and center recomputation, are repeated until the clusters
assignments converge. It is easy to show that every suc-
cessive iteration improves the distortion, and the algorithm
terminates with a local optimal solution.

Though not optimal in the global sense, k-means is still
the most popular clustering method for a variety of appli-
cations [5]. Recently k-means was even voted as one of the
top ten algorithms in data mining [27]. The main reason for
the popularity of k-means is its simplicity and efficiency. In
fact, it has been shown that the convergence rate of k-means
is comparable to Newton’s method, which is quadratic [6].
Moreover, it does not require the computation of O(n2) dis-
tances/similarities as in hierarchical or spectral clustering
algorithms. Many distance computations can also be saved
by using geometric data structures, like k-d trees [21].

The enormous popularity of k-means has motivated re-
search to remedy its limitations, specially safeguarding against
bad local optimal solutions. Note that, the solution space
of any clustering is just a k-partition of the data points, so
a neighborhood consists of other k-partitions that are very
similar to it. Hence, once a k-partition is obtained by k-
means, random re-shuffling of a few points across different
clusters generally does not produce a better clustering, since
the modified partition, most likely, would actually be in the
neighborhood of the previous k-partition. To get around
the local minima, a common practice is to run the k-means
algorithm repeatedly, each time starting with a different set
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(a) Merging/splitting of natural clusters
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(b) Cluster composed of only noise points

Figure 1: Random initialization produces poor clustering. The dark triangles indicate the initial cluster
seeds. Points with the same symbol belong to the same cluster.

of random initial centers. With a high probability, different
runs (with different seeds) would explore different regions
of the solution space and thus increasing the likelihood of
escaping local minima. The solution that achieves the best
objective function value is finally reported as the cluster-
ing solution. However, for large datasets, repeated runs
can be costly. Previous research [4, 3, 15, 16, 2, 7, 23]
has thus attempted to intelligently choose the initial cen-
ters (seeds) such that the clustering is substantially better
than that obtained by just random seeding. The success
of these approaches depend on finding seeds that yield a
initial partition which is close to a reasonably good local
optimal. Based on our extensive experimental evaluation,
we found that while previous approaches fare better than
random initialization, they are very sensitive to outliers, as
well as variable density regions.

In this research, we propose a novel seed initialization al-
gorithm, named ROBIN (ROBust INitialization) that out-
performs previous approaches in terms of the clustering qual-
ity (distortion), and it is also simple and efficient. As the
name suggests ROBIN is robust to outliers or variable den-
sity. Other than k, the number of centers to choose, it takes
only one other parameter, mp, the number of neighbors to
consider, which is used when computing a measure of the
degree to which a potential center is an outlier. Further-
more, we also show that ROBIN is not very sensitive to
the choice of mp. We made extensive experiments on syn-
thetic and real world dataset. In synthetic cases, we found
that ROBIN finds solutions which are nearly as good as the
(known) global optimal solutions. For real world datasets,
it typically obtains superior distortion scores compared to
other methods.

2. K-MEANS INITIALIZATION
Most of the seed selection ideas emerged from the analysis

of a poor clustering solutions obtained by k-means. In the
following, we explain the reasons why k-means may fail to
produce a good clustering solution and how different seed
selection strategies attempt to safeguard against those. We
assume that the user has the correct guess about the value
of k and the clusters are somewhat separated.

In k-means, a poor clustering solution is obtained if two
seeds are in close proximity. In such cases k-means can end
up partitioning a natural cluster, and as a consequence, since
k is fixed, it merges a pair of distant clusters into one. Fig-
ure 1(a) shows an example when this happens. As we can
see two random seeds were chosen from the top left cluster,
which results in that cluster being partitioned into two, and
the center and top right clusters are merged into one. A
poor solution can also be obtained when a chosen seed is ac-
tually an outlier. In such cases k-means can form a cluster
which is not a natural cluster, but a set of noise points. As
a consequence, some real cluster will be merged or missed.
For example, we can see in Figure 1(b) that the initial seed
on the top right results in a cluster composed solely of out-
liers, whereas the two larger clusters on the left are merged
into one. Certain other traits of the dataset are responsible
for poor performance of k-means. For instances, if the sizes
of the clusters are substantially different, the likelihood is
small that a seed would be chosen from the smaller clus-
ter; as a result, in the final clustering solution, the smaller
cluster may be merged with an adjacent large cluster. Dif-
ferent densities of the data points in different clusters, also
called multi-scale clusters, can also have adverse affects on
the initialization and clustering quality.

Many of the problems discussed above can be avoided with
a good seed selection. If the clusters are globular and their
sizes are comparable, the splitting or merging of clusters
can be entirely eliminated by choosing well separated seeds.
Formation of a noise cluster can also be avoided by ensuring
that a seed point is not an outlier point. However, seed
selection is just an initialization step for k-means, so it has
to be inexpensive. We list below the desiderata for a good
cluster seed selection scheme:

(1) It should be computationally inexpensive.

(2) It should ideally be parameter free. For the parameters
it does require, it should not be very sensitive to the
parameter values. Furthermore, it should be intuitive
to set reasonable parameter values.

(3) It should ideally be deterministic and should be insensi-
tive to the order in which the data points are considered.



(4) It should not be sensitive to outliers, i.e., a noise point
should not be selected as a center.

(5) It should be robust in presence multi-scale clusters of
varying densities.

(6) It should also be robust to variable/skewed cluster sizes.

We now briefly discuss previous initialization schemes and
the extent to which they fulfill the above criteria. One of
the first schemes of center initialization was proposed by
Ball and Hall [4]. They suggested the use of a user defined
threshold, d, to ensure that the seed points are well apart
from each others. They consider each point in the dataset in
an arbitrary order. The first point is chosen as a seed, and
for any subsequent point considered, it is selected as a seed if
it is at least d distance apart from the already chosen seeds,
until k seeds are found. With a right choice of the value of
d, this approach can restrict the splitting of natural clusters,
but guessing a right value of d is very difficult and the quality
of seeds depends on the order in which the data points are
considered. Note that, it only satisfies the criteria (1) above,
since its complexity is just O(kn). A similar approach was
also suggested by Tou and Gonzales under the name Simple
Cluster Seeking (SCS) [26].

Astrahan [3] suggested using two distance parameters, d1

and d2. The method first computes the density of each point
in the dataset, which is given as the number of neighboring
points within the distance d1, and and it then sorts the data
points according to decreasing value of density. The high-
est density point is chosen as the first seed. Subsequent seed
point are chosen in order of decreasing density subject to the
condition that each new seed point be at least at a distance
of d2 from all other previously chosen seed points. This step
is continued until no more seed points can be chosen. Fi-
nally, if more than k seeds are generated from the above
approach, hierarchical clustering is used to group the seed
points into the final k seeds. The main problem with this
approach is that it is very sensitive to the values of d1 and
d2. Furthermore, users have very little knowledge regard-
ing the good choices of these parameters, and the method
is computationally very expensive. A range search query
needs to be made for every data point followed by a hierar-
chical clustering of a set of points. Small values of d1 and
d2 may produces enormously large number of seeds, and hi-
erarchical clustering of those seeds can be very expensive
(O(n2 log n) in the worst case). This method also performs
poorly when there exist different clusters in the dataset with
variable density and size. In summary, this approach satis-
fies only criteria (3) and (4) above.

Katsavounidis et. al. [15] suggested a parameterless ap-
proach, which we call the KKZ method based on the initials
of all the authors. KKZ chooses the first centers near the
“edge” of the data, by choosing the vector with the highest
norm as the first center. Then, it chooses the next center to
be the point that is farthest from the nearest seed in the set
chosen so far. This method is very inexpensive (O(kn)) and
is easy to implement. It does not depend on the order of
points and is deterministic by nature; as single run suffices
to obtain the seeds. Thus KKZ satisfies criteria (1), (2),
and (3) above. However, KKZ is sensitive to outliers, since
the presence of noise at the edge of the dataset may cause
a small set of outlier/noise points to make up a cluster (e.g.
the dataset in Figure 1(b)).

Bradley and Fayyad [7] proposed an initialization method
that is suitable for large datasets. We call their approach
Subsample, since they take a small subsample (less than 5%)
of the dataset and use k-means clustering on the subsam-
ple and record the cluster centers. This process is repeated
and cluster centers from all the different iterations are ac-
cumulated in a dataset. Finally, a last round of k-means
is performed on this dataset and the cluster centers of this
round are returned as the initial seeds for the entire dataset.
This method generally performs better than k-means and
converges to the local optimal faster. However, it still de-
pends on the random choice of the subsamples and hence,
can obtain a poor clustering in an unlucky session. Among
the criteria above, Subsample satisfies (1) and (2), and also
(4) with high probability.

More recently, Arthur and Vassilvitskii [2] proposed the
k-means++ approach, which is similar to the KKZ method.
However, when choosing the seeds, they do not choose the
farthest point from the already chosen seeds, but choose a
point with a probability proportional to its distance from the
already chosen seeds. Note that, in KKZ the farthest point
is chosen with probability 1, but in k-means++, the farthest
point will be chosen with the probability proportional to the
minimum distance of this point from already chosen seeds.
k-means++ satisfies criteria (1) and (2), and also (4) with
high probability. Note that due to the probabilistic selection
of points, different runs have to be performed to obtain a
good clustering.

Our proposed method, ROBIN, satisfies all of the criteria
above. It is computationally inexpensive. It takes only one
parameter mp, the number of neighboring points to consider,
and is not very sensitive to the value of this parameter. It is
deterministic, insensitive to outliers, and is robust against
variable density or variable sized clusters.

3. THE ROBIN APPROACH
The ROBIN approach to seed selection is essentially tied

to the concept of avoiding outliers as seeds. For this ROBIN
first computes the degree to which a point is an outlier,
which in turn must consider the local density of the neigh-
boring points. Outliers are those points whose density is
very different compared to neighbor densities. In essence
the local outlier measure automatically takes into account
variable density regions and variable size clusters. The key
aim here is to not have to compute the outlier measure for
each point in the dataset, which would yield a worst case
O(n2) method, but rather the challenge is in keeping the
complexity linear in n.

Subject to the outlier measure, ROBIN must ensures that
the seeds are as far apart as possible. More formally, let
D be a set of n points in R

d. Given 2 ≤ k < n, we wish
to find a maximally separated subset I ⊆ D of size k, for
which the minimum distance among the
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pairs of points
in I is as large as possible. The decision problem associated
with this is to determine whether there exists I ⊆ D, with
|I| = k, so that all
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distances in I are at least 2. The
decision version arises from the following transformation.
Let us place a set of d-dimensional unit balls at each point.
We can then construct an intersection graph G that has an
edge between a pair of points, if the corresponding unit balls
have a non-empty intersection. The set of seeds I is then
an independent set in the graph G. Clearly, if G has an
independent set of size k, we have |I| = k, where all the
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distances are at least 2 (since the unit radius balls do
not intersect, they are at least a distance of 2 apart). For
a given k the problem whether an independent set of size k

exists is known to be NP-Complete. Hence, the maximally
separated point-set problem is also NP-Complete when k is
part of the input [9]. ROBIN’s seed selection is therefore
just a greedy solution to the above problem.

3.1 Local Outlier Factor
To compute the degree to which a point is an outlier,

we use the notion of local outlier factor (LOF) which was
proposed in [8]. For a point x ∈ D, define the local neigh-
borhood of x, given the minimum points threshold mp as
follows:

N(x, mp) = {y ∈ D | dist(x, y) ≤ dist(x, xmp)}

where xmp is the mp-th nearest neighbor of x. Thus N(x, mp)
contains at least mp points. The density of x is then com-
puted as follows:

density(x, mp) =

 
P

y∈N(x,mp) distance(x, y)

| N(x, mp) |

!−1

Essentially, the lower the distance between x and neighbor-
ing points, the higher the density of x. The average relative
density (ard) [25] of x, is then computed as the ratio of the
density of x and the average density of its nearest neighbors,
given as follows:

ard(x, mp) =
density(x, mp)

“
P

y∈N(x,mp) density(y,mp)

|N(x,mp)|

”

Finally the LOF score of x is just the inverse of the average
relative density of x:

LOF (x, mp) = ard(x, mp)−1

If a point is in a low density neighborhood compared to all its
neighbors, then its ard score is low and hence its LOF value
is high. Thus LOF value represents the extent to which a
point is an outlier. A point that belongs to a cluster has an
LOF value approximately equal to 1, since its density and
the density of its neighbors is approximately the same.

LOF has two excellent properties: (1) It is very robust
when the dataset has clusters with different sizes and den-
sities. (2) Even though the LOF value may vary some-
what with mp, it is generally robust in making the decision
whether a point is an outlier or not. That is, for a large range
of values of mp, the outlier points will have LOF value well
above 1, whereas points belonging to a cluster will assume
an LOF value close to 1.

3.2 The ROBIN Algorithm
Unlike previous work in seed selection [3], or the work in

outlier detection [8], we do not desire to compute the density
or LOF value of all the points, since that is computation-
ally expensive. Our aim is to judiciously compute the LOF
values on demand, while selecting the seeds. The ROBIN
robust initialization algorithm is outlined in Figure 2. In
the figure, D is the dataset; k is the number of clusters or
seeds desired, and mp is the number of neighbors to consider
while computing the LOF.

ROBIN first inserts the point r, say the origin, into the
set C of seed centers (line 1), which is initially empty. Later

ROBIN(D, k, mp):
1. Take any reference point, r (origin suffices)
2. Insert r in C
3. k = 0;
4. while | C |≤ k

5. sort the points in D in decreasing order of
minimum distance from points in C

6. for each x in sorted order
7. if (LOF(x, mp) ≈ 1)
8. insert x in C
9. break
10. endif
11. endfor
12. k++;
13. endwhile
14. remove r from C
15. return C

Figure 2: ROBIN: Robust Initialization Algorithm

the reference point r will be removed from C (line 14), since
it is only used to find the first seed center, which we take to
be the point at the “edge” of the dataset, i.e., one having
the largest norm or distance from the origin, and one which
also has an LOF value close to one. The subsequent seed
points are obtained in a similar manner, by first sorting
the points in decreasing order of their minimum distance
to seed centers already in the set C (line 5). Note that
computing the distances of all points from a chosen seed
center is not an overhead, as the k-means algorithm would
compute these distances anyway in its first iteration; we can
simply skip that step in the subsequent k-means run. In each
iteration of the while loop in line 4, ROBIN finds a new seed
center. The inner for loop (line 6) considers the points in
sorted (decreasing) order of distance, and breaks as soon as
it obtains a point which has an LOF value approximately
equal to one (in our implementation, this threshold is kept
fixed at 1.05). Once k center points are found, the algorithm
breaks. At the end of the while loop, C contains k+1 points,
and we thus remove the reference point r (line 14) to yield
the final set of seeds. Note that if the initial reference point
is chosen as the origin, the output of ROBIN is deterministic
and point order insensitive.

Complexity: In terms of the computational complexity
of ROBIN, we can see that the while loop (lines 4-13) is
repeated k times. Line 5 takes O(kn) time to compute
the distance of each point to each of the seeds in C, and
O(n log n) time to sort them in decreasing order of the min-
imum distance to any seed. At first glance the for loop
(line 6) appears to be expensive, since it can potentially
loop over the O(n) points in sorted order of distance, and
computing the LOF value for x (line 7) can also take time
O(n), for a total of O(n2) time. In fact, this will certainly
happen if all points or even a majority of the points are
outliers. However, in such cases, the whole clustering task
would be meaningless. In realistic cases, where the signal-
to-noise ratio is high, the for loop in line 6 is in fact repeated
only a few times, which can practically be estimated to be
O(log n). Computing the LOF takes O(n) in high dimen-
sions, but in lower dimensions one can use a range search
index like kd-trees, which can compute the mp nearest neigh-



bors in O(n1−1/d) time, where d is the dimensionality of the
dataset. Since |N(x, mp)| is approximately mp, we then get

an overall complexity of O(mp · n1−1/d · log n). Combin-
ing the k iterations of the while loop, with the O(nk) time

for line 5, and O(mp · n1−1/d · log n) for the for loop, and
assuming that mp = O(k), we obtain a total computation
complexity of O(k3n log n) in the worst case.
ROBIN Seed Selection: In Figure 3(a) we show an ex-
ample dataset that has five clusters. We also show the initial
seeds (triangles) chosen by ROBIN with mp = 10. We see
that exactly one seed is chosen from each cluster. ROBIN
can also handle clusters with different densities. Since LOF
considers a point as outlier based only on the local density,
it does not penalize any low density cluster while selecting
a seed from that cluster. For example Figure 3(b) shows
3 clusters, with sizes 1000, 1000 and 100 points, respec-
tively. ROBIN chose three different seeds (triangles), one
from each of these clusters. Also, ROBIN always avoids the
noise points while choosing the seeds. In Figure 3(c), there
are three clusters and a few noise point at the upper left
corner; ROBIN initialization did not consider any of those
noise points as seeds.

4. EMPIRICAL RESULTS
We performed extensive experiments to evaluate the ben-

efits of ROBIN initialization scheme using synthetic and real
life datasets. All the experiments were performed on Mac
G5 machine with 1.66 GHz processor, running the Mac 10.4
OS.

The synthetic datasets were generated as follows: For a
given k (number of clusters) and d (number of dimensions),
we generate k Gaussian clusters, each having m data points,
where m is chosen uniformly between 100 to 1000. So, it is
possible that the size of one cluster is about ten times larger
than that of another. Each Gaussian cluster is obtained
from a mean (µ) and a covariance matrix (Σ). Each com-
ponent/dimension of the mean (µi) was chosen uniformly
within 0 and 10. So, all the cluster means reside in the
length 10 hypercube in d-dimensions. The covariance ma-
trix, Σ was first chosen as a diagonal matrix, which was
later rotated with a random rotation matrix. Each entry
along the diagonal of Σ is chosen randomly in the interval
[0.2 ∗ w, 0.8 ∗ w], where w = s ∗

√
D, and s is a parame-

ter that can be used to control the cluster width. Cluster
width is also used to separate the means of the clusters, i.e.,
when generating the cluster means, if the distance between
a mean is within 2w of an already generated mean, the new
mean is ignored, until all k mean points are obtained that
are somewhat separated. The

√
D part in w, stretches the

clusters in higher dimensions, so that the clusters cover the
space uniformly over different dimensions. We also injected
about 2% noise points in the dataset, which are distributed
uniformly in the length 10 hypercube.

4.1 Results on Synthetic Datasets
The experimental results for the synthetic datasets are

shown in Table 1. The distortion value is used to com-
pare the performance of ROBIN against random initializa-
tion and other different initialization schemes: KKZ [15],
Subsample [7], and KMeans++ [2]. We present the result
for three different dimensions (d): 8, 16 and 24, and for three
different number of clusters (k): 10, 25 and 50. For algo-
rithms that are not deterministic, like k-means, Subsample
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Figure 3: ROBIN seeds (triangles)

and KMeans++, each algorithm was executed for 50 dif-
ferent runs. We show the minimum and average distortion



d k Optimal ROBIN Random Subsample k-means++ KKZ
min avg min avg min avg

8 10 7738 7755 7904 8421 7887 8092 8008 8508 9204
25 9365 9382 9774 10185 9639 10044 9641 9951 10743
50 8694 8754 9244 9565 9136 9407 9289 9598 17042

16 10 16865 16882 17406 18496 17356 18314 16870 17951 19346
25 17241 17261 18298 19219 17647 18812 17732 18550 20567
50 17580 17622 18866 19507 18469 19084 18974 19661 21632

24 10 26149 26150 26706 28733 26150 28340 26755 28860 29413
25 22233 22261 23241 24582 23034 23942 22803 23787 27052
50 21453 21467 22838 23818 22477 23387 23003 23762 26599

Table 1: Comparison on synthetic datasets. The distortion scores are shown for each method.

Dataset |D| d k ROBIN Random Subsample k-means++ KKZ
minimum average minimum average minimum average

Yeast 1484 8 10 2465 2467 2564 2418 2514 2500 2525 2472

poker-hand 1000000 10 10 6.18 6.27 6.34 6.28 6.33 6.26 6.32 6.22
×106 ×106 ×106 ×106 ×106 ×106 ×106 ×106

ecoli 336 7 8 65.34 67.17 67.29 64.36 67.63 64.20 66.38 67.41

wdbc 569 30 2 1667 1697 1709 - - 1685 1694 1734

wine 178 13 3 500 500 505 500 505 500 527 510

Pendigit 7494 15 10 17051 16932 17776 16977 17706 16992 17477 17823

OptDigit 3823 64 10 110289 108699 111912 108557 111926 108940 112911 114673

Table 2: Comparison on real datasets

values over these runs. For ROBIN, we set the minimum
points threshold mp = 10. In fact, the clustering score does
not vary much with different choices of mp, as we show in
the sensitivity section below. For Subsample, we always take
a 5% sample of the dataset.

Since these datasets were generated synthetically, the ac-
tual mean of each cluster is known. To obtain a benchmark
score of distortion, we ran k-means algorithm with those
known means as the initial seeds. The distortion score ob-
tained from this run is recorded as the optimal score in Ta-
ble 1. Note that, without the presence of noise, the above
seeds indeed obtain the global optimal clustering. However,
all the dataset in the above experiments had 2% noise, so, in
some cases, the actual global optimal clustering mean may
deviate from the generated means. Since, the noise level
is not significant, we consider the score obtained with the
known seeds as the optimal distortion value.

Table 1 shows that for all the dimensions and number of
clusters, the random initialization could not find a cluster-
ing with a distortion score as good as ROBIN in 50 different
random runs. In fact, ROBIN achieves about 2% to 5%
better (lower) distortion scores than the best of random,
and 5% to 10% better than the average random score. Fur-
ther, ROBIN is deterministic, hence is executed only once
to achieve these clustering solutions. ROBIN also yields a
distortion score close to the global optimal, which suggests
that the cluster means obtained via ROBIN seeding are ac-
tually in very close proximity to that of the original cluster

means. Comparing to other initialization schemes, ROBIN
scores are much better.

4.2 Results on Real Datasets
Table 2 shows the comparison of ROBIN with the ran-

dom, Subsample, k-means++ and KKZ approaches. These
datasets were taken from the UCI machine learning archive
(http://archive.ics.uci.edu/ml/). These datasets are
generally small, with the exception of poker, which has one
million points. Since we do not know the optimal distor-
tion score for these, we simply compare the distortion values
across the methods. Random, Subsample and k-means++
were run 50 times. For small datasets, subsample sometimes
failed (shown as - in the table 2) to cluster the dataset with
5% samples. For these datasets, the performance of ROBIN
is as good as the best result obtained by subsample, KKZ,
and k-means++. On the small datasets, Subsample does
better, but for the large poker dataset, ROBIN is the best.

4.3 Sensitivity Experiments

4.3.1 Noise Sensitivity
We performed experiments to check how the performance

of ROBIN varies with the noise level of the dataset. We de-
fine the noise from two standpoints: (1) completely random
noise, where the random points are spread uniformly over
the entire space; (2) cluster noise, where the noise level de-
viates a data point from the mean of a cluster. The second



kind of noise can be controlled by varying the cluster covari-
ance matrix. The synthetic data generator has a parameter
s which is used to control the cluster width. Increasing s

makes the clusters more noisy. We analyze the performance
of ROBIN in the presence of both these kinds of noise.
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Figure 4: Noise Sensitivity: ROBIN vs. Random

For the random noise experiment, we first generated a
dataset without any noise. Then, we construct ten differ-
ent datasets by adding an increasing number of noise points
to the above dataset. The noise level of different datasets
ranged from 1% to 10%. In Figure 4(a), we compare the dis-
tortion scores of random initialization with that of ROBIN.
Over the 50 runs for k-means, we show minimum, average
and maximum distortion scores. For ROBIN mp = 10 as
before. In the base dataset used above, we set d = 8, and
k = 10. Similar result were obtained for other values of
dimensions and clusters, and hence are not shown. It is evi-
dent that the performance superiority of our ROBIN method
over random prevails for different noise levels of the dataset,
since the distortion score is always better (lower) than the
minimum of random seeds distortion score.

For the cluster noise experiments, we generated datasets
with different values of s for different noise levels of a cluster:
we used s values of 0.03, 0.06, 0.09, and 0.12. As s value is
increased, clusters will have more noise. Figure 4(b) shows
that ROBIN performs better than the best of fifty runs of
random seeding of k-means for all different cluster noise lev-

els.

4.3.2 Parameter Sensitivity
ROBIN takes the minimum points parameter mp, to com-

pute the LOF value of a point, to decide whether the point
is an outlier or not. We observed that for a good range of
values for mp, identical clustering solutions are obtained in
both synthetic and real world datasets. In cases when differ-
ent clustering solutions are obtained, they produce similar
distortion values (clustering scores), which are mostly bet-
ter than distortion score of random initialization. In [8],
the authors provided a guideline to choose the value of mp;
the summary of their suggestions is that mp should not
be higher than the smallest sized cluster and should not
be lower than the largest sized noise cluster. For typical
dataset, the difference of these two estimates is comfortably
large; and, what is more important is that a reasonable guess
of these values can be easily made. Note that cluster seed
initialization methods that depends on a distance threshold
to keep the seeds well apart do not have this flexibility and
are very sensitive to the choice of parameter values. More-
over, it is hard for a user to guess such a value without
data visualization, which is effectively possible only for low
dimensional datasets.

The range of acceptable values of mp varies depending
on the noise level of a dataset. Intuitively, the acceptable
range of values can be well characterized by the signal-to-
noise-ratio (SNR), where the signal represents the clusters,
and the noise the set of outlier points. The larger the SNR,
the more flexible it is to choose the mp value. In Figure 5
we show the distortion scores for different values of mp for
increasing dimensions, keeping the number of clusters fixed
at k = 15. In each of the plots, we also show the random
seeding scores: the minimum, the average and the maximum
for 50 different runs. We observe that for a large range of
mp values the distortion score for ROBIN does not change
much, and more importantly ROBIN produces clusterings
that have distortion scores less than the minimum of the
random seeding.

4.4 Scalability Experiments
We also compared how ROBIN scales with the number

of points in the dataset. The experimental results for the
scalability tests are shown Table 3. These results are for
16 dimension, 30 clusters and 5% random noise. The min-
imum and average scores for the random seeding approach
are shown, as well as the average time for a single run. For
ROBIN the table shows the distortion score and total time
for mp = 5 and mp = 10. We can see that as the number of
points increases, both methods scale linearly, as expected.
Furthermore, ROBIN, still has the best distortion scores,
which are not much different for mp = 5 or mp = 10. How-
ever in terms of time, we do see a big improvement when
ROBIN uses mp = 5, a reduction by a factor of 3, since the
lower the mp value the cheaper the LOF computation.

Comparing the time with the random seeding, we plot in
Figure 6(a) the ratio of the running time of ROBIN to the
average running time for a single run of the random seeding.
In general, we see that a single random seeding run is about
10 times faster than our approach. On the other hand, if we
let the random seeding to run for 50 runs, in Figure 6(b),
which plots the ratio of the total time of ROBIN versus the
total of 50 random runs, we see that overall ROBIN is 10
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Figure 5: Distortion scores with varying values of mp

|D| Random ROBIN (mp = 5) ROBIN (mp = 10)
min. score avg. score time score time score time

4986 17060 18019 0.29 16284 3.01 16287 6.98
11685 39073 42707 0.68 38505 5.07 37491 10.68
49043 159392 170279 2.99 155660 17.84 155630 65.92
108721 354538 374245 7.04 354835 34.98 343131 144.97
289517 934897 1007988 18.79 937745 70.99 943050 177.46
472385 1505000 1598921 31.91 1522880 137.46 1515540 405.66
767964 2477390 2621665 53.79 2564730 260.60 2462570 778.93
1048225 3356920 3491258 69.80 3298390 344.16 3344840 900.80

Table 3: Scalability with varying number of data points

times faster, and of course yields a much better distortion
score. If we let the random seeding run over many more
iterations, it will likely improve the score, but at the cost
of even more time. These results confirm that ROBIN is
indeed robust, efficient, and scalable.

5. CONCLUSIONS
In this paper we proposed a new method, ROBIN, for

robust initialization of seed centers for use in a partitional
clustering method like k-means. We studied the state-of-
the-art initialization methods, and noticed that either they
were computationally expensive, or they were not able to
handle outliers or multi-scale clusters with variable density
of points. We outlined the desiderata for good seed selection

methods, and showed that ROBIN satisfies all those criteria.
An extensive evaluation on real and synthetic datasets

confirms that ROBIN is computationally efficient with a
complexity of O(k3n log n). It takes only one parameter mp,
the number of neighboring points to consider, and is not very
sensitive to the value of this parameter. It is deterministic,
insensitive to outliers, and is robust against variable density
or variable sized clusters.

In terms of future work, we plan to experiment with larger
real world datasets. We also plan to study the theoretical
properties of the convergence guarantees of ROBIN to fully
characterize the cases where it is likely to succeed or fail.
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