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Abstract Pathological examination of a biopsy is the most reliable and widely
used technique to diagnose bone cancer. However, it suffers from both inter-
and intra- observer subjectivity. Techniques for automated tissue modeling and
classification can reduce this subjectivity and increases the accuracy of bone
cancer diagnosis. This paper presents a graph theoretical method, called extra-
cellular matrix (ECM)-aware cell-graph mining, that combines the ECM for-
mation with the distribution of cells in hematoxylin and eosin (H&E) stained
histopathological images of bone tissues samples. This method can identify dif-
ferent types of cells that coexist in the same tissue as a result of its functional
state. Thus, it models the structure-function relationships more precisely and
classifies bone tissue samples accurately for cancer diagnosis. The tissue im-
ages are segmented, using the eigenvalues of the hessian matrix, to compute
spatial coordinates of cell nuclei as the nodes of corresponding cell-graph.Upon
segmentation a color code is assigned to each node based on the composition
of its surrounding ECM. An edge is hypothesized (and established) between a
pair of nodes if the corresponding cell membranes are in physical contact and
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(a) a normal bone tissue (b) a fractured tissue (c) a cancerous tissue

Fig. 1 Microscopic images of tissue samples surgically removed from human bone tissues
and stained with hematoxylin and eosin.

if they share the same color. Hence, multiple cell-graphs coexist in a tissue
each modeling a different cell-type organization. Both topological and spec-
tral features of ECM-aware cell-graphs are computed to quantify the struc-
tural properties of tissue samples and classify their different functional states
as healthy, fractured, or cancerous using support vector machines. Classifica-
tion accuracy comparison to related work shows that ECM-aware cell-graph
approach yields 90.0% whereas delaunay triangulation and simple cell-graph
approach achieves 75.0% and 81.1% accuracy, respectively.

Keywords Cancer Diagnosis · Graph Mining · Tissue Classification

1 Introduction

Osteosarcoma is the most common type of bone sarcoma, accounting for ap-
proximately 35% of bone tumors. Osteosarcoma develops in new tissue of
growing bones and occurs most commonly in children or adolescents. Among
children under age 15, it is the 6th most frequently diagnosed cancer. Os-
teogenic sarcoma affects 400 children under age 20 and 500 adults who are
mostly between the ages of 15-30 every year in the USA. Long term survival
of osteosarcoma is 66%, leading to 300 deaths each year.

Pathological examination of a biopsy is the most reliable and widely used
technique to diagnose bone cancer in the current practice of medicine. Suc-
cessful biopsy requires knowledge of sarcomas and their treatment, and is best
performed by a surgical specialist, followed by examination of the sample by
an experienced pathologist. Biopsies can be performed as an open (surgical)
procedure or a closed (percutaneous) procedure (using a large needle to re-
move the tissue). The biopsy must be performed properly such that enough
tissue is collected to obtain a diagnosis, while still allowing surgical treatment
of the tumor. In general, the preferred method is the least invasive technique
that still allows the pathologist to give a definitive diagnosis. The pathologist
examination of biopsy suffers from both inter- and intraobserver subjectivity
and thus techniques to reduce this subjectivity with quantitative measures for
cancer diagnosis are in great demand.
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Several automated cancer diagnosis tools have been reported in the liter-
ature. Depending on the feature set these tools use, they can be divided into
five categories; morphological, textural, fractal, intensity based and topolog-
ical. Morphological features such as area, perimeter, and roundness of nuclei
are used in [10,14,15,20,23,27,28,31,35,37]. Textural features such as the an-
gular second moment, inverse difference moment, dissimilarity, and entropy
derived from the co-occurrence matrix are used for diagnosis in [10,33,15,19,
29,31,35].

Complimentary to the morphological and textural features, colorimetric
features such as intensity, saturation, red, green, and blue components of pix-
els [14,37] and densitometric features such as the number of low optical density
pixels [33,19,29] have been reported. Fractals that describe the similarity lev-
els of different structures found in a tissue image over a range of scales are
proposed in [9,11]. Fractal dimensions are used as the feature set in these
studies.

Orientational features extracted by making use of Gabor filters that re-
spond to contrast edges and line-like features of a specific orientation are used
in [32]. Other mathematical diagnosis tools rely on gene expression [2,13,16,
18] and mass spectroscopy [36] to detect a cancer tumor.

Using these features, automated cancer diagnosis tools build classifiers to
distinguish the healthy and cancerous tissues. Artificial neural networks [29,
31,37], k-nearest neighborhood algorithm [33,11,14], support vector machines
[15], linear programming [27], logistic regression [9,35], and fuzzy [23] and
genetic [28] algorithms have been used for cancer diagnosis.

These techniques do not capture the structure-function relationship that is
encoded by the spatial distribution of the cells and organization of the ECM in
a tissue sample. Initial approach in this direction is the construction of Voronoi
graphs which aim to model spatial distribution of cell where each nucleus rep-
resents a vertex in the graph [34,26,24]. Graph properties such as minimum
spanning trees computed over voronoi graphs to capture the structural or-
ganization of tissue samples [8]. However, there are two main limitations of
Delaunay triangulation that cell-graphs successfully remedy. First, Delaunay
triangulations are restricted to planar graphs which are very limited in their
structure and do not allow crossing of edges. There is no evidence to justify
such a limitation in a tissue’s structural organization. Second, a Delaunay tri-
angulation is a single connected component (i.e., the tissue is represented by
a connected graph) which may not be a valid assumption for sparse tissues.

Recently, we proposed the cell-graph approach which remedies the short-
comings of Voronoi graphs and permits a more general and hypothesis-driven
edge definition between a pair of vertices. We successfully analyzed brain
[17] and breast tissues [3] using cell-graphs and demonstrated its advantages
by comparing this method to related techniques. In this work we present a
paradigm shift in cell-graph mining by incorporating the ECM information
and allowing multiple cell-graphs, each modeling a different cell-type organi-
zation, coexist on the same tissue sample. We demonstrate this method on
bone tissue samples that represent three different functional state: healthy,
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fracture, and cancerous. Figures 1(a), 1(b) and 1(c) illustrate H&E stained
images of normal bone tissue, fractured bone tissue and cancerous bone tissue.
The distinction between the healthy versus fractured and cancerous tissues is
obvious but the cancerous versus fractured tissue is not easily distinguishable.

Contributions: This paper presents a new computational method (ECM-
aware cell-graphs) that can model the organization of different cell types co-
existing in the same tissue by considering the ECM niche surrounding each
cell. We demonstrate the effectiveness of this method on histopathological bone
tissue samples (provided by the pathology department of Hospital for Special
Surgery in NYC) for automated cancer diagnosis.

In ECM-aware cell-graph technique multiple graphs are constructed and
their both graph theoretical and spectral features are computed for the clas-
sification problem by using an SVM with a radial kernel function. We com-
pare the accuracy of our new method to previous cell-graph approaches and
to the voronoi diagrams for automated cancer diagnosis. The results demon-
strate the importance of capturing the information encoded by the ECM niche
since ECM-aware cell-graphs outperform the related work significantly. Fur-
thermore, we perform a feature selection procedure to determine the discrim-
inative power of each feature.

Organization: The rest of the paper is organized as follows. In section 2
we explain our methodology for nuclei segmentation, graph generation, metric
extraction from the graphs, and our learning algorithm. Section 2.3 explains in
detail the graph metrics and spectral metrics extracted from cell-graphs. We
present our experiments and results in section 3, and conclude our discussion
in section 4.

2 Methodology

We propose to use ECM-aware cell-graphs that can capture the topological
structures as well as the extracellular structures for bone tissue modeling and
classification. Our general methodology consists of segmenting nuclei in tissue
samples using the eigenvalues of the Hessian matrix, build cell-graphs that
capture both the structural and extracellular properties, extract graph theo-
retical features from these graphs and use them to learn different states of the
tissues.

Multiple cell types can coexist in bone tissue samples i.e. mature bone
forming cells (osteocytes), their precursors (osteoblasts), as well as osteoclasts,
adipocytes, etc. These cells are enclosed in an extracellular matrix (ECM)
that varies in composition and color when stained with typical histological
dyes such as hematoxylin and eosin. To differentiate between these cells in
our graphs, we encode color information to each nucleus. Depending on the
predominant R, G, B values of neighboring pixels, we cluster nuclei in 4 groups;
red, green, blue and white. We hypothesize a relationship between two nodes
if they have the same color and if the distance between them is smaller than a
threshold. In this setting, nuclei correspond to the vertices of our graph and the
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relationship between the nuclei corresponds to the edges of our graph. After
forming ECM-aware graphs we extract a rich graph theoretical feature set
including spectral features. These features are then input to kernel machines
for learning purposes. We use cross validation to report our results and other
machine learning techniques to select the most important and distinguishing
features.

We implemented ECM-aware cell graphs using the ITK library [22] for
segmentation, Boost Graph Library(BGL) [30] for graph construction and lib-
SVM library [5] for machine learning. We further discuss our methodology in
the following sections.

2.1 Image Segmentation

ECM-aware cell-graph mining technique uses nuclei as the vertex set when
generating graphs. Therefore, we start with nuclei detection in hematoxylin
and eosin stained images.

Let f be the intensity function of an image. A common approach to ana-
lyzing the local behaviour of image f is to consider the second order approxi-
mation of f(x) around x0 given by the Taylor expansion in equation (1).

f(x) = f(x0) + (x − x0)
T∇f0 +

1

2
(x − x0)

T∇2f0(x − x0). (1)

In this expansion ∇f0 and ∇2f0 denote the gradient vector and the Hessian
matrix at x0 respectively. The gradient vector, given by ∇f = (fx, fy), is a 2D
vector composed of the partial derivatives in x and y directions. The partial
derivatives of the image are defined as fx = ∂f

∂x
and fy = ∂f

∂y
.

At any point the gradient vector points in the largest possible intensity

increase. The gradient magnitude, given by |∇f | =
√

(f2
x + f2

y ), measures the

magnitude of this change. The gradient and the magnitude have been used as
edge detectors in the literature. Using the gradient information second partial
deviates are calculated and the Hessian matrix is built as in (2).

∇2f =

[

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2 .

]

(2)

The eigenvalues of the Hessian matrix are of particular interest as they en-
code shape information. Depending on the values of the eigenvalues ridge-like
membranes and blob-like nuclei can be segmented. Let λ1 and λ2 be the eigen-
values of the Hessian matrix and e1 and e2 be the corresponding eigenvectors
for pixel x0. These eigenvalues, λ1,2 of the hessian matrix can be numerically
calculated as in (3).
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Table 1 Local structures and their relations to eigenvalues

λ1 λ2 Structure

Low High- bright tubular

Low High+ dark tubular

High- High- bright blob

High+ High+ dark blob

λ1,2 =
1

2







∂2f

∂x2
+

∂2f

∂y2
±

√

(

∂2f

∂x2
− ∂2f

∂y2

)2

+ 4
∂2f

∂x2







. (3)

For 2D images, these eigenvalues can be used to detect ridge-like and blob-
like structures. The blob-like structures are given by negative eigenvalues with
a high absolute values. More specifically, bright blob structures are given by
λ1 ≈ λ2 ≪ 0 and likewise dark blob structures are given by λ1 ≈ λ2 ≫ 0.
Table 1 summarizes how the eigenvalues and the structures in a tissue are
related to each other. Note that we are only interested in blob-like structures
as they represent nuclei in our tissue samples.

Frangi et al. introduced using a vesselness measure function for 2D images
in [12]. This vesselness measure takes into account the RB = λ1

λ2
ratio and

S = ‖∇2f‖F =
√

∑

j≤D λ2
j . S is the Frobenius matrix norm and used to

differentiate objects of interest from the background, whereas RB is a measure
to differentiate between blob-like structures and ridge-like structures. S will
be low in background pixels as the eigenvalues for pixels lacking contrast will
be small. In high contrast regions however, at least one of the eigenvalues will
be high and S will be large.

A simple way of concluding the segmentation using these two measures is
to use them together to decide whether a pixel is background or foreground
as in equation (4).

Iseg [p] =

{

1, if RB[p] ≥ T1 and S[p] ≥ T2

0, otherwise.
(4)

It should be noted that a perfect segmentation is not our main concern.
Considering the deficiencies of hematoxylin and eosin staining and the resolu-
tion of the images we are using, a rough segmentation of the tissue is all we
need.

2.2 Cell-Graph Generation

In image segmentation, we identified the cells using eigenvalues of the Hessian
matrix. In the cell-graph generation step, we build our cell-graphs on these
cells.
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Formally a graph is represented by G = (V, E) where V is the vertex set
and E is the edge set of the graph. Each cell constitutes a vertex in our cell-
graphs. We define two different ways to construct cell-graphs capturing the
pairwise distance relationship between the vertices, namely simple cell-graphs
and ECM-aware cell-graphs. We also compare these two models to Delaunay
triangulations method.

Simple cell-graphs and Delaunay triangulations are built without consider-
ing the ECM niche. That is, they capture only the structural properties of the
tissue, whereas ECM-aware cell graphs encode ECM into graph formation and
therefore capture both the structural and extracellular properties of tissues.
The following subsections explain these models in detail.

2.2.1 Simple Cell-Graphs

Simple cell-graphs hypothesize that a relationship between two nodes exists if
these two nodes are touching or close to each other. Biologically, this might
mean that these cells are communicating with each other.

We find the center of mass for each cell and store their x-y coordinates. We
hypothesize a communication by setting a link between two nodes if the eu-
clidean distance between them is less than a threshold that ensures a physical
contact between the corresponding cell membranes. The Euclidean distance
between two cells is simply given by equation (5)

d(u, v) =
√

(ux − vx)2 + (uy − vy)2, (5)

where ux and uy are x and y coordinates of node u respectively. The threshold
for communication is chosen by a 10-fold cross validation process.

2.2.2 ECM-Aware Cell-Graphs

Both simple cell-graph approach and Delaunay triangulations are limited to
modeling the spatial distribution of cells over a tissue sample. Both of these
approaches segment the tissue samples and use graph theoretical approaches
to link the cells and address the problems of diagnosis, classification, etc.
However, these graphs ignore the composition (i.e., color) and distribution of
the extracellular matrix(ECM) surrounding the cells.

The ECM is composed of a complex network of proteins and oligosaccha-
rides that play important roles in cellular activities such as division, motility,
adhesion, and differentiation [1] and therefore plays an important role in the
functional state of the tissue. ECM-aware cell-graphs try to embed this in-
formation as well as the structural properties between cells for bone tissue
modeling and classification.

ECM-aware cell-graphs are built in three phases:
[1.] Image processing and segmentation: we segment the digital images of

histopathological tissue samples as explained in section 2.1 to identify the cells.



8

(a) Original Image (b) Simple Cell Graph

(c) Voronoi Diagram (d) Delaunay Triangulation

(e) ECM-Aware Cell-Graph

Fig. 2 A fractured bone tissue example is shown in 2(a). Note the fracture cells in the
middle of the original image. The simple-cell-graph representation, the Voronoi diagram
and the Delaunay triangulation for this sample tissue are depicted in 2(b), 2(c) and 2(d).
The corresponding ECM-aware cell-graph is drawn in 2(e). The interactions between fracture
cells are drawn with blue and the red cells with red color. Delaunay triangulation represents
the tissue as a single connected component and does not allow crossing of edges. Simple-cell-
graphs relaxes these restrictions and allows the tissue to non-planar graph and disconnected.
Likewise, ECM-aware cell-graphs do not put such restrictions on the tissue and moreover
can capture the structural organization of different cells in a tissue. Furthermore, Delaunay
triangulations are fixed representations whereas ECM-aware cell-graphs can be adjusted
with different linking thresholds.
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[2.] Cell-based filtering: we assign a color to each cell, based on the RGB
values of its surrounding ECM. We find the center of mass for each cell and
store the x-y coordinates of each nucleus. To incorporate the ECM composition
information, for each nucleus center, we examine the δ neighboring pixels in
each direction, giving a square of 2δ + 1 by 2δ + 1 pixels including the center
of the mass for that nucleus. More specifically, we consider all the pixels in a
2δ+1 pixels by 2δ+1 square where the center of the square is the center of the
nucleus. We calculate the mean R, G, B values in this square and assign each
cell a color depending on R, G, B values of these (2δ + 1)2 neighboring pixels
1. Note that this step can be perceived as a new filtering technique applied to
each nucleus (instead of a pixel).

[3.] Construction of colored cell-graphs: we cluster the cells into four color
groups (i.e., red, green, blue and white) based on the predominant color of
the ECM pixels. We then build four separate cell-graphs for each color group.
Having generated the ECM-aware cell-graphs, we calculate a set of global met-
rics from these graphs and use them as the feature set for machine learning. In
these graphs, the assignment of a link between two nodes is determined by both
the distance between the nodes and the color of the ECM surrounding each
node. A link between two nodes is possible only if the distance between these
nodes is smaller than the threshold, and the color of the ECM surrounding
these nodes fall into the same color group i.e. red, green, blue, white.

2.2.3 Voronoi Graphs and Delaunay Triangulation

We compare our ECM-aware cell-graph technique to simple cell-graph tech-
nique and to the other well-known Voronoi diagram method. Voronoi diagrams
and their Delaunay triangulations are proposed in [24,26,34]. On a tissue im-
age, the Voronoi diagram partitions the image into convex polygons such that
each polygon contains exactly one cell (generating point) and every point in a
given polygon is closer to its generating point than to any another generating
point in the tissue. Each such polygon constitutes a Voronoi cell. The dual
of Voronoi graphs are built by linking the generating points of neighboring
Voronoi cells. The Voronoi diagram of a sample tissue image and its Delaunay
triangulation is illustrated in figure 2(c) and 2(d). We build Delaunay triangu-
lations on cells that are identified in the segmentation step. After triangulation
we follow the same steps as in other cell-graph learning techniques. We cal-
culate the metric explained in section 2.3 and then use these metrics as the
feature set for our classifier.

1 We have examined different values for δ value ranging from 3 to 20 pixels. We chose a
value of 10 for δ in our computations after an exhaustive search. Please refer to the results
and discussions section for further discussion.
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2.3 Metrics

After identifying the cells and forming cell-graphs on them, we extract a set of
topological and spectral features from these graphs. These features quantify
the different types of tissues and serve as the feature set for our learning
algorithm.

We start with the metrics we have used in simple cell-graphs [17] and
hierarchical cell-graphs [3]. These metrics proved to be useful for brain cancer
diagnosis and breast cancer diagnosis. In addition to these metrics, we also
included metrics derived from spectral properties of the cell-graph. Table 2
gives a summary of these metrics.

Our metrics can be crudely grouped in four categories, simple metrics, dis-
tance based metrics, connectedness metrics and spectral metrics. The simplest
metrics are the number of nodes and number of edges presented in the
graph. The ratio of the number of edges to the number of nodes is called the
average degree. Although in some cases higher values of these metrics is an
indication of abnormality in the tissue, it is not always the case that the higher
these values the more likely that the tissue is cancerous.

In the next category we use various metrics that quantify the how far the
nodes are apart from each other. The shortest path between two nodes is
defined as the minimum number of hops between those two nodes. Using the
shortest path distance, the eccentricity of a node u is given as the maximum
shortest path distance from node u to any of the nodes in the graph. After
the calculation of the eccentricities of each node, the diameter of the graph
is simply given by the maximum eccentricity. The minimum eccentricity is
defined as the radius, and the nodes that have eccentricity values equal to
the radius are defined as central points in the graph.

The clustering coefficient of a node u is the ratio of the number of edges
u’s neighbors have in between, and the number of possible edges that could
have existed between node u’s neighbors. This metrics quantifies how well a
node’s neighbors are connected to each other. The average value of the clus-
tering coefficients of a graph shows how close the graph is to be a clique and
whether a node’s neighbors are also neighbors of each other. Other connectiv-
ity measures, such as giant connected component ratio give information
about what percentage of the network that is connected. Isolated points are
the nodes that have degree 0 and end points are the ones that have degree 1.

2.3.1 Spectral Graph Analysis

Apart from the graph metrics defined above, we also performed spectral graph
analysis on our cell-graphs. The spectral analysis of graphs [7] deal with the
eigenvalues of the adjacency matrix or other matrices derived from the adja-
cency matrix.
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Table 2 Graph metrics, their definitions and interpretations

Simple Metrics: Density of the tissue sample. Healthy tissues contain fewer
cells and yield to sparse graphs. Both fracture and cancerous (dis)functional
state presents a dense cell population.
Number of Nodes Number of cells in the tissue.
Number of Edges Number of hypothesized interactions

Distance Based Metrics: These metrics measure how far away the nodes are
from each other. Since uncontrolled cell divisions occur in cancer tissues, the
nodes will be closer to each other and as a result distance based metrics will
be smaller than that of the normal tissue samples.
Eccentricity of a Node Maximum value of the shortest path from a given

node to any other node.
Closeness of a Node Average value of the shortest path from a given

node to any other node.
Diameter Maximum eccentricity.
Radius Minimum eccentricity.
Number of Central Points Number of nodes that have eccentricity equal to

radius.
Hop-plot Value For hop h, number of node pairs such that the

path length between these node pairs is ≤ h hops.
Hop-plot Exponent Slope of the hop-plot values as a function of h in

log-log scale.

Connectedness and Cliquishness Measures: Typically a normal bone tissue ex-
ample is less connected than a cancerous tissue example.
Average Degree Average value of number of neighbors a node has.
Clustering Coefficient of a Node The ratio of the links a node’s neighbors have in

between to the total number that can possibly
exist.

Giant Connected Component Ratio Ratio of the size of the largest set of the nodes
that are reachable from each other to the number
of nodes.

Percentage of Isolated Points The ratio of number of nodes with degree equal
to zero, to the total number of nodes.

Percentage of End Points The ratio of number of nodes with degree equal
to one, to the total number of nodes.

Spectral Metrics: both adjacency matrix and its Laplacian provide features
about the structural organization. For example the number of eigenvalues with
value 0 correspond to connected components.
Number of 0,1,2 eigenvalues Number of eigenvalues that have a value 0, 1 and

2 respectively.
Lower slope The slope of the line segment corresponding to

eigenvalues between 0 and 1.
Upper slope The slope of the line segment corresponding to

eigenvalues between 1 and 2.
Trace Sum of the eigenvalues
Energy Squared sum of the eigenvalues

The adjacency matrix A of a graph G(V, E) where V is the vertex set and
E is the edge set is defined as in (6).

A(u, v) =

{

1, if (u, v) ∈ E

0, otherwise
. (6)
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The degree matrix D is constructed by D(u, u) =
∑

v∈V A(u, v). More
specifically, the degree matrix is a diagonal matrix that holds the degree of
node i at (i, i) entry. The Laplacian matrix L is then given by the difference
between the degree matrix and the adjacency matrix, L = D − A. Laplacian
matrix is strongly connected to the gradient of the graph, nevertheless we use
the normalized version of the Laplacian matrix given as (7).

L(G) =















1, if i = j and di 6= 0

− 1√
didj

, if i and j are adjacent

0, otherwise

(7)

The spectral decomposition of the normalized Laplacian matrix is given by
L = ΦΛΦT where Λ = diag(λ1, λ1 . . . λ|V |) with the eigenvalues as its elements
and Φ with the eigenvectors as columns. The normalized Laplacian matrix and
its spectral decomposition provide insight to the structural properties of the
graph. Since L is a symmetric positive semi-definite matrix the eigenvalues of
normalized Laplacian matrix are all between 0 and 2.

For normalized Laplacian matrices the number of zero eigenvalues gives
the number of connected components in the graph. We include the number of
zero eigenvalues, the number of eigenvalues equal to one, and the number of
eigenvalues equal to two in our feature set. We sort and plot the eigenvalues
of the normalized Laplacian matrix in an increasing order. We fit a line to
this plot in a least squares manner and calculate the slope of the line for
the eigenvalues that are between 0 and 1. We call this slope lower slope.
Likewise, we also calculate the upper slope that corresponds to the slope of
the eigenvalues between 1 and 2. The last two normalized Laplacian matrix
features we include in our feature set are the trace of the normalized Laplacian
and energy of the normalized Laplacian defined as

∑

i λi and
∑

i λ2
i . It has

been reported that the eigenvalues of the normalized Laplacian graph are
more distinguishing than that of the Laplacian or the adjacency matrices [7].
Nevertheless we also included the same set of measurements for the adjacency
matrix and leave it to the feature selection method to decide which metrics
are more valuable to distinguish the tissues. For a tissue sample we calculate
all these features for the red graph, blue graph, white graph, green graph and
represent the tissue with all these features.

2.4 Cell-Graph Mining

To learn the structural differences between the different types of bone tissues,
we compute the graph metrics for each tissue sample as explained in section
2.3 and build a classifier using these metrics. The range of these metrics are
different from each other, i.e. the average clustering coefficient of a graph is a
number between 0 and 1, whereas the number of edges in a graph is around
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a thousand. We uniformly scale each metric to the range [−1, 1] to improve
learning.

Support vector machines (SVMs) have been used successfully for classifi-
cation purposes [4]. The basic idea of SVM is to map the data into a higher
dimension and then to create an optimal separating hyperplane between data
points such that the data points of different classes fall on the opposite sides
of this hyperplane. If there is no hyperplane that separates the classes (i.e.,
if the data is not linearly separable in this higher dimension), this algorithm
creates a hyperplane that leads to the least error.

Let x1, x2, . . . xn be the training samples and y1, y2, . . . yn be the corre-
sponding class labels. The decision boundary of a linear classifier is given by
w.x + b = 0 where w and b are parameters of the model.

In the case of a non-separable data set, slack variables, ξi, are introduced
to minimize the error. Parameters of the optimal separating hyperplane are
derived by solving the quadratic programming optimization problem, given in
equation (8), with linear equality and inequality constraints. This optimization
problem maximizes the margins.

minimize: g(w, ξ) =
1

2
‖w‖2 + C

N
∑

i=1

ξi (8)

subject to: yi(< w, φ(xi) > +b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2 . . .m.

Equation (8) can be rewritten as (9),

min: W (α) = −
N

∑

i=1

αi +
1

2

N
∑

i=1

N
∑

j=1

yiyjαiαjk(xi, xj) (9)

s.t.:

N
∑

i=1

yiαi = 0, ∀i : 0 ≤ αi ≤ C

where αi a Lagrange multiplier that corresponds to the sample xi. In this
dual representation k(., .) is a kernel function that maps the input space to a
higher and more suitable feature space by (10)

k(xi, xj) =< φ(xi), φ(xj) > . (10)

An important feature of support vector machines is the use of kernel func-
tions. The kernel function transforms the input space to a new space and allows
the algorithm to find the optimal separating hyperplane in this new space. The
use of nonlinear kernel functions allows using non-linearity without explicitly
requiring a non-linear algorithm. We have used the radial basis kernel, also
called Gaussian kernel, defined as in (11),
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k(xi, yi) = eγ‖xi−yi‖
2

. (11)

With a careful choice of γ and C, a Gaussian kernel can indeed model
a linear kernel [25]. That is, linear kernels can be thought of as a subset of
Gaussian kernels. This is why Gaussian kernel is often times considered to
be more useful than the linear kernel. However, Gaussian kernel introduces
another parameter γ that effects the accuracy of the SVM significantly. For
Gaussian kernels, γ along with C has to be decided carefully for a successful
classification.

The parameter selection step for Gaussian kernels is more time consuming
as a result of the newly introduced γ parameter. We take the same approach
as in [21] to search the best parameters. The best parameter pair (C∗, γ∗) is
searched within the grid C ∈ 2−5, 2−3 . . . 215 and γ ∈ 2−15, 2−13, . . . , 23. Since
there are only two parameters, the computational time by this grid-search is
not much more than that by other advanced methods for parameter selection.
After finding best values for these parameters, a finer search is performed
within that neighborhood to fine-tune the parameters even further.

It should be noted that the original SVM is capable of binary classification,
where there are only two classes. In our case we have three classes, healthy,
fractured, and cancerous, that is we need multi-class SVMs. Two different
types of methods have been introduced for multi-class SVMs, combining binary
classifiers to construct a multi-class SVM or considering all classes at once
and solving multi-class SVM in one step. We take the first approach and

use the one-against-one method. In this approach for c classes, c(c−1)
2 binary

classification problems are defined for each pair of these classes. These SVMs
are then merged using majority voting.

3 Experiments

3.1 Data Set Preparation

Histopathology slides of bone tissues, stained with hematoxylin and eosin, are
randomly collected from the Hospital for Special Surgery in NY under the
direct supervision of Dr. Peter Bullough who is the head of the pathology
department. These slides are numerically coded, the patient identifiers are
removed and the coded tally of individual cases are secured in the pathologists
office. Digital photomicrographs are obtained in a standardized fashion with
regards to magnification and illumination by Dr. Bullough.

In addition to healthy bone samples, two diagnostic groups of bone tissues
were collected for analysis by Dr. Bullough. The first group was obtained from
patients with both simple and comminuted fractures requiring open reduc-
tion. The second group was from patients diagnosed as having malignant bone
forming tumors (osteoscarcoma, osteogenic sarcomas). Tissue from both of
these conditions may be cellular and produce varying types of ECM including
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mineralized and unmineralized woven bone, hyaline cartilage and disorganized
collagen bundles. Generally, the damaged tissue (i.e. fracture callus) will have
a more homogeneous cell population than the sarcomatous tissue; the former
will on occasion have marked atypicality and mitotic activity whereas the
sarcomatous tissues may appear rather bland. Nevertheless, an experienced
pathologist is generally able to distinguish these two conditions based upon
certain patterns of organization which we hypothesize using graph theory.

The final data set contained 20 images of healthy bone tissues, 39 fractured
tissues, and 75 diseased bone tissues.

3.2 Cross Validation and Feature Selection

We use K-fold cross validation to report our results. K-fold cross validation
partitions the dataset into K disjoint subsets called folds. Of these K folds,
K − 1 are used to train the model, and the remaining fold is used to test
the model. This constitutes one iteration of the K-fold cross validation. This
process is repeated K times, each time leaving out one fold for validation and
using the other folds as the training set. The accuracy of each run is then
averaged and reported as the cross validation accuracy. The advantage of this
method over repeated random sub-sampling is that all observations are used
for both training and validation, and each observation is used for validation
exactly once. A common choice for K value is 10 and we used 10-fold validation.

Since there are more cancerous instances than fracture and healthy in-
stances in our dataset, there is a chance that a given fold may not contain any
fracture and even more probably no healthy tissue samples at all. To ensure
that this does not occur, we used stratified K-fold cross-validation where each
fold contains roughly the same proportion of class labels as in the original set
of samples.

For a tissue, each of the four different ECM-aware cell-graphs (red, blue,
green and white) has 34 features, including both the graph metrics and spectral
metrics, making a total of 136 features to represent a tissue. Not all features
have the same importance and some can be neglected. Indeed, using too many
features can degrade the accuracy of the classifier due to the curse of the
dimensionality. We perform feature selection to find the most important fea-
tures for classification. We used the F-score metric [6] to rank the importance
of features. The F-score for feature i is calculated as in (12),

F (i) =
(x̄

(+)
i − x̄i)

2 + (x̄
(−)
i − x̄i)

2

1
n+−1

n+
∑

j=1

(x
(+)
j,i − x̄

(+)
i )2 +

1

n− − 1

n
−

∑

j=1

(x
(−)
j,i − x̄

(−)
i )2

(12)

where xi is the average of feature i in the whole data set and likewise x
(+)
i , x

(−)
i

are the averages of the ith feature, positive and negative data sets respectively.
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Table 3 Cell-Graph prediction results with varying threshold values and δ values

Link Grid Size
Threshold 5 10 15

2 87.03 88.69 87.28
3 86.61 88.26 86.91
4 87.66 85.64 85.95
5 87.00 88.17 86.78
6 86.50 88.30 87.73

x
(+)
j,i , x

(−)
j,i are the ith feature of the jth positive and negative instances respec-

tively. F-score gives the discriminative capability of each feature, when feature
f is more discriminative, the associated F-score Fd is larger.

3.3 Results and Interpretation

There are a couple of parameters to be set and fine-tuned. The first parameter
is the number of pixels to use to decide on the color of the node, that is the
δ value. For example, choosing a value of 5 for δ will define a grid entry of
11pixels×11pixels and place the center of the nuclei to the center of this grid
entry. After this placement the color assignment can be carried on in this grid
as explained in the methodology. To decide on the δ value, we keep the link
threshold values (red link threshold, blue link threshold) constant and experi-
ment with different values of δ. The results of this search are given in table 3.
Clearly, choosing a very small value for δ will not define the surrounding ECM
fully and choosing a large value for δ will lead to considering other nuclei’s
ECM. We see that δ = 10 gives the best prediction accuracy for all values of
link threshold except 4. We therefore use δ = 10 in our calculations.

ECM-aware cell-graphs set a link between two nodes when the color code
for those nodes are same and the distance between them is less than a thresh-
old. For each tissue, there are four different ECM-aware cell-graphs, red, green,
blue, and white and therefore four different thresholds to be decided. However,
in almost all tissue samples, the number of white cells and number of green
cells are far less than that of the red and blue cells. That is, red cell-graphs and
blue cell-graphs are more important than the others. Nonetheless, we include
the white and the green cell-graphs for the sake of completeness. However, to
reduce the parameter search space we only tune the parameters that are going
to effect the results, which in this case is the red threshold and blue threshold.
The results of this search is given in table 4. We see that ECM-aware cell-
graphs obtain the best accuracy of 90% with a blue link threshold of 4 and
red link threshold of 2. During this search, the green threshold and the white
threshold are set to 4. Note again that the number of green and white vertices
are far less than that of the blue and red vertices and therefore changing the
threshold value for green and white will not change the overall graph structure
and therefore the results will not be effected significantly.
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Table 4 ECM-Aware Cell-Graph results with varying red and blue link thresholds

Blue
Threshold

Red Threshold

2 3 4 5 6
2 88.33 84.33 83.67 82.67 83.67
3 89.67 83.67 84.67 84.00 87.33
4 90.00 86.00 84.67 83.00 82.67
5 87.00 88.33 86.67 83.33 84.67
6 86.33 88.33 87.67 82.67 83.00

Using these fine-tuned parameters, we give the comparison of the prediction
accuracies of the Delaunay-based approach, Simple cell-graph method, and
ECM-aware cell-graph method in table 5. In this table Hea. Fra. Can. and
Act. stands for healthy, fracture, cancerous and actual class respectively. This
table shows the ratios of the predicted classes to the actual classes. Simple
cell-graphs obtain an overall accuracy of 81.5% and yet obtain better learning
ratios for each tissue type than the Delaunay triangulation technique. With
the ECM-aware cell-graphs the learning ratio increases further to 90%. We
see that the ECM-aware cell-graph approach not only gives the best overall
performance, but also for each of the individual tissue classes gives comparable
classification ratios, if not better than the rest of the methods.

Due to the sparseness of healthy bone tissues, it is not surprising that all
of the methods are nearly 100% accurate. Since healthy bone samples are easy
to classify, the real problem is how well a method can differentiate between
fractured and cancerous tissues. With this in mind we see that ECM-aware
cell-graphs are better than both Simple cell-graph and the Delaunay triangu-
lation methods. The Delaunay triangulation especially proves unreliable for
the fractured versus cancerous tissue classification as it obtains only 25.6%
accuracy.

There are several reasons why ECM-aware cell-graphs perform better on
bone tissue modeling and classification than the simple cell-graphs and De-
launay triangulation. Delaunay triangulations result in planar graphs, which
can be embedded in a plane. More specially, the edges of the Delaunay trian-
gulation do not cross each other and intersect only at the end points. There
is no evidence to justify such a limitation in tissue organization. Second, in
Delaunay triangulations all the nodes are reachable from each other, meaning
that the giant connected component ratio is one. This assumption might hold
for some of the cancerous tissue samples but is especially not valid for healthy
tissue samples, as the healthy graphs are sparse in nature.

Simple cell-graphs on the other hand overcomes the limitations of the
Delaunay triangulations, but still is restricted compared to ECM-aware cell
graphs. ECM-aware cell-graphs model relationships between the same type of
cells rather than blindly assuming a relationship exists between two nodes if
the distance is smaller than a threshold. For each node, the intensity prop-
erties of the ECM around that node is incorporated into the modeling step
which results in higher accuracies for classification.
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Table 5 Detailed Comparison of Simple cell-graphs, ECM-aware cell-graphs and Delaunay
triangulation

Simple Delaunay ECM-aware
Prediction Prediction Prediction

Act Hea Frac Can Hea Frac Can Hea Frac Can
Hea 98.8 0 1.2 100 0 0 100 0 0
Fra 0 79.3 20.7 0 88.7 10.3 0 87.1 12.9
Can 1.8 22.4 75.7 10.3 64.1 25.6 0 6.5 93.5

Table 6 F-scores for the features that yielded the best prediction results

Green Giant Connected Ratio 1.43
White Clustering Coefficient 1.11

White Giant Connected Ratio 1.07
White Percentage of Isolated Points 1.07

Red Clustering Coefficient 0.98
Number of 2s in Red Normalized Laplacian 0.93

Blue Clustering Coefficient 0.89
Number of 1s in Red Normalized Laplacian 0.89

Red Normalized Laplacian Energy 0.87
Red Percentage of Isolated Points 0.82
Blue Percentage of Isolated Points 0.81

Table 7 F-scores for the features that yielded the best prediction results for cancerous vs
fractured

Red Clustering Coefficient 1.07
Red Normalized Laplacian Energy 0.94
Red Percentage of Isolated Points 0.81
Red Normalize Laplacian Trace 0.77
Red Average Eccentricity 90 0.76

Red Average Degree 0.71
Blue Giant Connected Ratio 0.67
Blue Clustering Coefficient 0.66

Blue Percentage of Isolated Points 0.61
Blue Percentage of Central Points 0.61

In our calculations, we calculate a rich set of features to be used in the
classification. These features are possibly correlated to each other and more-
over some of these features might be better suited for bone tissue structure
representation. Since using too many features can degrade the accuracy due
to the curse of the dimensionality we perform feature selection on our dataset.
Table 6 gives the f-scores of the most important features. We only used these
features to report our cross validation results.

Table 7 gives the f-score values of the most distinguishing metrics for frac-
tured versus cancerous classification. From red cell-graphs, average clustering
coefficient, normalized Laplacian energy, normalized Laplacian trace, percent-
age of isolated points, average eccentricity 90, average degree are the most
distinguishing features and the list continues with giant connected compo-
nent ratio, average clustering coefficient, and percentage of central point of
blue graphs. It is not surprising to see that the most discriminative features
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are from the red and the blue graphs as these graphs are the most dominant
structures in our fractured and cancerous tissue examples.

4 Conclusion

Bone tissue usually contains multiple cell types, i.e. mature bone forming
cells (osteocytes) and their precursors (osteoblasts), as well as osteoclasts,
adipocytes, etc. These cells are surrounded by an extracellular matrix (ECM)
that varies in composition and color. It is often difficult to identify meaningful
(i.e., diagnostic) relationships between cells and their surrounding ECM in
histopathological sections. In this paper we present ECM-aware cell-graphs
that distinguish between different types of cells by incorporating the ECM
niche into the topological organization of the cells. We show that ECM-aware
cell-graph approach can model and classify bone tissue samples in different
(dis)functional states such as healthy, fracture and cancerous.

ECM-aware cell-graph approach is a paradigm shift in our previous work
on cell-graph mining method used to model and classify brain tissue samples
and breast tissue samples. Cancerous brain tissue samples have a diffusive
structure and best represented by simple cell-graphs [17] whereas breast have
lobular structures and therefore best represented by hierarchical cell-graphs
[3]. Although these techniques achieved comparatively good results, they con-
sider the cells in perfect isolation from the surrounding ECM. In this work we
extended our previous results on brain and breast tissue samples to bone tis-
sue modeling by incorporating the ECM information. Our technique achieved
90.0% prediction rate whereas Delaunay triangulation achieved 75.8 and our
simple cell-graph technique achieves 81.4%.

ECM-aware cell-graph approach has several components: image segmenta-
tion for identification of nodes, ECM-aware labeling of each node, establishing
edges between labeled nodes, graph theoretical feature extraction, and finally
supervised learning with SVM over feature sets. Our image processing is based
on the eigenvalues of the hessian matrix to capture the shape information. For
2D images, these eigenvalues can be used to detect ridge-like and blob-like
structures to segment the cells in a given tissue. To incorporate the ECM
information to each cell, we considered the k neighborhood of every cell and
encode a color code to it depending on the predominant color around that cell.
We hypothesize a relationship between two cells when the color code for those
cells are same and the distance between them is smaller than a threshold to
ensure that there is a physical contact between the membranes. Considering
the cells as the vertex set and the relations between the cells as the edge set,
we model a given tissue with ECM-aware cell-graphs. We calculate a rich set
of features for these graphs. We also include spectral graph analysis in our
calculations. These quantitative features represent a tissue. We used support
vector machines for healthy, cancerous and fracture tissues classification. We
report our results using 10-fold cross validation and conclude with finding the
most important features for bone tissue modeling and classification. A com-
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putational comparison of our approach to the related work in the literature
shows that ECM-aware cell-graphs are more discriminative of the functional
states of bone tissues. However, we believe that accuracy can be improved
further by increasing our limited data size and a more accurate segmentation
of ECM.
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