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ABSTRACT
Unexpected information flow can result in vulnerabilities
that can compromise the security and availability of soft-
ware; this can have serious financial, legal and ethical con-
sequences. Current programming languages such as Java do
not provide effective mechanisms for preventing unexpected
information flow and it is important to develop such mech-
anisms and advance their usage in software practice.

This paper proposes run-time information flow models,
and new static information flow inference analysis. The
analysis is context-sensitive, cubic, and works both on com-
plete programs and software components. We perform ex-
periments on several Java components which show that the
analysis is precise and practical. Thus, the analysis can
be incorporated in program understanding and verification
tools and help verify security properties in a light-weight,
practical manner.

1. INTRODUCTION
Unexpected information flow (i.e., violations of the con-

fidentiality or integrity of sensitive program data) can se-
riously compromise the security and the quality of a soft-
ware system. For example, in Java 1.1 the security func-
tion Class.getSigners mistakenly returned a reference to
an internal array; this unexpected flow exposed the array
to untrusted clients which could modify the array content
and compromise the security of the system. Current lan-
guages such as Java do not provide effective mechanisms for
preventing unexpected information flow and it is definitely
important to develop such mechanisms and advance their
usage in software practice.

We propose a new static information flow analysis towards
this goal. This analysis is light-weight and works directly
on Java programs, before program execution. It can be eas-
ily incorporated in program understanding and verification
tools and help verify in a light-weight and practical manner
the confidentiality and integrity of sensitive program data.

The goal of this work is to i) define a model that captures
useful run-time information flow and ii) define a static infor-
mation flow analysis that infers information flow according
to this model. Our model distinguishes two types of flow:
shallow flow and deep flow. Shallow flow covers the standard
notion of information flow; that is, there is shallow flow from
a variable l into a variable r if changes in the value of l im-
pact the value of r [10]. Deep flow considers flow from (and
into) the object structure rooted at a reference variable l;
there is deep flow from l into r if a field reachable from l
flows to r (i.e., changes in the object structure rooted at l

impact the value of r, without changes in the value of l).
This paper proposes a new static information flow in-

ference analysis: the analysis works on existing Java pro-
grams and does not require annotations by the program-
mer. The analysis is defined as a client of a points-to anal-
ysis. Specifically, it uses the well-known Andersen’s flow-
and context-insensitive points-to analysis [33, 18] which, we
conjecture, provides suitable precision for the purposes of
information flow inference.1 The information flow analy-
sis client is flow-insensitive and context-sensitive. The con-
text sensitivity scheme is based on CFL-reachability [30, 28]:
unlike other popular approaches to context sensitivity such
as the function-summary approach and the call-string ap-
proach [37], this scheme handles recursion precisely and has
cubic worst-case complexity. The analysis works both on
complete programs and on incomplete programs (i.e., soft-
ware components). This is an important feature because
reasoning about security should be performed on software
components; any realistic program understanding and ver-
ification tool should be able to work on software compo-
nents and thus cannot accomodate analysis that works on
complete programs. This paper focuses on the analysis of
software components.

We implemented the analysis and performed empirical in-
vestigation on several Java components. Specifically, for
each component, we examined the fields in component classes
in order to determine whether there could be information
flow from a field into an untrusted client of the component
(i.e., possible violation of confidentiality), and whether there
could be information flow from an untrusted client into a
field (i.e., possible violation of integrity). We present a pre-
cision evaluation which shows that the analysis achieves ad-
equate precision—all identified confidentiality and integrity
violations could actually happen for appropriate clients. Fur-
thermore, the analysis is practical—it has cubic worst-case
complexity and runs in about 10 seconds on all components.
The empirical results indicate that the analysis is precise and
practical and therefore can be incorporated in practical soft-
ware tools for program understanding and verification which
will lead to higher quality, more secure software systems.

This work has the following contributions:

• We propose a run-time model for information flow which

1Flow-sensitive analyses distinguish between program points
and are more precise and more expensive than flow-
insensitive ones. Context-sensitive analyses distinguish be-
tween different contexts of invocation of a method and are
more precise and typically more expensive than context-
insensitive ones.



extends the standard model with the concepts of shal-
low flow and deep flow.

• We propose a new information flow analysis. Our anal-
ysis is context-sensitive, cubic, and works on both com-
plete programs and software components.

• We present an empirical study on several Java com-
ponents. It indicates that the analysis is precise and
practical.

2. PROBLEM STATEMENT
We consider the following information flow analysis prob-

lem. Let Cls denote a Java component — that is, a set
of interacting Java classes. A subset of these classes are
designated as accessible and client code can access the com-
ponent through accessible fields and accessible methods in
these classes. Typically, all public classes and their corre-
sponding public methods and public fields are accessible.
The classes in Cls are trusted while the client code built on
top of these classes is untrusted. Our goal is to design a
flow analysis that answers the following questions: given a
sensitive variable s in Cls does there exist client code that
exposes information flow from s to some untrusted variable
in the client?

Note that this statement addresses the information flow
problem of confidentiality (i.e., whether sensitive data may
flow to untrusted parties). The description in the paper
focuses on confidentiality inference. The dual problem of
integrity (i.e., whether untrusted data may flow to sensitive
data) is analogous from the static analysis point of view
and it is not discussed in detail. Section 5 gives both the
confidentiality inference and the integrity inference analysis
algorithms; we have implemented both analysis algorithms
and present empirical results in Section 6.

Section 2.1 specifies the run-time information semantics
and Section 2.2 describes constraints on our model that help
achieve more precise and useful analysis.

2.1 Run-time Information Flow
Intuitively, there is information flow from variable x into

variable y, denoted by x 7→ y if changes in the input val-
ues of x are observable from the output values of y. Such
flows are direct and indirect [10, 12]. Direct flows can be ex-
plicit (i.e., data-flow based) and implicit (i.e., control-flow
based). Direct explicit flows arise at assignment statements:
for example, for statement x=y+5 there is direct explicit flow
y 7→ x. Direct implicit flows arise from conditionals: for ex-
ample, for statement if (x>1) then y = w; there is direct
implicit flow x 7→ y since changes of the values of x are ob-
servable from the values of y. Indirect (i.e., transitive) flows
arise from compositions of direct flows: for example, for the
sequence of statements y=z+w; x=y+5; there are direct flows
z 7→ y, w 7→ y, y 7→ x which lead to indirect flows z 7→ x and
w 7→ x. For clarity, this paper considers explicit flows only ;
in the future, we plan to extend our work to handle implicit
flows as well. For the rest of this paper, the term direct flow
is used to refer to direct explicit flow.

We formalize the intuitive flow semantics described above.
We consider each Java statement kind and the direct flows
that arise from it at runtime:

• Assignment l = (...operator) r leads to flow r 7→ l.

• Instance field write l.f = r leads to flow r 7→ o.f .
o is the run-time object referred by l at the point of
execution of the statement.

• Instance field read l = r.f leads to flow o.f 7→ l.
Again, o is the run-time object referred by r at the
point of execution of the statement.

• Method call l = r0.m(r1, ...) dispatched to method
m′(this, p1, ..., ret) leads to flows r0 7→ this, r1 7→ p1, ...
and ret 7→ l. Here this denotes the implicit parameter
this of method m ′, pi denote the formal parameters
of m ′, and ret denotes a special variable that holds the
return value of m ′.

We distinguish two types of indirect flow. There is shallow
flow from variable l into variable r if there is a sequence of
statements, executed in order, that leads to indirect flow
from l to r. For example, the execution of statement l1 =
l + x leads to flow l 7→ l1, then the execution of l2.f = l1
leads to flow l1 7→ o.f , and then the execution of l4 = l3.f
(l2 and l3 both point to object o) leads to flow o.f 7→ l4.
Finally the execution of r = l4 − y leads to flow l4 7→ r.

Note that when l is a reference variable, there may be
flow from the object structure rooted at l. There is deep
flow from l into r if there is shallow flow from some l′ into r,
where l′ is an alias of l.f1.f2...fk (i.e., l′ points to an object
o′ which can be reached on a sequence of field dereferences
from the object o referred to by l).

Again, the problem is the following: given a variable s in
component Cls and the above definition of information flow,
does there exist a client that would expose information flow
from s into some variable v in the client code?

Example. Consider package zip in Figure 1. This exam-
ple, adapted from one of our benchmarks, is based on the
classes from the standard library package java.util.zip;
some modifications are made to better illustrate the prob-
lem and the analysis. Classes ZipInputStream and ZipEntry

are public and therefore accessible; interface ZipConstants

has package visibility and therefore it is not directly acces-
sible. All public methods and fields in ZipInputStream and
ZipEntry are accessible. First, consider local variable e in
method readLOC. It is easy to see that one can write a client
of this component which exposes shallow flow from e to the
client.2 For example, consider the following client:

ph_ZIS = new ZipInputStream();

ph_ZE = ph_ZIS.getNextEntry();

Let oZIS stand for the run-time ZipInputStream object cre-
ated in the above client. The shallow flow results as fol-
lows: readLOC.e 7→ readLOC.ret due to line 10, followed by
readLOC.ret 7→ getNextEntry.e due to line 2, followed by
getNextEntry.e 7→ oZIS.entry due to line 3, followed by
oZIS.entry 7→ getNextEntry.ret due to line 4, and finally
getNextEntry.ret 7→ ph_ZE due to the call to getNextEn-

try in the client. Second, consider flow from field tmpbuf in
ZipInputStream. Let oZE stand for the run-time ZipEntry

object created at line 5. One cannot write a client which
exposes shallow flow from tmpbuf (i.e., the reference to the
array tmpbuf is never exposed to a client). However, one

2For the rest of the paper we employ the following notation:
m.v denotes local variable v in method m, m.v.f denotes
field f referenced through local variable v in method m, and
o.f denotes field f of object o.



can write a client which exposes deep flow from tmpbuf (i.e.,
the content of the array is exposed). Consider client

ph_ZIS = new ZipInputStream();

ph_ZE = ph_ZIS.getNextEntry();

ph_long = ph_ZE.getSize();.

The invocation of getNextEntry followed by the invocations
of readLOC, get32 and get16 triggers aliasing of tmpbuf and
get16.b. Then there is a dereference get16.b[off] at line
11 (which is an alias of tmpbuf[]), and shallow flow from
b[off] into get16.b1, get16.i1, get16.ret, get32.ret,
readLOC.i2, oZE.size, getSize.ret, and finally into vari-
able ph_long.

2.2 Discussion
We employ the following constraint, which is standard for

other problem definitions that require analysis of incomplete
programs [34, 32, 22]. We only consider executions in which
the invocation of a boundary method does not leave Cls—
that is, all of its transitive callees are also in Cls. If we
consider the possibility of unknown subclasses, all instance
calls from Cls could be ”redirected” to unknown external
code that may affect the information flow inference. For
example, a field may be confidential in the current set of
classes but an unknown subclass may override a method
and leak the field (e.g., by using the confidential field in a
computation of the value of a public static field).

Thus, Cls is augmented to include the classes that provide
component functionality as well as all other classes transi-
tively referenced. In the experiments presented in Section 6
we included all classes that were transitively referenced by
Cls. This approach restricts analysis information to the cur-
rently ”known world”—that is, the information may be inval-
idated in the future when new subclasses are added to Cls.
One could change the analysis to make worst case assump-
tions for calls that may enter unknown methods; however,
in this case the analysis will be overly conservative and will
likely report less useful information.

3. OVERVIEW OF INFORMATION FLOW
ANALYSIS

The information flow problem outlined in the previous
section requires analysis of a partial program. We address
this issue by employing a general technique called fragment
analysis which enables analysis of partial programs; the frag-
ment analysis is described in Section 3.1. Furthermore, the
information flow analysis needs points-to information and
we employ points-to analysis; the points-to analysis is out-
lined in Section 3.2. The information flow analysis is defined
as a client of the points-to analysis. Section 3.3 describes an
intuitive context-insensitive information flow analysis; this
analysis is the foundation for the analyses presented in Sec-
tions 4 and 5.

3.1 Fragment Analysis
Clearly, the problem considered in this paper requires

analysis of a partial program. The input is a set of classes
Cls and the analysis needs to approximate information flow
that is valid across all possible executions of arbitrary client
code built on top of Cls. To address this problem we make
use of a general technique called fragment analysis due to
Nasko Rountev [31, 34]. Fragment analysis works on a pro-

package zip;

public class ZipInputStream {

private ZipEntry entry;

1 private byte[] tmpbuf = new byte[512];

public ZipEntry getNextEntry() {

2 ZipEntry e = readLOC();

3 this.entry = e;

4 return this.entry;

}

private ZipEntry readLOC() {

5 ZipEntry e = new ZipEntry();

6 long i1 = get32(tmpbuf,LOCFLG);

7 e.flag = i1;

8 long i2 = get32(tmpbuf,LOCSIZ);

9 e.size = i2;

10 return e;

}

private static int get16(byte b[], int off) {

11 byte b1 = b[off];

12 int i1 = b1 & off;

13 return i1;

}

private static long get32(byte b[], int off) {

14 long i1 = (long) get16(b,off);

15 long i2 = (long) get16(b,off+2);

16 int i3 = i1 | i2;

17 return i3;

}

} // end of class ZipInputStream

public class ZipEntry {

long flag;

long size = -1;

public void setSize(long size) {

18 this.size = size;

}

public long getSize() {

19 return this.size;

}

}

interface ZipConstants {

static final long LOCFLG = 6;

static final long LOCSIZ = 18;

}

Figure 1: Sample package zip.

void main() {

ZipEntry ph_ZE;

ZipInputStream ph_ZIS;

long ph_long;

20 ph_ZE = new ZipEntry();

21 ph_ZIS = new ZipInputStream();

22 ph_ZE.setSize(ph_long);

23 ph_long = ph_ZE.getSize();

24 ph_ZE = ph_ZIS.getNextEntry();

}

Figure 2: Placeholder main method for zip.



gram fragment rather than on a complete program; in our
case the fragment is the set of classes Cls.

Initially, the fragment analysis produces an artificial main
method that serves as a placeholder for client code writ-
ten on top of Cls. Intuitively, the artificial main simulates
the possible flow between Cls and the client code. Subse-
quently, the fragment analysis attaches main to Cls and uses
whole-program analysis to compute information flows that
approximate flow over arbitrary clients.

The placeholder main method for the classes from Fig-
ure 1 is shown in Figure 2. The method contains placeholder
variables for types from Cls that can be accessed by client
code. It also contains statements that represent all possible
interactions involving Cls; their order is irrelevant because
our analyses are flow-insensitive. Generally, main invokes
all public methods from the classes in Cls designated as ac-
cessible; in our example, this includes all public methods in
ZipInputStream and ZipEntry. For details on the fragment
analysis see [31, 34].

3.2 Points-to Analysis
Points-to analysis is a well-known program analysis. It

finds the objects that a given reference variable or a reference
object field may point to. Points-to information is needed by
information flow analysis in two ways: first, aliasing infor-
mation is needed in order to handle information flow through
object fields, and second, call graph information is needed in
order to approximate the possible targets at virtual method
calls. There is a wide variety of points-to analyses, with
different degrees of precision and cost. Our current work
uses the known and relatively well-understood Andersen’s
points-to analysis [33, 18]. This analysis is flow-insensitive,
context-insensitive and inclusion-based; it uses an analysis
variable for each reference variable, and an object name for
each allocation site (i.e., objects are distinguished by their
allocation sites).

Most points-to analyses, including Andersen’s points-to
analysis, are formulated as whole-program analyses. The
placeholder main method constructed by the fragment anal-
ysis ”completes” the component and thus enables the use of
whole-program points-to analysis on the completed compo-
nent. The main method approximates all possible clients
that could be built on top of Cls and thus the result of
the whole-program points-to analysis includes all points-to
graphs that could result from individual clients [31, 34].

3.3 Context-insensitive Information Flow
Analysis

The context-insensitive information flow analysis consists
of two parts: flow graph generation, and demand-driven
reachability computation. During generation the analysis
examines all program statements and generates a flow graph
FG0. During the reachability computation the analysis starts
at a source variable s and tracks the flow of s on FG0.

The flow graph represents direct flows. There are two
kinds of nodes: variable nodes (e.g., r) and field dereference
nodes (e.g., r.f). Consequently, there are three kinds of
direct flow edges: (1) l ; r which represents flow from
variable l into variable r, (2) l ; r.f , which represents flow
from variable l into field f of an object referred to by r,
and (3) l.f ; r which represents flow from field f of an
object referred to by l into variable r. We use notation ;

to distinguish from notation 7→; ; denotes analysis flow

(i.e., the representation of run-time flow), while 7→ denotes
run-time flow. Below we describe the processing of each
program statement kind.

• Assignment l = (...operator) r generates flow edge
r ; l.

• Instance field write l.f = r generates a flow edge
r ; l′.f for every variable l′ such that (i) l′ is aliased
with l according to the points-to analysis, and (ii) there
is a read of field f through variable l′(i.e., there is a
field read statement l′′ = l′.f).

• Instance field read l = r.f generates flow edge
r.f ; l.

• Method call l = r0.m(r1, ...) generates flow edges
r0 ; this, r1 ; p1, ... and ret ; l for each method
m′(this, p1, ..., ret) which is a possible run-time target
according to the points-to analysis.

The handling of assignments and method calls directly
follows the information flow semantics defined in Section 2.1.
The handling of field accesses uses alias information instead
of points-to information; we believe that this representation
is more informative when tracking indirect information flow.

Tracking shallow flow from a source variable s amounts to
a straightforward reachability computation: while there are
new edges and we have not reached an untrusted variable
we examine pairs s ; v1 ; v2 and add s ; v2 to the flow
graph if s ; v2 is not already there.

Tracking deep flow from s requires tracking shallow flow
from multiple sources. There is a worklist of sources which is
initialized to s. While there are sources on the worklist, the
analysis takes a source s′ and performs shallow flow compu-
tation from s′. For each s′ of reference type, the analysis
finds all aliases v of s′ (i.e., nodes reachable forward and
backwards through shallow flow from s′) and examines each
field read statement s′′ = v.f ; if s′′ is a new source, it is
added to the worklist of sources. Each s′′ (or s′) is part of
the object structure rooted at s; subsequently, the shallow
flow computation from s′′ checks for violating flow from s′′.

Note that the information flow analysis, as described above
is again a whole-program analysis. As with the points-to
analysis the placeholder main enables the use of the whole-
program information flow analysis. The main method ap-
proximates all possible clients that could be built on top of
Cls and thus the result of the whole-program information
flow analysis includes all flows that could result from indi-
vidual clients (clearly, under the constraints in Section 2.2).

4. CONTEXT-SENSITIVE SHALLOW FLOW
ANALYSIS

The context-insensitive analysis is bound to produce sub-
stantial imprecision, as well as overhead in analysis cost due
to the tracking of infeasible flow. Therefore, there is a need
for a context-sensitive analysis—that is, analysis that tracks
flow through different contexts of invocation of a method
precisely. Section 4.1 illustrates the imprecision of context-
insensitive information flow analysis, and Sections 4.2, 4.3
and 4.4 describe in detail the context-sensitive information
flow analysis. Section 4.5 discusses the termination, com-
plexity and correctness properties of the analysis.



4.1 Imprecision of Context-insensitive
Analysis

Example. Consider the example in Figures 1 and 2 and
let us be interested in the flow of constant LOCFLG defined
in interface ZipConstants. The following edges created by
the context-insensitive analysis represent flow relevant to
LOCFLG:

LOCFLG ; get32.off (due to line 6)
get32.off ; get16.off (line 14)
get16.off ; get16.i1 ; get16.ret (lines 12 and 13)
get16.ret ; get32.i1 ; get32.ret (lines 14,16-17)
get32.ret ; readLOC.i2 (line 8)
readLOC.i2 ; getSize.this.size (line 9 and alising)
getSize.this.size ; getSize.ret (line 19)
getSize.ret ; ph_long (line 23 in main)

For clarity the flows due to code lines 14,16 and 17 are sim-
plified. These statements result in flow edges get16.ret ;

get32.i1 ; get32.i3 ; get32.ret but for clarity we omit
variable get32.i3. Given these direct flows it is easy to see
that the analysis infers flow from LOCFLG to ph_long and
thus it reports that LOCFLG could flow to client code. In fact,
this is infeasible flow that is due to the context-insensitive
handling of method get32. Flow edge LOCFLG ; get32.off

results from the call of method get32 at line 6, and flow
edge get32.ret ; readLOC.i2 results form the return from
get32 at line 8. Clearly, this sequence represents an invalid
flow path.

4.2 Construction of Flow Graph FG0

The context-sensitive analysis consists of three parts: gen-
eration of flow graph FG0, summarization of the effects of
callee onto callers, and demand-driven reachability propa-
gation on the summarized graph. This analysis is based
on CFL-reachability, and is most closely related to work by
Reps et al. [30] and Rehof and Fahndrich [28].

When building FG0 the context-sensitive analysis anno-
tates edges with certain information. The summarization
and subsequent reachability propagation take these annota-
tions into account and filter out infeasible paths.

There are no annotations on the flow edges generated for
assignments and instance field reads; these are treated as
in Section 3.3. Instance field writes and method calls are
annotated as follows:

• Instance field write l.f = r generates a flow edge

r
∗
; l′.f for every variable l′ aliased with l such that

there is a read of f from l′.

• Method call i: l = r0.m(r1, ...) generates flow edges

r0
(i
; this, r1

(i
; p1, ... and ret

)i
; l for each run-time

target method m′(this, p1, ..., ret).

The parentheses annotations at method calls are standard
CFL-reachability annotations: they denote flow into context
copies of formal parameters, and flow from context copies of

return variables. Consider parenthesis (i in r1
(i
; p1; it de-

notes flow from actual parameter r1 to the instance of the
formal parameter p1 for call site i. Analogously, parenthe-

sis )i in ret
)i
; l denotes flow from the instance of return

variable ret for call site i to the left-hand side of the call
l. The parentheses are matched to form valid flow paths

— for example, i1
(i
; p1 ; ret

)i
; l1 is a valid path, but

i1
(i
; p1 ; ret

)j
; l2 is not.

The ∗ annotations at field writes are novel; they handle
flow through objects which typically transcend calling con-
texts. The ∗ annotations are best explained by the following
example. Suppose that there is a call site i: r.set(k)

which sets field f of the receiver to the value of k (i.e.,
there is statement this.f=p; where p is the formal param-
eter of set). Later there is a call j: l=r.get() which
returns field f of the receiver (i.e., there is statement re-

turn this.f;). The flow edges for these statements are:

k
(i
; p

∗
; get .this.f ; get .ret

)j
; l. The wildcard ”can-

cels” call and return annotations. In the above example (i

is concatenated with the wildcard and it is ”cancelled” by

it resulting in transitive flow edge k
∗
; get .this.f and later

k
∗
; get .ret . Subsequently, the wildcard ”cancels” )j result-

ing in flow edge k
∗
; l.

Example. Let us continue with the edges from the pre-
vious section. With context-sensitive analysis the edges will
have annotations as follows:

LOCFLG
(6
; get32.off (due to line 6)

get32.off
(14
; get16.off (line 14)

get16.off ; get16.i1 ; get16.ret (lines 12-13)

get16.ret
)14
; get32.i1 ; get32.ret (lines 14,16-17)

get32.ret
)8
; readLOC.i2 (line 8)

readLOC.i2
∗
; getSize.this.size (line 9 and alising)

getSize.this.size ; getSize.ret (line 19)

getSize.ret
)23
; ph_long (line 23 in main)

4.3 Summarization
Procedure Summarize in Figure 3 computes the summary

flow graph FG∗. Intuitively, this procedure computes the
flow effects due to method calls. Summarize operates on a
worklist of edges WL; the worklist is initialized to the set
of edges in FG0 that have (i (i.e., open parenthesis) anno-
tations. Lines 2-8 remove an edge e1 from the worklist and
process this edge accordingly. There are two cases. Lines
3-5 process the case when the annotation on edge e1 is of
kind (i. In this case, the algorithm examines each edge e2

which is a successor of e1 and concatenates e1 and e2. If this
concatenation results in a new edge e3, e3 is added to FG∗
and WL. Lines 6-8 process the case when the annotation on
edge e1 is empty or ∗. The algorithm examines each prede-
cessor edge e′2, already added to FG∗ and WL, and possibly
taken off WL before e1. It concatenates e′2 with e1 and if
this concatenation results in a new edge e′3, e′3 is added to
FG∗ and WL. It is important to note that operation concat
produces an edge only if the first edge has a (i annotation,
and the second edge has one of the following annotations:
empty, ∗, or matching )i; otherwise, there is no edge:

concat(v1
(i
; v2, v2 ; v3) = v1

(i
; v3

concat(v1
(i
; v2, v2

∗
; v3) = v1

∗
; v3

concat(v1
(i
; v2, v2

)i
; v3) = v1 ; v3

Intuitively, procedure Summarize propagates (i annotations
forward until they are matched with a corresponding )i or
a ∗ annotation. If (i is matched with a corresponding )i an-
notation, the resulting edge with empty annotation reflects



the information flow effect of the callee method called at call
site i on the caller method which contains call site i. If (i is
matched with a ∗ annotation, it is ”cancelled” by the ∗ and
the resulting edge carries the ∗ annotation. The ∗ annota-
tion, needed to track non-trivial flow through object fields,
essentially cancels calling context information.

Example. In our running example, procedure Summarize

produces the new edges as follows. Initially edges LOCFLG
(6
;

get32.off and get32.off
(14
; get16.off are added to work-

list WL. Subsequently edge LOCFLG
(6
; get32.off is taken

off the worklist and processed without the addition of new

edges. Edge get32.off
(14
; get16.off is taken off the work-

list and processed on lines 3-5. The concatenation on line 5
results in new edge

get32.off
(14
; get16.i1

which is added to FG∗ and WL. This edge is then processed
on lines 3-5 resulting in new edge

get32.off
(14
; get16.ret

which is added to FG∗ and WL. This edge is processed on
lines 3-5 and the concatenation of line 5 results in new edge

get32.off ; get32.i1

which is added to FG∗ and the worklist. Note that this edge
results from concatenation with the matching )14 annota-
tion. It is processed on lines 6-8. The algorithm examines

its predecessor edges and finds edge LOCFLG
(6
; get32.off

which was processed on the worklist earlier. The concate-
nation on line 8 results in new edge

LOCFLG
(6
; get32.i1.

Processing this edge results in new edge

LOCFLG
(6
; get32.ret.

Processing this edge does not result in new edges. Edges

LOCFLG
(6
; get32.ret and get32.ret

)8
; readLOC.i2 are not

concatenated because indices 6 and 8 do not match—clearly,
these edges correspond to flows due to different contexts of
invocation of get32.

4.4 Propagation
Recall that we are interested in uncovering all nodes in the

flow graph that could be reached from a node s on a valid
flow path. The flow graph with the additional summary
edges added due to Summarize does not explicitly show
these paths. For example, in our example, there is valid

flow from LOCFLG to get16.i1: LOCFLG
(6
; get32.off

(14
;

get16.off ; get16.i1.
Procedure Propagate computes graph FGp. FGp contains

path edges from s that represent shallow flow from s. The
path edges are annotated with special path annotations that
reflect the structure of the valid flow path from s. There are
two kinds of path annotations: Call and nCall .

The Call annotation denotes flow paths that end on a call

sequence. In our example, there is a Call path LOCFLG
Call
;

get16.i1 on a call sequence (6(14. This flow is due to the
call to get32 from caller readLOC at line 6, and subsequently
to the call to get16 from caller get32 at line 14.

procedure Summarize
input FG0: flow graph
output FG∗: summarized FG0

initialize FG∗ = FG0

WL = {v1
a
; v2 ∈ FG0 s.t. a is (i annotation}

[1] while WL 6= ∅ do

[2] remove e1: v1
a1
; v2 from WL

[3] if a1 is an (i annotation

[4] foreach e2: v2
a2
; v3 ∈ FG∗ do

[5] if e3 = concat(e1, e2) /∈ FG∗ add e3 to FG∗ and WL
[6] else if a1 is an empty or ∗ annotation

[7] foreach e′2: v0
a′2
; v1 ∈ FG∗ do

[8] if e′3 = concat(e′2, e1) /∈ FG∗ add e′3 to FG∗ and WL

procedure Propagate
input FG∗: summarized graph s: source node
output FGp: flow path graph wrt s
initialize Add path-annotated edges from s to FGp and WL
[1] while WL 6= ∅ do

[2] remove e1: s
p
; v1 from WL

[3] foreach e2: v1
a
; v2 ∈ FG∗ do

[4] if e3 = concat ′(e1, e2) /∈ FGp add e3 to FGp and WL

Figure 3: Computation of shallow flow from source
node s.

The nCall annotation denotes paths that do not end on
a call sequence. These paths could be (1) empty paths con-
sisting of intraprocedural, or matching interprocedural flow,
(2) paths that end on a return sequence (e.g., )14)8), or
(3) paths that end on a ∗. Consider the code in Figures 1

and 2. There is an nCall path get32.i1
nCall
; getSize.ret

which is due to flow get32.i1
)8
; readLOC.i2, followed by

flow readLOC.i2
∗
; getSize.this.size, followed by flow

getSize.this.size ; getSize.ret.
The algorithm for Propagate (shown in Figure 3) finds

nodes v reachable from s; it adds a path edge from s to v
to FGp with the corresponding flow path annotation. For
initialization it considers all edges in FG∗ from s and adds

the appropriate path edges to FGp. Edges of kind s
(i
; v

result in path edges s
Call
; v. Edges of kinds s ; v, s

∗
; v

and s
)j
; v result in path edges s

nCall
; v. Each path edge

s
p
; v1 ∈ FGp is concatenated with edges v1

a
; v2 ∈ FG∗. If

the concatenation results in a new path edge from s, namely
e3, e3 is added to FGp and WL.

It remains to define the concatenation operation concat ′.
We need to consider concatenation of each possible path
annotation (i.e., (1) Call and (2) nCall), with each possible
edge annotation (i.e., (1) empty, (2) (i, (3) )j and (4) ∗). A
path annotation is preserved by an empty edge annotation—

that is, we have concat ′(s
p
; v1, v1 ; v2) = s

p
; v2. A

path annotation concatenated with (i results in Call—that

is, we have concat ′(s
p
; v1, v1

(i
; v2) = s

Call
; v2. The

concatenation for )j is given below:

concat ′(s
nCall
; v1, v1

)j
; v2) = s

nCall
; v2

concat ′(s
Call
; v1, v1

)j
; v2) = NO EDGE!



In the first case, the nCall path annotations is preserved—
clearly, adding a return edge still results in a path that does
not end on a call sequence. In the second case, no edges are
added: since the Call path ends on a sequence of call edges
(e.g., (i(j or (i(j(k, etc.), the indirect flow due to edge )j is
accounted for in Summarize.

Finally, the concatenation for ∗ is given below:

concat ′(s
nCall
; v1, v1

∗
; v2) = s

nCall
; v2

concat ′(s
Call
; v1, v1

∗
; v2) = NO EDGE!

The nCall path is preserved, and no edges are added to
Call paths—again, the relevant flow has been computed in
Summarize.

Example. For our example edges, there would be the
following path edges with source LOCFLG:

LOCFLG
Call
; get32.off, LOCFLG

Call
; get16.off,

LOCFLG
Call
; get16.i1, LOCFLG

Call
; get16.ret,

LOCFLG
Call
; get32.i1, LOCFLG

Call
; get32.ret,

LOCFLG
nCall
; readLOC.i1

There is a single path, namely a Call path, from LOCFLG to
get32.ret and no path edges are added through get32.ret.
Thus, flow from LOCFLG to readLOC.i2 and subsequently to
ph_long is, precisely, never discovered.

4.5 Termination, Complexity and Correctness
Termination. Consider procedure Summarize in Fig-

ure 3. There is finite number of new (...-annotated edges,
finite number of new ∗-annotated edges, and finite number
of new empty edges. Therefore FG∗ reaches a fixed point
and Summarize terminates. Consider procedure Propagate.
For every node v ∈ FG∗ there are at most 2 path edges be-
tween s and v and therefore FGp reaches a fixed point and
Propagate terminates as well.

Complexity. Let N be the size of the program being
analyzed—that is, the number of statements, the number
of methods and the number of variables is of order N . For
each pair of nodes vi, vj ∈ FG∗ there could be at most 3
edges between them: (1) a ∗-annotated edge, (2) an empty
edge, or (3) one of a (... edge or a )... edge. Thus there
are at most O(N2) edges that are processed on the work-
list WL in Summarize. For each edge the algorithm does
at most O(N) work examining successor edges (lines 3-5),
or examining predecessor edges (lines 6-8). Therefore, the
complexity of Summarize is O(N3). Similarly, in Propagate,
for a given source s, there are only 2 possible path edges be-
tween s and a node v, thus only O(N) paths are processed
on WL. For each edge the algorithm does at most O(N)
work examining successor edges (lines 3-4), thus it is easy
to see that Propagate has complexity of O(N2). Therefore,
the complexity of computing flow for all sources is O(N3).

Correctness. Consider an arbitrary run-time flow path
s 7→ . . . o1.f1 7→ . . . o2.f2 7→ . . . r. Our goal is to prove
that this path has appropriate analysis representative in
FGp. The path consists of segments s 7→ . . . o1.f1, o1.f1 7→
. . . o2.f2, etc. where all intermediate nodes between deref-
erences are local variables that are unique for their creating
stack frame.

Consider segment s 7→ . . . o1.f1. This segment can have

the following structure: s7→f1
ret7→ . . . fk

call7→ . . . fn 7→ o1.f1.
Here each fi represents a stack frame (i.e., a variable-to-

variable flow sequence that starts and ends within frame

fi). Edge f1
ret7→ f2 denotes that frame f1 returns into frame

f2, and edge fk
call7→ fk+1 denotes that frame fk calls frame

fk+1. Furthermore, within each frame fi there are sequences

of balanced frames as follows: v1
call7→ g1

call7→ g2 . . . gk−1
call7→

gk
ret7→ gk1 . . . g2

ret7→ g1
ret7→ v2. Here local variable v1 in frame

fi flows through a call into stack frame g1, then there is a
sequence of flows within g1 that end in a call into stack frame
g2, etc. until some frame gk called from gk−1 returns back
into gk−1, etc., until finally, g1 returns back into variable v2

in fi. Without loss of generality we may assume that the
flows within each gi are variable-to-variable intraprocedural

flows. Our goal is to show that segment s7→f1
ret7→ . . . fk

call7→
. . . fn 7→ o1.f1 has appropriate representative in FG∗. We
have the following lemmas:

Lemma 1. For each sequence of balanced frames v1
call7→

g1
call7→ g2 . . . gk−1

call7→ gk
ret7→ gk−1 . . . g2

ret7→ g1
ret7→ v2 there is a

representative edge v1 ; v2 in FG∗.
Sketch of proof. The proof is by induction on the depth

of the stack from v1. For depth of 1 we have path v1
call7→

g1
ret7→ v2 where g1 is a sequence of variable-to-variable in-

traprocedural flows. Therefore the flow sequence has the

form: v1
call7→ p 7→ w1 7→ w2 . . . wn 7→ ret

ret7→ v2 where p is
the instance of the formal parameter, ret is the instance of
the return variable, and wi are the instances of the local
variables for stack frame g1. This path has analysis rep-

resentative v1
(1
; p ; w1 ; w2 ; . . . wn ; ret

)1
; v2,

where 1 is the index of the call site that triggers the invo-
cation of stack frame g1. It is easy to see that annotation
(1 will be propagated through variables p and wi (lines 3-5

in Summarize), resulting in an edge v1
(1
; ret , which will

be concatenated with ret
)1
; v2 resulting in the needed edge

v1 ; v2.
Now assume that the lemma is true for depth of k. Let us

have a sequence v1
call7→ g1 7→ w1

call7→ g2 . . . g2
ret7→ w2 7→ g1

ret7→
v2, where w1 and w2 are local variables in frame g1, and the
depth of the stack from w1 is k. By the inductive hypothesis
there is analysis edge w1 ; w2 and therefore there is analysis

sequence v1
(1
; g1 ; w1 ; w2 ; g1

)1
; v2. We need to show

that there is analysis edge v1 ; v2. Clearly, the analysis

adds edge v1
(1
; w1 due to, possibly multiple, applications

of lines 3-5. If this edge is processed on the worklist after

edge w1 ; w2, Summarize will add edge v1
(1
; w2 and

later v1 ; v2 due to lines 3-5. Otherwise (i.e., if v1 ; w1

is processed before w1 ; w2), Summarize will add edge

v1
(1
; w2 due to lines 6-8.

Lemma 2. For each sequence of returns s 7→ f1
ret7→ f2...fk

ret7→
v there is a representative path edge s

nCall
; v in FGp.

Sketch of proof. Let fi be any frame. The sequence
vi 7→ . . . ret in fi (i.e., the sequence that starts in a local
vi in stack frame fi and ends on return variable ret in fi)
has a representative sequence of empty edges vi ; . . . ret in
FG∗—if the flow between some intermediate pair w1, w2 ∈ fi

is interprocedural, then by Lemma 1 we have an empty rep-
resentative edge w1 ; w2. Furthermore, each return edge

from stack frame fi into stack frame fi+1, namely ret
ret7→ l,

has a representative, namely ret
)i
; l, where i is the call site



that triggers the invocation of stack frame fi. It is easy to

show that procedure Propagate computes path edge s
nCall
; v.

Lemma 3. For each sequence of calls v
call7→ fk . . . fn 7→

o1.f1 there are representative edges v
∗
; p1.f1 in FG∗ for

each variable p1 that points to o and field f1 is read through
p1.

Sketch of proof. Clearly, for each frame fi the sequence
pi 7→ . . . vi in fi is represented by an empty-edge sequence

in FG∗. Therefore we have sequence v
(k
; pk ; vk

(k+1
;

pk+1 . . . pn ; vn which will result in v
(k
; vk

(k+1
; vk+1 . . . vn.

Without loss of generality we may assume that vn is the lo-
cal that reads the value o1.f1 (i.e., we have a statement
vn = q.f and q points to o1). Recall that in this case the

analysis creates a wildcard edge vn
∗
; p1.f1 for each p1 that

points to o1 and field f1 is read through p1. Therefore, we

will have sequence v
(k
; vk

(k+1
; vk+1 . . . vn

∗
; p1.f1. Proce-

dure Summarize processes this sequence and the processing

results in the necessary edge v
∗
; p1.f1.

Let us return to segment s7→f1
ret7→ . . . fk

call7→ . . . fn 7→
o1.f1. As a result of the above lemmas, this segment will

have analysis representative(s) s
nCall
; p.f1 in FGp. One

can show that if the complete sequence s 7→ . . . o1.f1 7→
. . . o2.f2 7→ . . . r ends on a sequence of calls, it will have

analysis representative s
Call
; r in FGp; otherwise, it will

have representative s
nCall
; r.

5. DEEP FLOW ANALYSIS
This section considers computation of deep flow. Sec-

tion 5.1 presents the algorithm for deep flow computation
for the purpose of detecting confidentiality violations. Sec-
tion 5.2 presents the dual algorithm for deep flow computa-
tion for the purpose of detecting integrity violations.

Each algorithm takes as input the summarized flow graph
FG∗, a source variable s, which is a sensitive variable or
field in Cls, and a set of sink variables Sinks, which contains
all placeholder variables ph_ from main. The output of each
algorithm is a boolean result. In the algorithm for confiden-
tiality inference, true means that there is no information
flow, shallow or deep, from sensitive variable s; false means
that there could be information flow, shallow or deep, from
s into some sink resulting in potential violation of confiden-
tiality. Analogously, in the algorithm for integrity inference,
true means that there is no information flow, shallow or
deep, into sensitive variable s; false means that there could
be information flow, shallow or deep, into s from some sink
resulting in potential violation of integrity.

The algorithms use two auxiliary functions, FShallow(s)
and BShallow(s), where s is an arbitrary node in the flow
graph FG∗. Function FShallow(s) returns the set of nodes
reachable forward through shallow flow from s. This set
is computed by Propagate in Figure 3. Analogously, func-
tion BShallow(s) returns the set of nodes reachable back-
wards through shallow flow from s; in other words, it con-
tains nodes v such that there is shallow flow from v to s.
The set is computed analogously to Propagate, only back-

wards: the algorithm keeps path edges e1: v1
p
; s on the

worklist and examines edges e2: v2
a
; v1 from FG∗; subse-

quently, e2 is concatenated with e1 and the resulting edge e3

(if any) is added to the path graph FG−1
p and to the worklist.

procedure DeepPropagate
input FG∗: summarized flow graph

s: source node Sinks: sink nodes
output result : boolean
initialize SWL = {s}
[1] while SWL 6= ∅ do
[2] remove s from SWL
[3] if FShallow(s) ∩ Sinks 6= ∅ return false;
[4] if s is of reference type
[5] foreach v ∈ {s} ∪ FShallow(s) ∪ BShallow(s) do
[6] foreach indirect read s′ = v.f do
[7] add s′ to SLW
[8] return true;

Figure 4: Computation of deep flow from all sources.

Note that one needs different path annotations for backward
reachability. Again, there are two kinds of path annotations:
Call−1, and nCall−1. Call−1 denotes flow paths that begin
with a call sequence. nCall−1 denotes paths that do not be-
gin with a call sequence. These paths could be: (1) empty
paths, (2) paths that begin with a return sequence, or (3)
paths that begin with ∗. Analogously to forward propaga-
tion, we need to consider concatenation of each possible edge
annotation (i.e., (1) empty, (2) (i, (3) )j , and (4) ∗) with each
possible path annotation (i.e., (1) Call−1, and (2) nCall−1).
The empty edge annotation preserves the path annotation—

that is, we have concat ′′(v2 ; v1, v1
p
; s) = v2

p
; s. The

)j annotation always results in an nCall−1 path—that is,

we have concat ′′(v2

)j
; v1, v1

p
; s) = v2

nCall−1

; s. Simi-
larly, the ∗ annotation always results in an nCall−1 as well:

concat ′′(v2
∗
; v1, v1

p
; s) = v2

nCall−1

; s. Finally, the con-
catenation for (i is given below:

concat ′′(v2
(i
; v1, v1

Call−1

; s) = v2
Call−1

; s

concat ′′(v2
(i
; v1, v1

nCall−1

; s) = NO EDGE!

In the first case, the (i annotation preserves the Call−1 path.
In the second case no new path is needed as the (i annotation
has been propagated forward during Summarize.

The union of sets FShallow and BShallow gives the set of
valid aliases of a reference variable s.

5.1 Confidentiality Inference
Recall from Section 2 that if a sensitive variable s is a ref-

erence variable, there may be flow from the object structure
rooted at s. By definition (Section 2), deep flow from s into
r occurs if there is a statement s′ = v.f such that v points
to some object reachable on a sequence of field dereferences
from l, and there is shallow flow from s′ to r.

Procedure DeepPropagate in Figure 4 states the algorithm
for confidentiality inference. It uses a worklist of sources,
SWL which is initialized with s. The algorithm finds the set
of variables r such that there is shallow flow from s to r, and
checks if any of these variables is a sink (line 3). Lines 4-7
are necessary for deep flow computation. Lines 5-6 examine
each valid alias v of s and check if there is an indirect field
read from v; if there is such a read statement, the left-hand
side s′ of the statement is added to SWL.

Example. Recall the example of deep flow from Sec-
tion 2.1. Source node s is tmpbuf and Sinks includes all



(1)Component (2)Functionality (3)#Class in Cls/ (4)#Fields (5)#Rechable Methods

#Functionality

gzip GZIP IO streams 199/6 23 3481
zip ZIP IO streams 194/6 43 3506
checked IO streams&checksums 189/4 3 3428
collator text collation 203/15 169 3535
breaks text break 193/13 252 3487
number number formatting 198/10 76 3541

Table 1: Information of Java components.

placeholder variables from main in Figure 2. Initially tmp-

buf is added to SWL. Then tmpbuf is taken off the work-
list and we have FShallow(tmpbuf) = {get32.b, get16.b}.
This set does not intersect with Sinks and the analysis pro-
ceeds. Set BShallow(tmpbuf) is empty and lines 5-6 in the
algorithm examine only tmpbuf, get32.b, and get16.b for
indirect reads. There is indirect read from get16.b on line
11 in Figure 1 and get16.b1 is added to SWL. The algo-
rithm proceeds to compute FShallow(get16.b1) which in-
cludes ph_long from main; therefore, the result is false.

It remains to show that this algorithm actually computes
deep flow as defined in Section 2.1 and reiterated in the
beginning of this section. Intuitively, one needs to show that
every relevant indirect field read s′ = v.f is examined by
our algorithm. This is done by considering induction on the
length of the field path. Assume, that each field read s′ =
v.fk such that v is aliased with s.f1...fk−1 is examined (recall
that s is the source sensitive variable). We need to show that
every field read s′′ = v′.fk+1 such that v′ is aliased with
s.f1...fk−1.fk, is examined as well. Our analysis assumes
that each object field is read at least once—that is, there is
at least one read statement s′ = v.fk which reads s.f1...fk−1.
Then v′ and s′ are aliased since they refer to the same object,
namely the one referred to by s.f1...fk1 .fk. By the inductive
hypothesis, statement s′ = v.fk is examined and therefore
s′ is processed on the worklist and sets FShallow(s′) and
BSshallow(s′) are computed. v′ must be included in one of
these two sets (either there is shallow flow from s′ to v′ and
v′ ∈ FShallow(s′) or there is shallow flow from v′ to s′ and
v′ ∈ BShallow(s′)). Therefore, statement s′′ = v′.fk+1 is
examined as well.

5.2 Integrity Inference
The definition of deep flow for the purpose of detecting

integrity is the following. There is flow from variable r into
some sensitive variable s if there is a statement v.f = s′ such
that there is shallow flow from r to s′ and v points to some
object reachable on a sequence of field dereferences from s.

The integrity inference is the dual of the confidentiality
inference in Figure 4. It has the same inputs as the algorithm
for confidentiality inference and differs only slightly (the two
adjustments are highlighted in bold):

[3] if BShallow(s) ∩ Sinks 6= ∅ return false
[4] if s is of reference type
[5] foreach v ∈ {s} ∪ FShallow(s) ∪ BShallow(s) do
[6] foreach indirect write v.f = s′ do
[7] add s′ to SWL
Line 3 considers set BShallow(s)—that is, the set of vari-

ables r such that there is shallow flow from r into s. If some
of these variables is in Sinks the algorithm returns false.
Lines 4-7 are needed for deep flow computation. Line 5-6

find all valid aliases v of s and examine field writes v.f = s′.
Each s′ is part of the object structure rooted at s; it is put
on the worklist and subsequently, line 3 checks for violating
shallow flow into s′.

6. EMPIRICAL RESULTS
The empirical study aims to address two questions. First,

how imprecise the analysis is—that is, how often it reports
safe fields as compromised due to insecure information flow?
Second, does the analysis have good performance?

The static information flow analysis is implemented in
Java using the Soot 2.2.3 [42] and Spark [18] frameworks.
It uses the Andersen-style points-to analysis provided by
Spark. We performed the analysis with the Sun JDK 1.4.1
libraries. All experiments were done on a 900MHz Sun
Fire 380R machine with 4GB of RAM. The implementa-
tion, which includes Soot and Spark was run with a max
heap size of 300MB.

We evaluated the analysis on several Java components
from the packages java.text and java.util.zip (these com-
ponents were used in related analyses [32] and [22]3). The
components are described in the first three columns of Ta-
ble 1. Each component contains the set of classes in Cls
(i.e., the classes that provide component functionality plus
all other classes that are directly or transitively referenced);
the number of classes in Cls and the number of functional-
ity classes is shown in column (3). The number of fields in
functionality classes is shown in column (4). The last column
shows the number of methods in all classes (i.e., functional-
ity classes and library classes), determined to be reachable
by Spark.

6.1 Results
We applied the information flow inference analyses from

Section 5 on the sensitive fields in functionality classes in
Cls; these include all non-public fields (i.e., fields in Cls that
are not directly accessible by a client).

Table 2 shows the results of the confidentiality inference
analysis (Section 5.1). Column #Fields shows the number of
sensitive fields per component. Column #Leaked(shallow)
shows how many of these fields could be leaked to client
code through shallow flow according to the analysis. Column
#Leaked(shallow or deep) shows how many of these fields
could be leaked through shallow or deep flow.

Table 3 shows the results of the dual integrity inference
analysis. Column #Tampered(shallow) shows how many
sensitive fields could be tampered by client code through

3The current paper does not include one of the 7 components
used in previous work, namely date. We were unable to run
this component with our current Soot infrastructure.



Program #Fields #Leaked #Leaked
(shallow) (shallow or deep)

gzip 15 2(13.33%) 2(13.33%)
zip 29 9(31.03%) 13(44.83%)
checked 3 3(100%) 3(100%)
collator 134 22(16.42%) 33(24.63%)
breaks 241 6(2.49%) 7(2.90%)
number 66 22(33.33%) 25(37.88%)

Table 2: Confidentiality: fields leaked to client code.

shallow flows according to our analysis. Column #Tam-
pered(shallow or deep) shows how many sensitive fields could
be tampered through shallow flow or through deep flow.

Program #Fields #Tampered #Tampered
(shallow) (shallow or deep)

gzip 15 5(33.33%) 5(33.33%)
zip 29 16(55.17%) 18(62.07%)
checked 3 2(66.67%) 2(66.67%)
collator 134 11(8.21%) 16(11.94%)
breaks 241 5(2.07%) 5(2.07%)
number 66 6(9.09%) 6(9.09%)

Table 3: Integrity: fields tampered by client code.

Tables 2 and 3 show that deep flow does capture ad-
ditional, potentially insecure flow. Essentially, it captures
flows that leak or tamper sensitive data partially (e.g., an
element of an internal container is leaked or tampered, while
the reference to the container itself remains secure). Clearly,
the larger and more complex a component, the more likely
it is that deep flow captures additional flow (e.g., collator
and breaks). We conjecture that reasoning about deep flow
is necessary—it is likely to capture more potentially insecure
flow, especially in larger and more complex components.

Program Points-to Analysis Flow Analysis
gzip 1m24s 6s
zip 1m24s 7s
checked 1m23s 5s
collator 1m25s 11s
breaks 1m24s 8s
number 1m25s 9s

Table 4: Analysis time.

Table 4 shows the the running time of the analysis. The
first column shows the running time for Soot and Spark, and
the next column shows the running times for the information
flow analysis, which includes both confidentiality inference
and integrity inference. Clearly, the analysis performs well
on these components—it runs in only several seconds, and its
cost is a small fraction of the underlying points-to analysis.

6.2 Analysis Precision
The issue of analysis precision is of crucial importance for

any static analysis. If the information flow analysis is impre-
cise, it may report a false warning on a sensitive field—i.e.,
it may report that the field is leaked or tampered, while in
fact it is not. False warnings are especially confusing, and a
large amount of warnings may prevent the use of the analy-
sis in practice. For example, if the analysis is used in a tool
which verifies the security of sensitive data, imprecision will
lead to many false warnings. Developers will spend valuable

time examining potentially large amount of code until they
determine that the warnings are due to analysis imprecision
and not to insecure information flow. Clearly, imprecision
must be carefully evaluated by analysis designers.

We performed a study of absolute precision [34, 22] on all
sensitive fields, a total of 488 fields. Of these fields, 83 fields
were reported as leaked to client code (column 4 in Table 2).
We examined manually each field s reported as leaked by the
analysis and attempted to find a client that would expose
information flow from s to a client variable. In each case we
successfully constructed such a client. Furthermore, 52 fields
were reported as being tampered by client code (column 4
in Table 3). Again, for each field s reported as tampered we
attempted to find a client that would expose flow from some
client variable to s, and in each case we successfully con-
structed such a client. Thus, for these components the anal-
ysis achieves perfect precision. It is important to note that
the analysis is safe—that is, all fields reported as safe, are
in fact safe (modulo the constraints outlined in Section 2.2).

These results indicate that our static information flow
analysis is precise and practical. Therefore, it can be in-
corporated in program understanding and verification tools
and help verify security properties in a light-weight, practi-
cal manner.

7. RELATED WORK
Section 7.1 considers work on secure information flow, and

Section 7.2 considers work on CFL-reachability-based pro-
gram flow analysis.

7.1 Secure Information Flow
There is a large amount of work on secure information

flow. The vast majority of it falls into two categories: (1)
dynamic, instrumentation-based approaches such as taint-
ing, and (2) static, language-based approaches such as type
systems. The disadvantage of the dynamic approaches is
that they typically incur significant run-time overhead [8];
the disadvantage of the static, language-based approaches
is that they typically require changes to the language, com-
piler and run-time system [35]; thus, it would be difficult to
adopt these approaches in current software practice. On the
other hand, static analysis which works before program exe-
cution and on existing languages has received considerably
less attention. This is surprising, given that static analysis
has great potential to be useful in practice—it does not in-
cur run-time overhead, and it does not require changes to
the language or user input in the form of annotations. We
believe that our work is a step forward in this important
direction; it may help advance the use of static analysis in
real-world tools for understanding and verification of secu-
rity properties.

Below we discuss directly related work on static informa-
tion flow analysis, and work on dynamic and language-based
approaches.

Static information flow analysis. Genaim and Spoto [12]
present an information flow analysis for Java bytecode. Their
analysis works on complete programs only, and does not sep-
arate flow through fields of different objects which may lead
to significant imprecision; in contrast, our analysis works
both on complete and incomplete programs and separates
flow through different object fields. Furthermore, our anal-
ysis is conceptually different: it is cubic, and based on CFL-
reachability which we conjecture, achieves the right scalabil-



ity and precision for this problem. Finally, we present results
on absolute precision which indicate that our analysis may
achieve better precision.

Livshits et al. [20, 17] propose analysis for finding vulner-
abilities caused by unchecked inputs. This analysis requires
users to provide vulnerabilities patterns, while our analysis
is automatic. Furthermore, it only tracks flow of objects,
while our analysis considers flow for both object and sim-
ple types. Again, our analysis is conceptually different: the
analysis in [20, 17] is exponential (due to the underlying
points-to analysis), while ours is cubic.

Related type inference techniques have been proposed [36,
4, 40]. One disadvantage of these techniques is that they
lack support for libraries: they either require users to pro-
vide type annotations for libraries, or restrict the usage of
libraries. In contrast, our analysis handles libraries seem-
lessly: it analyzes reachable library code and tracks flow
through this code.

Dynamic tainting. Dynamic tainting labels data and
propagates the labels during execution through suitable in-
strumentation. There are tainting-based tools that prevent
integrity-compromising attacks on network services [24, 27,
44], tools that detect SQL-injection attacks [16, 25, 14], and
tools that enforce data confidentiality [6, 41, 13, 21]. Re-
cently, Clause et al. have proposed a general framework for
dynamic tainting [8]. Dynamic tainting is a principally dif-
ferent approach to secure information flow: it tracks flow
through instrumentation during execution, while our analy-
sis tracks flow statically, before program execution.

Type-based approaches. These approaches rely on
type systems for secure information flow [43, 11, 23, 38, 19].
Generally, these approaches require changes to the language,
compiler and run-time system, as well as sometimes complex
type annotations provided by the programmer; therefore, it
may be difficult to adopt these approaches in practice. In
contrast, our analysis works directly on Java codes and does
not require annotations; it can be directly incorporated in
program understanding and verification tools.

Semantics-based approach. Semantics-based systems
define flow semantics for each language construct and then
prove properties related to information flow [2, 3, 5, 1, 7,
15]. Most studies of semantics-based approach focus on sim-
ple imperative languages; thus, they do not support object
types, aliasing and polymorphism. Although the work in [9]
handles some of these features, its applicability in real pro-
grams is still unknown. Our static analysis works directly
on existing object-oriented languages, supporting all these
complex features.

7.2 CFL-reachability
CFL-reachability is a well-known technique for context-

sensitive program flow analysis [30]; it has been used in
a variety of flow analyses that require context sensitivity
(e.g., points-to analysis for Java [39], and analysis for race
detection for C [26]). Our analysis is a CFL-reachability
computation as well; one can see that the concat operations
are essentially grammar productions. We conjecture that
CFL-reachability presents the right degree of scalability and
precision for the problem of static information flow analysis.

Our work builds on the ideas in [28]. Unlike [28], it
deals with non-structural (i.e., inclusion-based) flow and it
needs to consider flow through object fields which is a known
problem: analysis that tracks flow through fields and flow

through method contexts precisely is undecidable [29], and
one needs an approximation at least in one of these dimen-
sions. Our analysis approximates flow through fields and
seamlessly weaves the approximation into the reachability
computation by using the ∗-annotations; one can vary the
degree of approximation by varying the precision of the un-
derlying points-to analysis, while the client analysis remains
the same (and cubic).

8. CONCLUSIONS
In this paper, we have proposed a new static information

flow analysis. The contributions of our work are the fol-
lowing: first, we define a run-time information flow model
that extends the standard model with the concepts of shal-
low flow and deep flow. Second, we present a new static
information flow analysis that infers information flow ac-
cordingly. The analysis works on complete and incomplete
Java programs, is context-sensitive and has cubic worst-case
complexity. Finally, we present an empirical investigation on
several Java components that indicates that our analysis is
practical and precise.
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