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Abstract— Traditionally, research on graph theory focused on
studying graphs that are static. However, almost all real net-
works are dynamic in nature and large in size. Quite recently,
research areas for studying the topology, evolution, applications
of complex evolving networks and processes occurring in them
and governing them attracted attention from researchers.

In this work, we review the significant contributions in the
literature on complex evolving networks; metrics used from
degree distribution to spectral graph analysis, real world appli-
cations from biology to social sciences, problem domains from
anomaly detection, dynamic graph clustering to community
detection.

I. INTRODUCTION

The solution to the famous historical problem of Seven
Bridges of Königsberd by Leonhard Euler laid the founda-
tions of the graph theory in 1736 and regarded as the first
paper in history of the graph theory [36]. Since then graph
theory has established and became one of the most active
areas of research.

Many real world complex systems take the form of net-
works, with a set of nodes or vertices and links or edges
connecting a pair or more of the nodes. Such networks
are found in diverse application domains such as computer
science, sociology, chemistry, biology, anthropology, psy-
chology, geography, history, engineering. Until recently, the
research on network theory has mainly focused on graphs
with the assumption that they remain static, ie they do not
change over time. A wealth of knowledge has been developed
for this type of static graph theory.

We explain some of the widely used graph metrics in
the literature to study dynamic graphs, present the real
dynamic networks in almost all fields of science and give
a taxonomy of models to capture the evolution of these
dynamic networks.

II. BACKGROUND

For completeness we start with the objects under discus-
sion. We formally define a graph, a digraph, the four types
of dynamic networks, and the graph metrics heavily used in
the literature.
• A graph G is formally defined by G = (V,E) where
V is the finite set of vertices and E is the finite set of
edges each being an unordered pair of distinct vertices.

• A digraph G is formally defined by G = (V,A) where
V is the finite set of vertices and A is the set of arcs
each being a pair of distinct vertices.

We use interchangeably use node, vertex and edge, link,
connection to refer the same concept.

Let f be a function defined on the vertex set as f : V → N
and g be the function defined on the edge set as f : E → N .
A node weighted graph is then defined as the triple G =
(V,E, f) and likewise an edge weighted graph is defined
as the triple G = (V,E, g). A fully weighted graph is the
quadruple G = (V,E, f, g).

For some applications, the existence of a smaller graph in
a larger graph evoke interest.

Let G1 = (V1, E1, f1, g1) and G2 = (V2, E2, f2, g2) be
graphs. G1 is called a subgraph of G2 if the following
conditions hold.

• V1 ⊆ V2

• E1 ⊆ E2

• f1(u)f2(u)∀u ∈ V1

• g(u, v) = g(u, v)∀(u, v) ∈ E1

A dynamic graph can be obtained by changing any of the
V,E, f or g. Harary classifies the dynamic graphs by the
change of any of these [37].

• Node dynamic (di)/graphs where the vertex set V
change over time.

• Edge/Arc dynamic (di)/graphs where the edge set E
change over time.

• Node weighted dynamic (di)/graphs where the f func-
tion varies with time.

• Edge/Arc weighted dynamic (di)/graphs where the g
function varies with time.

A. Graph Metrics

1) Degree: The simplest and one of most intensively
studied graph metric is the degree. The degree k of a node
u is defined as the total connections of that node. The in-
degree ki is the incoming edges to node u and the out-degree
ko is the outgoing edges from node u. The distributions of
in-degree, out-degree and the joint degree distributions have
been studied.

2) Clustering Coefficient: Metrics that quantify how close
the graph from being a clique and whether a node’s neigh-
bors are also neighbors of each other are defined. For an
undirected graph, let node u have k neighbors and among
these k neighbors let y of them have links to each other.
The clustering coefficient for node u is then defined as the
ratio of actual number of links between node u’s neighbors
and the total number of connections that could possibly
exist. Defined in equation (1), clustering coefficient is was
first introduced in the context of sociology [69] and then in
computer science [70].



C =
y

k(k − 1)/2
(1)

In the original calculation of the clustering coefficient node
u is not included, instead of this another related metric have
also been proposed that accounts node u in the calculation
as well. The actual number of links in the neighborhood is
k+y and the total possible links that can exist is (k+1)k/2,
giving a value as in (2)

D =
k + y

(k + 1)k/2
. (2)

3) Shortest Path: The shortest path between two nodes in
an undirected graph is defined as the geodesical distance of
these nodes with unit length edges. Several metrics using the
shortest path distance have been defined. The path length
or hop count between two nodes is defined as their shortest
path length in the graph, taking the weight of each link as a
unit length. Given the shortest path lengths between a node
ui and all the reachable nodes from ui, the eccentricity and
the closeness of node ui are defined as the maximum and
the average of these shortest path lengths, respectively. The
minimum eccentricity value in a graph eccentricity is referred
as the radius and the maximum eccentricity is referred as
the diameter of the graph. Nodes that have an eccentricity
equal to the radius are defined to be central points of the
graph.

B. Spectral Graph Analysis

Apart from the metrics defined above, graph spectra has
also been used. The spectral analysis of graphs deal with
the eigenvalues of the adjacency matrix or other matrices
derived from the adjacency matrix [20]. Spectral graph
analysis reveals important structural properties of graphs. In
particular, the second smallest eigenvalue is a measure of
the compactness (more precisely, algebraic connectivity) of a
graph. A large second eigenvalue indicates a compact graph,
whereas a small eigenvalue implies an elongated topology.

The spectral analysis can be directly carried on the adja-
cency matrix, or the laplacian or normalized laplacian matrix.
The adjacency matrix A of a graph G(V,E) where V is the
vertex set and E is the edge set is defined as in (3).

A(u, v) =

{
1, if (u, v) ∈ E
0, otherwise

. (3)

The degree matrix D is constructed by D(u, u) =∑
v∈V A(u, u). More specifically, the degree matrix is a

diagonal matrix that holds the degree of node i at (i, i)
entry. The Laplacian matrix L is then given by the difference
between the degree matrix and the adjacency matrix, L =
D−A. Laplacian matrix is strongly connected to the gradient
of the graph, nevertheless we use the normalized version of
the Laplacian matrix given as (4).

L(G) =


1, if i = j and di 6= 0
− 1√

didj

, if i and j are adjacent

0, otherwise

(4)

The spectral decomposition of the normalized Lapla-
cian matrix is given by L = ΦΛΦT where Λ =
diag(λ1, λ1 . . . λ|V |) with the eigenvalues as its elements
and Φ with the eigenvectors as columns. The normalized
Laplacian matrix and its spectral decomposition provide
insight to the structural properties of the graph. Since L is
a symmetric positive semi-definite matrix the eigenvalues of
normalized Laplacian matrix are all between 0 and 2.

For normalized Laplacian matrices the number of zero
eigenvalues gives the number of connected components in
the graph. Number of zero eigenvalues, the number of
eigenvalues equal to one, and the number of eigenvalues
equal to two in our feature set have been used in [8],
[19] as well as the slope of the line that fits the plotted
eigenvalues between [0, 1] and [1, 2]. Trace and the energy
of the normalized Laplacian are defined as

∑
i λi and

∑
i λ

2
i

respectively. It has been reported that the eigenvalues of the
normalized Laplacian graph is more distinguishing than that
of the Laplacian or the adjacency matrices [20].

III. EVOLVING NETWORKS IN NATURE

The question of whether there is a relation between the
structure and the functionality has attract attention in many
fields. In this section we discuss some of the most promient
real complex networks and some of the findings in these
networks.

A. Citation Networks

The vertices of a citation network are scientific papers
and the directed edges of the network connect a paper to
another if the former cites the later. The evolution of a
citation network is therefore simple: A new vertex is added
to the network for a newly published paper and links between
this new paper and the papers it cites are added. New edges
between old vertices are not possible in citation networks.

Often times citation networks are sparse with an average
out-degree of order 101.

B. Collaboration Networks

Collaboration networks of movie databases such as IMDB,
and scientific paper databases such as DBPL have been
studied in the literature. These collaboration networks can be
expressed bipartite graphs where the first set of nodes repre-
sent the collaborators and the second set of nodes represent
the acts of the collaborations. Although less information one-
mode projections of bipartite graphs are used to represent
such networks. That is the act of collaborations are not
represented in the network instead two collaborators are
linked if they appeared in the same collaboration.
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Fig. 1. In figure 1(a) a bipartite graph is given. Vertices that is the
collaborators in this graph are connected to acts of the collaborations.
Vertices 1, 2 and 4 collaborates together for a specific task, vertices 1,3
collaborates in another task and so on. The one-mode projection of the
same network is provided in 1(b) where the collaborators are linked to each
other directly.

C. Communication Networks

Several networks fall under the category of communication
networks i.e. world wide web (WWW), the Internet, call-
data. The nodes of the WWW graph are the homepages and
the directed edges of the graph are the hyperlinks from one
page to another. As of July 2008 google announced that their
search engine indexed 1 trillion pages.

After it has been shown that the degree distribution of the
Web obeys the power law, work on the structure of the Web
graph has been fostered. As the Web is one of the largest real
networks, studying this graph is a hard problem, therefore,
most of the studies covered portions of the whole Web graph.
Although these studies all cover different portion, they all
found that both the in-degree and the out-degree distributions
follow the power law with different exponents.

The clustering coefficient of the Web has also been
considered to understand the structure. Adamic showed that
the clustering coefficient of the Web is 0.1078 compared to
0.00023 of the random graph with the same number of edges
and nodes. This finding implies that the Web is a small world
network.

D. Biological Networks

Many biological networks have been introduced and the
topology and evolution of such networks have interested re-
searchers. Among these networks neural networks, metabolic
reaction networks, protein protein interaction networks, hu-
man sexual contacts have been studied extensively. The
following subsections will give an overview of each of these
networks.

1) Neural Networks: The neural network of the
Caenorhabditis Elegans worm has been considered in [70].
The nodes of the network are the neurons and the edges
between these nodes are synapses. This network has an

average clustering coefficient of 0.26 compared to 0.05 of
the random network with the same number of edges and
vertices. The degree distribution however differs from other
networks found in nature. An exponential distribution fits
both to the in- and out-degree distributions.

Using functional magnetic resonance imaging to extract
functional networks connecting correlated human brain sites,
Eguiluz et al. studied the structure of brain functional net-
works [27]. This network is found to follow the power law
degree distribution, with high clustering coefficient and small
average path lengths.

2) Metabolic Networks: The substrates or in general
molecular compounds are the vertices and the reactions con-
necting these molecules are the edges in metabolic networks.
Like collaboration networks, these graphs can be represented
with the informative bipartite graphs but in practice the less
informative one-mode projects have been used.

A substrate graph and reaction graph from the Escherichia
coli intermediary metabolism for energy generation and
small building block synthesis is considered in [68]. The
authors define two graphs Gs and Gr. In Gs, two substrates
are linked when they occur in the same chemical reaction and
likewise in Gr two reactions are linked when there is at least
one chemical compound that occurs in those reactions, either
as substrate or as a product. Both frequency-degree and rank-
degree distributions of the substrate graph follows a power
law distribution and neither the frequency degree nor the rank
degree distribution follows a simple probability function. In
the substrate graph coenzyme A, 2-oxoglutarate, pyruvate
and glutamine having the highest degree which were viewed
as an evolutionary core of the E.coli.

3) Protein Networks: In [40] and [67] protein protein
interactions(PPI) in yeast S. cerevisiae have been studied.
The vertices of PPI networks are the proteins and the edged
direct from the regulating to the regulated component. These
networks might contain self loops contrary to the most of the
networks considered here. Jeong et al. showed that random
deletion in PPI network of yeast S. cerevisiae is not lethal,
but targeted deletion of proteins is lethal [40]. The in-degree
distribution of such networks are shown to be power law
distributions by Wagner et al [67].

4) Food Networks: Food networks(food chains) are used
by ecologist to describe the eating interactions between vari-
ous species. The nodes of the graph are therefore organisms,
and the directed edges connect a specie eater and its food.
These networks might be either unweighted or weighted with
weights being the energy transferred from the producer to the
eater. Since cannibalism is possible in food networks these
networks might have unit loops as well. Studies on these
networks up to this date suffered from the small size of these
networks. It has been suggested that the statistical analysis
of these networks are hindered because of this fact [23].

Although the size of these networks are small, they appear
to follow power law distributions [52], though with a small
exponent compared to the other networks. Indeed, it has also
been shown that an exponential function fits as good as a
power law function to some food webs that power laws [16].



E. Economics

Dynamic networks have applications in economics as well.
A network representation of the stock market is analysed in
[10]. Nodes in this network are the instruments in the stock.
A correlation function between instruments i and j is defined
by equation (5)

Cij =
〈RiRj〉 − 〈Ri〉〈Rj〉√

〈R2
i − 〈Ri〉2〉〈R2

j − 〈Rj〉2〉
(5)

The instruments related to each other are found by prun-
ing the ones with high correlation. More specifically two
instruments are highly correlated if Cij > 0.2. The stock
market graph has been found to follow power law degree
distributions. These graphs get denser as new vertices and
edges are added every day. They also show high clustering
coefficients.

F. Aerospace

Dynamic graph evolution is also studied in the control
theory and aerospace engineering. In [50] the importance
of studying dynamic graphs in the context of a distributed
space system is presented as well as a theoretical framework
for the study is given. The evolution of the graph here is
quite different than the other proposed and observed methods
since the working assumption is the complete controlability
of the dynamic system which is quite different than the rest
of network presented in this survey ie citation networks,
biological networks.

The evolution of the system is defined through a difference
equation of the form:

xi(k + 1) = fi(xi(k), ui(k)), i = 1, . . . , n; (6)

The topology of the information channel, represented by
a graph, is then mapped from control states to a graph by
G(x(t)).

A graph Gr is considered as a neighboring graph to Gs if
there is a control sequence u(k0), u(k0+1), . . . , u(k0+p−1)
that transforms x(k0) ∈ χr to x(k0 + p) ∈ χs and if x(k) ∈
χq for some k0 ≤ k ≤ k0 + p then q = r or q = s.

G. Other Dynamic Networks in Computer Science

Several computer science application areas for dynamic
networks are studied in [37]. In logic programming lan-
guages, functional languages and data flow languages the
given program is converted to a graph. This graph is changed
over the time with the operations specified by the program
hence representing a dynamic graph. In Article Intelligence
tree searches are involved to find the optimum answer.
Building and pruning trees dynamically is involved in Game
tree search.

Computer networks are dynamic networks as well. The
edges and the vertices fail, or new edges and vertices
introduced during the life time of a network hence forming
a dynamic network. Process communication networks are
also dynamic, processes representing the vertices and links
representing the data exchange between them.

Data structures such as B-trees are used in accessing
databases. In B-trees key-value pairs are stored and given a
key the corresponding value can be accessed. As new values
are added to B-tree the tree changes overtime, representing
the evolution of the tree.

IV. DYNAMIC NETWORK MODELS

A. Random Graphs and Variants

We will start with the mother of all network models,
namely the Erdös and Renyı̀ random graph model. The
simplest and the first graph evolution model proposed is
the Erdös and Renyı̀ random graph model [28], [29]. The
method starts with N vertices and randomly links two
nodes with a probability of p. Such graphs with N nodes,
and edge probability p form a set of graphs GN,p. Many
properties of random graphs have been studied such as
degree distribution, clustering coefficient, size of the largest
connected component, diameter of the graph.

The degree distribution of Erdös Renyı̀ random graphs
have been shown to follow a Poisson distribution given by
equation (7) as the number of nodes in the network goes to
infinity.

pk =
zk(e)( − z)

k!
withz = p(N − 1) (7)

The probability of having exactly k neighbors is given by
the binomial distribution

pk =
(
n

k

)
pk(1− p)(N−k). (8)

For different values of p the size of the largest connected
compononent and the degree distribution of the network
attracted attention. For smaller values of p, the size of the
components are relatively close to each other and have a
finite mean size. These components follow an exponential
degree distribution. With higher values of p a giant connected
component appears in the graph with O(N) vertices. The rest
of the vertices in the graph follow an exponential degree
distribution. Between these two states that are dependent on
the choice of p, a phase transition point is found at p = 1/N .

The probability of two neighbors being connected to
each other, referred also as the clustering coefficienct, of
random networks are shown to be small compared to the real
networks. The clustering coefficiency of a random network
with N vertices is given by

p =
k̂

N
, (9)

where k̂ is the average node degree in the network. Another
metric studied for these networks is the diameter of the
network defined as the longest shortest path in the network.
The diameter of random networks are given by equation (10)

Diameter =
logN

log k̂
, (10)



where k̂ is the average node degree. From equation 10, as
the number of vertices in the network increases, the diameter
of the network slowly increases as well.

1) Power Law Random Graph: Several other random
networks have been proposed that change some of the
properties of the initial Erdos and Renyi random networks.
The most obvious change to GN,p is the change of the
degree distribution from a poisson to a power law. Aiello
et al proposed Power Law Random Graphs that randomly
assigns a degree to each node to match the distribution [1].
The number of k degree nodes is given by

eα/kβ , (11)

whereas for the initial random graph method this quantity
was given by 8. This new setup for graph formation results
in power law distributions for the proposed PLRG method
with a powerlaw exponent of β. In the same work the authors
compare the degree distribution to real call networks and
show that the method is not fully capable of capturing the
network. Nonetheless, they show that for different choices of
the parameters α and β, the graphs have variety of properties.
For
• When β > β0 ≈ 3.48 the graph has almost surely has

no giant component. When β < β0 ≈ 3.48 the graph
has almost surely have a giant connected component.

• When 2 < β < β0 ≈ 3.48, the second largest
components are of size Θ(log n). For any 2 ≤ x <
Θ(log n), there is almost surely a component of size x.

• In the case of β = 2 the graph is almost surely
connected with more complicated second largest com-
ponent sizes.

• When 1 < β < 2, the graph is almost surely not
connected and smaller components are of size Θ(1).

• When 0 < β < 1, the graph is almost surely connected.
• β = β0 corresponds to the phase transition observed at
p = 1/N at Erdos Renyi graphs.

[71], [55] [62], [9]

B. Preferential Attachment and Variants

Traditional Erdos Renyi random graph models have pos-
sion degree distributions. However, it has been found that
many real life networks follow power law distributions(see
section III). Generalized random graph models have been
proposed to mimic the power law degree distribution of the
real networks but these models do not explain how such
a phenomena occurs in these graphs. Barabasi et al. [3]
introduced the concept of preferential attachment for this
purpose.

1) BA Model: In this proposed model, nodes arriving one
at a time to the network. Each new arriving node then creates
m edges where m is constant parameter. The edge creation is
random but preferential. The probability Π that a new vertex
u connecting to vertex v depends on the degree ki of vertex v.
After m node insertions the model leads to a random network
with ti + m vertices and mt edges. Networks with this model
evolves into a scale-invariant state with the probability that a

vertex has k edges following a power-law with an exponent
γ = 2.90 ± 1. Moreover, in this model the diameter of the
network is also low. The diameter in preferential attachment
model grows slowly, i.e., logarithmically with the number of
nodes [48].

2) Initial Attractiveness: While the Barabasi Albert model
have the power law degree distribution the power law expo-
nent is constant regardless of the choice of m. Dorogovtsev
et al. [24] added one more parameter to the probability
calculation.

Π =
A+ k(v)∑
i(A+ k(i))

(12)

The degree distribution of the network is given by (13)

γ = 2 +
A

m
. (13)

3) Edge Copying Methods: Another class of network
models is the edge copying models that take into account the
fact a new node i.e., webpage will most likely be familiar to
the topics of interest to it and therefore will have some of its
new edges from the existing similar webpages. Several edge
copying methods have been introduced using this principle
[42], [44], [47].

a) Edge Copying: The model introduced by Kleinberg
et al consists of three steps
• Node creation and deletion In each iteration, nodes may

be independently created and deleted under some prob-
ability distribution. All edges incident on the deleted
nodes are also removed.

• Edge creation In each iteration, we choose some node
v and some number of edges k to add to node v.
With probability β, these k edges are linked to nodes
chosen uniformly and independently at random. With
probability 1− β, edges are copied from another node:
we choose a node u at random, choose k of its edges
(u, w), and create edges (v, w). If the chosen node u
does not have enough edges, all its edges are copied and
the remaining edges are copied from another randomly
chosen node.

• Edge deletion Random edges can be picked and deleted
according to some probability distribution.
b) Community Guided: After the observation of power

law degree distributions several methods have been proposed
to model real life network scenarios. Preferential attachment
is one of the most commonly used technique in most
applications. Leskovec et al [47] shows that there are missing
understandings of real life networks and using existing graph
generation techniques therefore do not fill in those misunder-
standings. Temporal evolution of citation graphs, an Internet
graph, bipartite affiliation graphs, a recommendation network
and an email communication network are studied in his work.
Two striking observations of the work are the networks are
becoming denser, e(t) n(t)a, and the diameter of the network
is decreasing as the network increases. Comparing these to
the diameter of random networks, in Erdos Renyi random



networks diameter grows slowly as a function of logN/logZ
where N is the number of nodes in the network and z is the
average degree. In the case of preferential attachment the
diameter is growing as logn or loglogn.

One difficulty of generators are the significance of the
proposed technique. In this specific case, one might form a
graph by forcing n(t)a links for each new node introduced
to the network. This clearly is not a justifiable as the method
would mean each new paper must cite n(t)a papers in
citation networks. In the same work of [47], two rather
meaningful methods to fill this gap are proposed, forest
fire model and community guided attachment. Community
guided attachment takes into account the fact that power law
distributions are observed together with the self similarity
property of the network. The model represents the recursive
structure of communities within communities as a tree. For
every node in the graph there is a leaf node in the tree. Edges
between nodes are added as a function of the tree distance of
the nodes. That is if two nodes are closer to each in the tree,
they are more likely to form links between them. Since scale
free property is desired the edge forming function should
be level independent, that is for any distance h in the tree,
f(h)/f(h− 1) is a constant. The whole process of forming
the graph can be thought of as first forming the communities
and then linking the nodes.

c) Forest Fire Model: The second method proposed is
the forest fire model that forms by the a directed graph. The
model has two parameters, a forward burning parameter and
a backward burning parameter, p and q respectively. The
graphs grow one node at a time by choosing an ambassador
node w uniformly random for the newly introduced node u.
Selecting x outlinks and y inlinks of the ambassador where
x and y are geometrically distributed with means p/(1 −
p) and rp/(1 − rp) node u forms outlinks to these x + y
nodes. This process is repeated for each of the outlinks u
choses. This rather basic model has heavy tail in/out degrees,
community structure, densification power law and shrinking
diameter properties. Extensions to the method are provided
to fit the data better.

4) Fitness: In preferential attachment model nodes that
arrive early will end up having highest degrees. However,
one could envision that each node has an inherent compet-
itive factor that nodes may have, capable of affecting the
network’s evolution refered as node fitness. In these models
a fitness parameter, given in (14), is attached to each node
that does not change over time [7], [24], [30]. A new node
can still attrack others if the associated fitness value for that
node is high. That is the most efficient (or “fit”) nodes are
able to gather more edges.

Π =
nvkv∑
i nik(i)

(14)

Likewise, [54] proposes growth models of social networks
using some predefined principles. Preferential attachment
is included, the acquaintances decreases over time if the

individuals are meeting occasionally and there is an upper-
bound on the number of friends a node can have.

In [22] the authors presents a method for understanding
the governing dynamics of evolving networks that relies on
attachment kernel functions. Attachment kernel functions are
simply a scalar function of some of the node properties.
By defining the kernel function in terms of the potentially
important vertex properties the evolution of the network is
modeled. In the case of preferential attachment method, the
kernel function is given by the node degree, that is A(di(t))
where A is the kernel function di(t) is the degree of node i
at time t. In the case of citation networks, using degree of a
node as the kernel function the probability of a paper i citing
a d degree paper j is given by P [icitesddegreenode] =
Pi(d) = A(d)Nd(t)P

k(A(dk(t))) where Nd(t) is the number of d degree
nodes in the network at time step t. Using this formula A(d)
is then given by A(d) = Pi(d)S(t)/Ndt where S(t) is the
sum of the kernel attachment function for each node of the
graph at time t. The authors use an iterative approach that
starts with S0(t) = 1 and measure A0(t) which is then used
to give a better estimate for S(t) to find out the exact values.
In practice after 5 iterations are the algorithm converges and
an approximation of the kernel function is found.

5) Opposition to Power Laws: Althought power laws
have been reported in various application domains [32],
[65], [33], [10], [41], [72], [13], [25], [53], [73], [43], [61]
Pennock et al and others have observed deviations from a
pure power law distribution in several datasets [58], [6], [66],
[2]. The common deviations are found to be exponential
cutoffs and lognormals. The authors discover qualitatively
different link distribution among subcategories of pages for
example, among all university homepages or all newspaper
homepages. The distributions within these specific categories
are typically unimodal on a log scale, with the location of the
mode, and thus the extent of the rich get richer phenomenon,
varying across different categories. The authors also note that
the connectivity distribution over the entire web close to a
pure power law.

There has been some oppositions to power laws in bio-
logical data as well. The authors in [66] proposes not to use
frequency-degree plots to decide whether the degree distribu-
tion follows a power law, but rather to use rank-degree plots
which they claim is a more accurate way of expressing the
distribution. The results suggest that FYI(filtered yeast inter-
actome) and HPI(human protein interaction) are following an
exponential distribution rather than the expected power law
distribution when rank-degree distribution is used. When the
frequency-degree plots used however, the distribution is still
a power law.

The exponential cutoff models distributions look like
power laws over the lower range of values on the x axis but
decay exponentially quickly for higher values. Lognormal
distributions look like truncated parabolas on log-log scales
and model situations where the plot dips downwards in the
lower range of values on the x axis.



C. Window Based Methods

In the study of [21] a data structure and updating scheme
that captures the graph and its evolution through time is given
for the AT&T call data. The studied graphs in this work have
hundreds of millions of nodes and edges, and the rate of
change is hundreds of thousands of new nodes and edges
per day. That is the graphs are highly dynamic.

The main contribution of the paper is that the authors
defines means to summary the past behavior of the dynamic
graph in hand and then predict the graph for the next time
slot. Let gt be the transactions at time t, and let the sum of
two graphs be defined as;

G = αg ⊕ βh

where α and β are non-negative scalars and the nodes and
edges in G are obtained by the union of nodes and edges in
g and h. The weighted graph is also defined similarly.

One way to summarize the past behavior is then the
cumulative sum of the graphs. Another way is to use only
recent activity, that is the sum of last k time steps:

Gt = gt−k+1 ⊕ gt−k+2 ⊕ . . .⊕ gt =
t⊕

i=t−k+1

gi

Gt can be used as a predictor for the graph at time t+ 1.
The simplest such prediction for the graph is surely gt which
does not store any past activity and prone to errors. A better
prediction is possible by a windowing scheme where Gt =
⊕wigi with

∑
wi = 0. Then a particular convenient way

for the weights of the graph is wi = θt−i(1θ) which in turn
gives a predictor of the form

Gt = θGt−1 ⊕ (1− θ)gt

which is also referred as the exponential smoothing.

D. Kronecker Graphs

Another graph generation technique is presented in which
heavy tails for in and out-degree distribution as well as
well as eigenvalues and eigenvectors, small diameters and
the densification power law [47] are preserved in [46]. The
previously proposed forest fire model cannot be analyzed rig-
orously although being successful in capturing the observed
properties of the real networks. To capture the shrinking
diameter property and the densification power law and simple
enough to be analyzed, Kronecker graphs are proposed. In
Kronecker graphs evolves recursively creating self similar
graphs. The growing sequence of graphs are Kronecker
product of of the initiator adjacency matrix.

C = A⊕B =


a11B a12B ... a1mB
a21B a22B ... a2mB

...
...

. . .
...

an1B an2B ... anmB

 (15)

To smooth out the discrete nature of the process, stochastic
Kronecker graphs are also introduced. In this model the ini-
tiator matrix is a probability matrix rather than an adjacency

matrix and the Kronecker multiplication is applied as above.
Each “1” and “0” of G1 is replaced with α and β to reduce
the number of parameters from N2

1 , the number of entries
in the matrix, to two. The authors proceed with a detailed
mathematical analysis of the model.

E. Entropy Based Methods

The evolution of several blogs and blog post are studied
in [49]. Topological features of these blogs are found to
distinguishing, the behavior of the evolution is bursty. That
is, it is not uniform but yet it is self similar and therefore
compactly described by the bias factor. The authors use the
entropy of post at time t over total number of posts. That is
Hp = −

∑T
t=1 p(t)logp(t) where p(t) = P (t)/PTotal. The

entropies are found to be much lower than the entropies of
the uniform sequences. A more interesting result is the fit of a
b-model for these blogs. In the b-model if the total activity
on a blog is P messages, in the first half of the evolution
b fraction of the posts appear and in the second half, 1-b
fraction appears. Recursively repeating this for the first and
the second half the authors obtains a b-model. The b-model
produces a linear entropy as a function of time. Interestingly
enough the blog evolution shows the same property. The
authors provide how to extract the value of the b from a
given history of the evolution.

V. DYNAMIC NETWORK ANALYSIS

There is a strong correlation between finding patterns in
static graphs, modeling dynamically and clustering evolving
graphs and anomaly detection in dynamic graphs. In this sec-
tion we give graph clustering techniques, anomaly detection
algorithms in particular for dynamic graphs.

A. Graph Similarity

Measures We start with the graph similarity functions as
they are excessively used in clustering, spotting anomalies
and for various other problems. Graph similartiy functions
are categorized in two groups:
• feature based similartiy measures
• structure based similarity measures
Using the topology of the graphs, two similarity metrics

has been defined, maximum common subgraph distance and
the graph edit distance.

Let |msc| be the size of the maximum common subgraph
and |g1| and |g2| be the size of the input graphs. The
maximum common subgraph distance is then defined as

d(g1, g2) = 1− |mcs(g1, g2)|
max|g1|, |g2|

, (16)

in [15].
The edit distance between two graphs is the total cost of

edit operations (i.e. deletion of vertex, addition of edge) that
transform a graph to another graph.

Let e be an edit operation and c(e) its cost and the cost
of a sequence of edit operations be the sum of the individual
edit operations. The graph edit distance is then given by
the minimum cost that transforms g1 to g2. The graph



edit algorithms search amongst the possibly non-unique edit
sequences that results in a minimum edit cost. Several graph
edit distance computation procedures are discussed in [51].

In feature based similarity graphs, each graph is repre-
sented as a feature vector and the similarity is defined as the
distance between the corresponding vectors. The diameter,
average clustering coefficienct, graph spectra are the most
commonly used feature vectors.

B. Anomaly Detection

One important area of data mining is the anomaly de-
tection in a time series of data. A good deal of research
has been put together on network intrusion and fraud detec-
tion systems. However little work is carried on discovering
anomalies in graph based data. We give a brief overview
of anomaly detection techniques in graph based data in this
section.

1) Time Series Analysis of Graph Data: There has been
a tremendous work on time series analysis. Being one of the
pioneers, Box and Jenkins‘ ARIMA models are one of the
mostly used method in times series analysis [11], [12].

The general idea of ARIMA models is
• Formulate a class of models assuming certain hypothe-

ses,
• Identify a model for the observed data,
• Estimate the model parameters,
• If the hypothesis of the model are validated, use the

model for forecasting. If not, identify a new model
and estimate the parameters until the hypothesis of the
model are validated.

The first order and second order autoregressive models are
given by:

ẇt = φ1ẇt−1 + at

ẇt = φ1ẇt−1 + φ2ẇt−2 + at

(17)

The backward shift operator is defined by equation (18)
to represent (17) in a more compact form:

Bwt = wt−1 (18)

Using the backward operation (18) and equation (17) we
have:

0 = ẇt − (φ1ẇt−1 + φ2ẇt−2 . . .+ at)

= ẇt{1− φ1
ẇt−1

ẇt
− φ2

ẇt−2

ẇt
. . .} − at

= ẇt{1− φ1B − φ2B
2 . . .} − at. (19)

Alternatively in moving average models ẇt is linearly
dependent on at and on one or more of the previous a’s.

ẇt = at − θ1at−1

ẇt = at − θ1at−1 − θ2at−2 (20)

Using the same backward operation equation (20) becomes

ẇt = at − θ1at−1 − θ2at−2 . . .

= at{1−
θ1at−1

at
− θ2at−2

at
. . .}

= at{1− θ1B − θ1B2 − . . .}
(21)

An autoregressive model cannot be used to represent
moving average behaviour unless it uses an infinite number
of autoregressive terms, so merging auto regressive method
with the moving average model we obtain the general mixed
autorregressive-moving average model of order (p, q) given
by the following equation:

ẇt − φ1ẇt−1 − φ2ẇt−2 . . .− φpẇt−p
= at − θ1at−1 − θ2at−2 . . .− θqat−q

Again using the operator B (22) this can be rewritten by

φp(B)ẇt = θq(B)at (22)

where

φp(B) = 1− φ1B − φ2B
2 . . . φpB

p

θq(B) = 1− θ1B − θ1B2 . . .− θ1Bq

In order to make this series stationary the roots of φ(B) =
0 and θ(B) = 0 must lie outside the interval [−1, 1]. With
this condition satisfied the model defined in (22) becomes a
valueable method to represent stationary time series. There
are infinite ways a time series can be unstationary and the
authors give two types of non-stationary series and how to
convert it to a stationary time series.

In the work of Pincombe et al. [59] the idea of ARIMA
models is borrowed for the purposes of graph based anomaly
detections. With the assumption that a single feature can
accurately represent a graph, the method extracts graph based
features like diameter distance, edit distance, maximum
common subgraph vertex distance and so on. The algorithm
then models the time series of each of the individual features
as an ARMA model and compares which of the features is
better in terms of capturing the anomalies. In the general case
though the assumption that a single feature can represent the
whole graph is too aggressive to be true.

2) Anomaly Detection using Minimum Description
Length: Several methods have been proposed using the
minimum description length principle to detect graph
anomalies. The MDL in the context of graph theory is the
number of bits required to encode the graph. Using this
principle the most common substructure, “pattern” can be
calculated by

M(S,G) = DL(G|S) +DL(S) (23)

where G is the entire graph, S a substructure in graph G,
DL(S) is the description length of the substructure and



   

Fig. 2. An overview of studying evolving graphs. A temporal sequence of graph data is the input. The scope of the analysis is application specific.
Dependent on the specific application it can the evolution of features of a single, a group of nodes more specifically sub-graphs or the whole graph itself.
Researchers have tackled the problems mainly in three differently ways, using graph theoretical approaches, data mining models and time series analysis.

DL(G|S) is the description length of the graph after com-
pressing the graph with the substructure S. The substructures
that minimizes this function are the “patterns” in the graph
and using these patterns several methods have been proposed
to detect graph anomalies. The simplest idea is one that finds
the structures that maximizes equation (23). This however is
not suitable as no compression at all, or other extreme case
compressing the whole graph turns out to be the high. A
heuristic approach which calculates the value of the size of a
substructure multiplied by the frequency of that substructure
is therefore used rather than directly trying to maximize
equation (23) in [56]. In the same work Noble et al also
proposes studying the different substructures of the graph
amongst each other to determine how anomalous each of
the subgraphs are compared to the others. One of the main
restrictions of the methods proposed by [56] is that the found
anomalies are always connected. Recall however that in [59]
the anomaly can be anything but the algorithm says nothing
about where the anomaly is.

The method proposed in Noble et al is biased towards
finding small substructures and this issue is addressed by
Eberle et al in [26] again using the MDL principle. The
algorithm starts with finding the best substructures, Si‘s of
the graph using MDL. Then rather finding the structures
that are least similar to this substructure, the authors find
matching instances, Ij , such that the cost of transforming

Ij to Si is positive. In the final step if the frequency
of these matching structures multiplied by the cost of the
transformation is less then a threshold, the substructure is
output as an anomaly. The intuition here is that an anomaly
is a structure that is infrequent and slightly different than
the most common pattern. In the same work a probabilistic
approach is also given. The extensions to the substructure
are assigned a probability and the substructure with the least
probability is output as the result of the algorithm. The
authors also present another algorithm which examines the
ancestral substructures. All these methods are prone to miss
the anomalies if the dataset contains more than one type of
anomaly ie a deletion followed by modification.

3) Window Based Approaches: The idea of scan statistics,
also known as moving windows analysis is also applied in
anomaly detection in graphs [60]. Briefly in scan statistics
method, a small window of the data is analyzed and local
statistics in that window are calculated. The maximum of
such statistics is called the scan statistics of the data, and
represented by M(x). The approach is then to check whether
this scan statistics is more than a threshold value. If there
is a data for which M(x) is greater than the threshold, then
there is an anomaly according to the scan statistics method.

In the case of graph theory, the window to be scanned is
the k neighborhood of a vertex v. The authors defined the
scan statistics to be the outdegree of the kth neighborhood



where for k = 0, 1, 2 of vertex v. Some standardization
is performed by vertex dependent mean and variance lest
to miss a vertex that increases its communication but goes
unnoticed dues a vertex that has a higher and constant
communication. By restricting the anomaly detection only
to scan statistics of the second neighborhood, a “chatter” is
detected in the famous Enron dataset.

Another partly window based algorithm is proposed by
[39]. The dependency graph for application layer of web
based systems are constructed. The weights of the graph
represent how much a service requested the service at the
other of the edge in a given time interval. The authors define
the activity vector u(t), which is merely the eigenvector
corresponding to the maximum eigenvalue. The activities are
stored in the matrix U(t) = [u(t), u(t− 1) . . . u(t− h+ 1)].
Then the “typical pattern” is defined to be the left singular
vector of U(t). For any new data point at time t, this U(t−1)
matrix is constructed, the typical pattern is extracted and then
the typical pattern vector is compared against the activity
vector at time t. The angle between the vectors give how
similar the activity vector and the typical pattern of the
data in the last h time spots. The authors provide an online
algorithm to calculate the threshold for the angle as well.

4) Approaches using Vertex Edge Properties: A recent
study by Papadimitriou et al uses vertex and edge properties
to find how similar the web graphs are [57]. If two consec-
utive graphs are too similar or too different than each other,
this may indicate an anomaly in the series. The first such
vertex property is the rank of a vertex defined by Kleinberg
et al [42]. Given two graphs the ranks of the vertices are
calculated and sorted. Using the similarity function of

simV R(G,G′) = 1−
2
∑
v∈V ∪V ′ wv × (πv − π′v)2

D
(24)

where πv and πv′ are the ranks of vertex v in G and G′

respectively, wv is the quality of v and D as a normalization
factor, the (dis)similarity of the graphs are calculated.

Another method proposed in the same work is to use the
edge weight similarity of the graphs. The edges shared by
both of the graphs are used for this approach. Similar to the
vertex ranking approach, the weight of an edge is multiplied
by the quality of the vertex that it originates from. This value
is normalized by a factor to give a measure for an edge
similar to the rank of a vertex, but defined for the edge. This
measure is then used for similarity checking between the
graphs. Another methods have been defined as well, based on
the idea that if two graphs are similar they share a common
vertex and edge set.

Two other methods have been defined in the same work.
The experiments carried on show that they are not as useful
as the first three methods, nonetheless we will mention
them here briefly for the sake of completeness. A sequence
comparison scheme can be used, if a method that can convert
the graph data to a sequence while preserving the topological
features of the graph can be proposed. This problem is also
known as graph seriation problem. The other method assigns

a set of features to vertices and edges, namely quality of the
vertex to vertex and normalized quality to an edge. These
values are then hashed and a similarity check between two
signatures are performed for consecutive graphs.

[64] uses a similar idea for bipartite graphs. A relevance
score for each node is defined. Using random walks origi-
nating from a vertex u, the number of times vertex v is seen
counted. Intuitively the higher the probability of visiting v
the higher the two nodes are relevant. For a node u in the
graph, the neighbors should have a high relevance for u to
be normal. Otherwise the node is considered as abnormality.

[17]
Finding Hidden Groups in Graph Data: [5], [4], [31].

In [34] using the centrality indices the authors find the
community structure in social and biological networks. This
work is not focused on the dynamic evolution though.

C. Clustering Dynamic Graphs

Data clustering in general seeks to find homogeneous
groups where within group similarity is minimized and the
between group similarity is maximized. In Han and Kamber
[35] clustering methods for static data are classified into five
major categories, partitioning methods, hierarchical methods,
density based methods, grid based and model based methods.

The partitioning methods construct k partitions of the data.
These partitions are crisp if each and every object in the
dataset is allowed to belong to only one partition. In the fuzzy
partitioning however, an object can belong to more than one
partition with varying probabilities. Lloyd’s algorithm which
is commonly referred as the k-means algorithm and the k-
medoids algorithms are the two well known crisp partitioning
heuristics where c-means and the c-medoids are the coun-
terparts. The second class of clustering methods work by
clustering the data in a hierarchical manner. These algorithms
construct a tree of the dataset to represent the hierarchy.
Hierarchical algorithms are either divisive or agglomerative
where in divisive methods the whole data is considered a
cluster and split in each iteration. The reverse strategy is
taken in the agglomerative methods. Density based methods
continue to grow clusters as long as the number of neighbors
(density) is below a threshold. If it is more than the specified
threshold than a new cluster is formed. Grid based techniques
have been also proposed for static data clustering where a
grid structure is placed on the object space. All the clustering
operations take place on this grid structure. The last set of
methods used for clustering is the model based algorithms.
These methods try to fit models for each of the cluster and
fit the data to the assumed model as much as possible.

Recent studies introduced techniques to cluster dynamic
data. These studies either try to modify the existing clustering
algorithms for static data to fit in a dynamic environment
or try to convert the dynamic data into a form so that the
existing algorithms can be used directly.

1) Modifying Existing Algorithms: There is a vast lit-
erature on how to cluster static graphs. In the literature
graph clustering usually refers to clustering nodes of a graph.
However the emphasis in this survey is clustering a set



of graphs that evolve over time rather than clustering the
nodes in the individual graphs. Birkhäuser discusses what
is needed to extend different types of clustering algorithms
from n-dimensional real space to graph domains [14]. Two
modifications are in need, a graph distance function f(g1, g2)
for any given two graphs and a method to calculate the center
of a cluster i.e. the center of a set of graphs. Several distance
metrics have been proposed as discussed in section V-A and
can be used for this purpose. In the work of [14] to find the
center of a cluster, a median graph definition is given as in
equation (25).

ḡ = argming∈U

n∑
i=1

d(g, gi). (25)

Using the median graph definition and the distance func-
tions, centroid based and hierarchical clustering algorithms
proposed for n-dimensional real space can be modified to
work in graph domain as well.

In [38] Hopcroft et al studied NEC CiteSeer database
to track the evolving communities. They periodically create
agglomerative clusters and examine the evolution of the com-
munities. A similarity metric between two papers is defined
as the cosine angle between the associated references. If two
papers cite the same set of papers, then they are similar to
each. Using this distance metric agglomerative clustering is
performed on the data. Similar to the cosine similarity, the
distance between two clusters is given as

distance(C,C ′) =
√
ncnc′/(nc + nc′)(1− cos(rc, r′c))

where rc and rc′ are the associated reference vectors.
Finding clusters does not necessarily mean the the natural

communities are found. To find the communities a series
of subgraphs G1, G2...Gn are produced from the original
network G where each Gi is a graph induced by the 95%
of the vertices of G. The clustering algorithm is then used
to produce a set of trees T = {T1, T2...Tn}. A community
in C in T1 is natural if in a fraction of f of the clustering
trees of T the distance of the best match of a community is
greater than a threshold value of p. Tuning these parameters
is application specific.

2) Minimum Description Length: Sun et al used the min-
imum description length idea both to cluster a given graph
stream into graph segments and the sources and destinations
in each of the graph segments [63] for bipartite graphs. That
is, the authors try to answer two questions: given a graph
segment find partitions of source and destination nodes and
second given a graph stream find the graph segments. The
cost of encoding the graph segment is provided and then the
algorithm seeks to find graph segments such that the sum of
the cost of encoding graphs segments is minimized.

This problem is NP-hard and a minimization algorithm is
provided. Given the graph segment, the algorithm first finds
source partition pairs that when merged gives the minimum
encoding cost. If the total encoding cost decreases then these
nodes are merged. The same idea is applied to split as well.
The partition with the largest entropy is found. Foreach node

in this partition if the encoding cost decreases without the
node being in this partition, then a new partition starts. This
process is repeated until there is no decrease in the encoding
cost. By this way a given graph segment is partitioned. A
new graph is combined to the current graph segment if the
difference between the cost of encoding the segment with the
merged graph and the cost of encoding the individual graph
is less than a threshold.

VI. CONCLUSIONS

Many real world complex systems can be represented as
graphs. The entities in these system represent the nodes or
vertices and links or edges connect a pair or more of the
nodes. We encounter such networks in almost any application
domain i.e. computer science, sociology, chemistry, biology,
anthropology, psychology, geography, history, engineering.
Until recently, the research on network theory has mainly
focused on graphs with the assumption that they remain
static, ie they donot change over time. A wealth of knowledge
has been developed for this type of static graph theory.

Work on dynamic graph theory have been motivated by
finding patterns and laws. Power laws, small diameters,
shrinking diameters have been observed. Graph generation
models that try to capture these properties are proposed
to synthecially generate such networks. There are several
problems to be answered in these complex networks. Is the
network evolving normally? What is normal behaviour? Is
there a phase transition?

This study mainly focussed on evolution models, graph
similarity measures, anomaly detection in large network
based data and clustering similar graphs together. This field
is incredibly rapid, and inevitably we have not mentioned all
the aspects of dynamic graphs to have a compact and rather
self-contained survey. We refer interested users to [18] and
[45].

REFERENCES

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive
graphs. Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 171–180, 2000.

[2] LAN Amaral, A. Scala, M. Barthelemy, and HE Stanley. Classes
of small-world networks. Proceedings of the National Academy of
Sciences, 2000.

[3] A.L. Barabási and R. Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509, 1999.

[4] J. Baumes, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail,
W. Wallace, and M. Zaki. Finding Hidden Group Structure in a Stream
of Communications? LECTURE NOTES IN COMPUTER SCIENCE,
3975:201, 2006.

[5] J. Baumes, M. Goldberg, MS Krishnamoorthy, M. Magdon-Ismail, and
N. Preston. Finding communities by clustering a graph into overlap-
ping subgraphs. Proceedings of the IADIS International Conference
on Applied Computing, pages 97–104, 2005.

[6] Z. Bi, C. Faloutsos, and F. Korn. The” DGX” distribution for mining
massive, skewed data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 17–26. ACM New York, NY, USA, 2001.

[7] G. Bianconi and A.L. Barabasi. Competition and multiscaling in
evolving networks. Europhysics Letters, 54(4):436–442, 2001.

[8] C. Bilgin, C. Demir, C. Nagi, and B. Yener. Cell-Graph Mining for
Breast Tissue Modeling and Classification. In Engineering in Medicine
and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE, pages 5311–5314, 2007.



[9] J. Blasiak and R. Durrett. Random Oxford graphs. Stochastic
Processes and their Applications, 115(8):1257–1278, 2005.

[10] V. Boginski, S. Butenko, and P.M. Pardalos. Mining market data: A
network approach. Computers and Operations Research, 33(11):3171–
3184, 2006.

[11] G. E. P. Box, G. M. Jenkins, and MacGregor. G. M. Some Recent
Advances in Forecasting and Control. Applied Statistics, 17(2):91–
109, 1968.

[12] G.E.P. Box and G. Jenkins. Time Series Analysis, Forecasting and
Control. Holden-Day, Incorporated, 1990.

[13] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the Web.
Computer Networks, 33(1-6):309–320, 2000.

[14] H. Bunke. A graph-theoretic approach to enterprise network dynamics.
Birkhauser.

[15] H. Bunke and K. Shearer. A graph distance metric based on the
maximal common subgraph. Pattern Recognition Letters, 19(3-4):255–
259, 1998.
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