
Visualization in Sensor Network Simulator, SENSE
and Its Use in Protocol Verification

Christopher Morrell, Thomas Babbitt, and Boleslaw K. Szymanski
Department of Computer Science and

Center for Pervasive Computing and Networking
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180

morrec, babbit, szymansk@cs.rpi.edu

ABSTRACT
People are always looking for a way to visualize a problem.
Whether that be by creating a 3-dimensional model, build-
ing a graph, or simply drawing on a board. The issue of
visualizing a problem also finds its way into networking, and
more specifically wireless sensor networking. Many network-
ing simulation tools exist, and while some are very good at
performing simulation, they may not be good at providing
a visualization tool to examine simulation results. SENSE
is an example of a simulation tool specifically design to eas-
ily build a sensor network model and simulate it efficiently,
yet, it lacks the ability to robustly display the results of the
simulation in a visual manner. This paper addresses that
problem, and presents a clean solution for connecting the
SENSE wireless sensor network simulator with iNSpect, a
visualization tool intended to work with ns2. This paper also
presents two examples of the use of this tool combination to
identify and solve issues that arose in the development of
wireless sensor network routing protocols.

Keywords
network visualization, wireless sensor networks, network sim-
ulator, SENSE, iNSpect

1. INTRODUCTION
As has been said many times before, a picture is worth a
thousand words. In the case of network simulation, a pic-
ture is worth a thousand pages of simulation output. Us-
ing simulation to debug protocols and algorithms for sensor
networks often results in the designer confronted with pages
upon pages of simulator output, that without serious effort
to understand, is mostly meaningless. The author in [10]
also agrees that we have to find a way to deal with large
amounts of information.

The amount of information available to scien-

tists from large-scale simulations, experiments,
and data collection is unprecedented. In many
instances, the abundance and variety of informa-
tion can be overwhelming.

This author also discusses the importance to science to be
able to abstract data in such a way that it is meaningful
to the human brain. Certainly the network setup and sta-
tistical outputs are meaningful, but the line by line tex-
tual output of which packets went through which nodes in
the network don’t mean much without a picture. In addi-
tion to understanding output, there are some problems that
may arise while developing protocols and algorithms for net-
works, that would not be identifiable without a way to re-
ally see what is happening in a network. Without the aid of
visualization, the designer would regularly need to analyze
pages of simulator print-outs, to draw a picture of what hap-
pened in the simulation, and where something went wrong.
Protocols for wireless networks are particularly sensitive to
environment perturbation and transient failures. As a re-
sult, any, even small, change in such protocol design may
results in huge change in behavior. Understanding and con-
trolling the ramifications of such changes are greatly aided
by the visualization of the simulated execution. Hence, we
fully agree with the views of the authors of the nam tool [2]
supplementing ns2 who succinctly stated their motivation
for developing a visualization tool as follows:

Protocol design requires understanding state dis-
tributed across many nodes, complex message ex-
changes, and with competing trac. Traditional
analysis tools (such as packet traces) too often
hide protocol dynamics in a mass of extraneous
detail...nam [is] a network animator that provides
packet-level animation and protocol-specific graphs
to aid the design and debugging of new network
protocols...Nam now integrates traditional time-
event plots of protocol actions and scenario edit-
ing capabilities.

Equally important is the aid that visualization can provide
in understanding and teaching how the sensor network op-
erates and how protocols and algorithms designed for sen-
sor networks really works. Specially in wireless networks,
routing and distributed computing is often a complex and



dynamic process which is difficult to conceptualize or grasp
intuitively and therefore difficult to teach. Visualization can
be effectively used to build intuition about the network pro-
tocol modus operandi which then can create a foundation
for deeper understanding of the protocol. The use of visu-
alization in teaching networking has been discussed in [8].
The above mentioned debugging and educational needs mo-
tivated the research presented in this paper.

SENSE is our simulator of choice when working on problems
involving wireless sensor networks. The recent problems we
have been working on are those that involve the development
of routing protocols within these networks. While SENSE
is an extremely robust, easy to use simulation tool, the vi-
sualization tools provided with it are lacking. In the search
for a solution, many iterations of tools have evolved, until
a pre-built tool, intended for use with ns2 [6], was discov-
ered. This tool, entitled iNSpect [12], was written by a group
of researchers at Colorado School of Mines. When used in
conjunction with SENSE, iNSpect provides the ability to
easily create an animated playback from the output of a
wireless sensor network simulation. This animation provides
researchers the ability to step through a simulation, and gain
a visual image as to how packets traverse the network, how
nodes work together, and how network flows relate to each
other.

This coordination between SENSE and iNSpect, has been
a breakthrough in our use of the SENSE simulator, and is
therefore the subject of this paper. We will first discuss the
SENSE simulator, providing some background on its devel-
opment, and the functionality that it provides. This will be
followed by a discussion about the visualization tools that
were built into SENSE as it proceeded in development, end-
ing with a description of how SENSE and iNSpect are used
together. Lastly, we will present the wireless sensor network
routing protocols that encompass our work, and two exam-
ples of problems that were discovered, solved, and tested
using the combination of SENSE and iNSpect. This combi-
nation of tools has proven invaluable in the advancement of
our research.

2. SENSE SIMULATOR
SENSE is a C++ based simulator which was created to spe-
cialize in the simulation of wireless sensor networks. Orig-
inally presented in [3], SENSE was created to provide ex-
tensibility, reusability, and scalability to wireless network
simulation. SENSE uses a component-port model to repre-
sent parts of a network, and is built on top of COST [4],
which is a general purpose discrete event simulator. COST
is built on top of a component based C++ extension entitled
CompC++ [14].

By using a component-port model as the basis of design,
SENSE achieves its goal of being extensible, as new proto-
col stacks are easily implemented. This model allows a user
to abstract many of the details of the simulator, and simply
create new network components as needed. In the case of
a wireless sensor network, the sensor is a composite compo-
nent, that consists of several lower level components. These
low level components include the layers of the protocol stack,
mobility, and power management.

In SENSE, components are connected by two types of ports,
inports and outports. Inports are generally functional in na-
ture, in that they implement a certain function. Outports
on the other hand can be described as an abstraction of a
function pointer; they define what functionality they expect
of others. More specifically, the ports are used to connect
components. For example, each layer of the protocol stack,
which is defined as a component, gets an outport pointing
up to the next higher layer, and an outport pointing down
to the next lower layer. In addition to these, each layer also
has an inport coming from each layer around it. Layers that
are required to communicate directly with the mobility or
power management components have additional ports to al-
low data to flow from those components into the protocol
stack. Inports and outports are simply connected to one an-
other, providing a connection between components for data
to flow through and information to be exchanged.

In addition to providing the ability to easily expand the
simulator to support newly developed protocols, SENSE was
written to include support for many popular protocols. These
included protocols range all the way from the physical layer
to the application layer, and include IEEE 802.11, AODV,
several radio models, several power management models,
and others. Originally SENSE was created as a wireless sen-
sor network specific response to the wildly popular network
simulator ns2 [6].

As popular as ns2 is, without many add-on packages, it is
not well suited to simulate wireless sensor networks. The
fact that ns2 was originally written as a wired network sim-
ulator, the layers required to simulate a wireless network in
this environment increases its complexity. As SENSE was
written specifically as a simulator for wireless sensor net-
works, it is fairly popular in that community, and has been
used by [16], [13], and [9], in addition to many others.

3. VISUALIZATION WITHIN SENSE
SENSE was originally created without the ability to provide
visual feedback from a simulation, and although SENSE has
been a commonly used simulator, the lack of visualization
has been one of the largest complaints about it [7]. Nor-
mal simulation feedback looked much like figure 1. Visual
Route (VR) lines provide simulation time, source, destina-
tion, packet number, end-to-end packet transmission time,
and a node by node path through the network. Assign Se-
quence Number (ASN) lines are output upon the source
identifying a packet to be sent. Data includes packet num-
ber, maximum hops to destination, packet type, and sim-
ulation time. All of this information is very useful to a
researcher who is testing a new network protocol, but the
effort required to truly understand what each line means is
enormous. One would have to manually plot each node lo-
cation and overlay each packet’s path in order to see how
each flow, packet, or node related to each other.

As SENSE was improved through several versions, some
minimal visualization capabilities were added to it. These
new capabilities allowed it to extract a plot that included
the locations of all of the nodes as shown in figure 2(a). In
addition to this, SENSE would provide a graphical repre-
sentation of the path taken by any single packet, shown in
figure 2(b).



Figure 1: An example of the text only output from
the SENSE simulator.

While this basic level of information is useful, more is still
required to fully understand what is happening throughout
the life of an entire network, or even throughout the lifetime
of a given network flow or packet. Of course through some
basic image manipulation, additional information was avail-
able, including the ability to overlay node identities, node
locations with paths, multiple paths, and with some effort
some animation of packets moving across the network. In
order to create the animation, separate images were cre-
ated of each packet’s path on the network, which were then
stacked together into an animation. While this animation
could provide additional information, and give a more vi-
sually appealing view of the network, once created, it was
static, and the time and effort required to build this product
was excessive in relation to the information gained from it.
This method of visualizing the network also failed in its in-
ability to provide any useful statistics with the pictures and
animations.

4. VISUALIZATION WITH SENSE AND IN-
SPECT

Although several iterations of tools were created to provide
some visualization functionality to SENSE, it was decided
that work on the functionality of the simulator would be
more important, and finding a visualization tool that already
existed, and could be used with SENSE would be more ap-
propriate. Since ns2 is probably the most popular network
simulator in existence, of course the first choice of visualiza-
tion tools was the Network Animator (NAM) that is pack-
aged as part of ns2. NAM was made to work with SENSE,
but as it was never really designed to visualize wireless net-
works [5], it is missing key capabilities required in a wireless

Figure 2: (a) An example of the original visualiza-
tion capabilities built in to SENSE, this plot shows
the location of 75 nodes on a 1000 x 1000 unit area.
(b) The path followed by the first packet in a simu-
lation of the SRP protocol.



simulation. Since broadcast is the primary medium of a
wireless sensor network, and our protocols are self-selecting,
there is no predefined path or link between two nodes. Nam
requires a link to be present in order to track packets be-
tween nodes. NAM’s depiction of a broadcast also did not
meet the requirements of what we were looking for. In NAM,
a broadcast is depicted by a simple circle around the broad-
casting node that is the size of the wireless transmission
range. Since we don’t know the node within that circle that
would be selected to forward a packet, our protocol required
the link to be created after the fact, increasing the complex-
ity of the model. Although NAM did not meet our specific
requirements, it did lead us to the discovery of the visual-
ization tool iNSpect.

Originally presented in [12], a group of researchers at Col-
orado School of Mines created a visualization tool called
iNSpect that is specifically tailored to visualize wireless net-
work simulations. Although intended for use with ns2, and
in the future is planned to work well with ns3, we’ve cho-
sen to use iNSpect as the visualization tool for SENSE. The
shortcomings in NAM that have been discussed were also
identified by other researchers, and led to the development
of iNSpect. iNSpect is a C++ OpenGL based visualization
tool that takes ns2 mobility and simulation files as input,
and presents a Cartesian coordinate based display of the
simulated network as shown in figure 3. iNSpect provides
the ability to see packets flow across the wireless network, as
well as collecting various statistics. One feature of iNSpect
that can easily be compared to NAM, is its ability to depict
a broadcast. While NAM displays a circle as described ear-
lier, iNSpect draws an arrow from the broadcasting node to
all nodes within transmission range. Once we have a node
that is selected to forward the given packet, it changes its
color to green to depict its win. All other nodes change
their colors to black, showing that they are not the winners
of that election.

Since SENSE was not originally created to produce ns2 type
output, and iNSpect was created to use ns2 output, the main
effort in making SENSE work well with iNSpect was to mod-
ify the output from a SENSE simulation to match the output
of ns2. Once broken down to its most basic levels, this is
a relatively simple process. iNSpect expects three separate
input files to produce a visualization of a simulation. Those
files are the configuration file, the mobility file, and the sim-
ulation file.

The configuration file is a user created file based on a tem-
plate provided with the iNSpect tool. The main items that
must be modified in the configuration file are the physical di-
mensions of the simulated field, the number of nodes within
the given simulation, the start and end times of the por-
tion of the simulation to be visualized, and the colors of the
nodes. The color definition also includes the ability to sep-
arate events into different categories for statistic gathering.
Within the configuration file, it is also possible to set the
amount of simulation time that an event is visualized for
before it reverts to its default state.

The mobility file is the file that iNSpect uses to present the
physical locations of the nodes. In our work with SENSE
and iNSpect, we’ve not provided the ability for nodes to

Figure 3: An example of the visualization window
in iNSpect. In our protocols, we use black to iden-
tify nodes that intentionally drop packets, green are
forwarding nodes, blue are sources, and purple are
destinations.

move, so SENSE simply provides output that establishes
the initial positions of the nodes. In SENSE, node locations
are established at network setup, so a simple textual output
in the format expected by iNSpect gave us all of the data re-
quired for the mobility file. This format is simply three lines
for each node, which identify the X, Y, and Z coordinates of
the given node.

Lastly, the simulation file is the most important part, and
provides all of the information to the visualizer that con-
cerns data transmissions. These include sent packets, re-
ceived packets, acknowledged packets and dropped packets.
This is of course the most complex of the three files required
by iNSpect. In order to provide the output required by iN-
Spect, we used the basic template provided in [11] which is
also include here as figure 4. In order to create events for
iNSpect to display, we simply had SENSE output a line of
text that filled the fields presented. The fields include the
ID or address of the node, the simulation time of the event
to be displayed, a description of the event (either sending to
or received from), the node on the other end of the event,
or -1 for a broadcast, a status string, and the packet ID.
The status string provides a great deal of flexibility in the
use of the visualizer, as that string is used to provide the
coloring in the simulation replay in iNSpect. In our imple-
mentation, we’ve used the status string to separate network
initialization packets from data packets. In addition to this
separation, we’ve used the status string to identify source
nodes, destination nodes, forwarding nodes, nodes that in-
tentionally drop packets, and several other types of events.

As mentioned previously, the implementation of providing
iNSpect compatible output from SENSE, while effective, is



Figure 4: The table that gives the requirements for
an event in iNSpect.

also very simple. The extent of the work required involves
identifying when events in the protocol need to be displayed
in the visualization. For our protocols, those events were
the transmission of a packet, the reception of a packet, the
winning of a forwarding election, and the intentional drop-
ping of a packet due to the loss of an election. Each of
these events simply required an output from the simulator
into the simulation file that followed the format presented
in the table in figure 4. As protocols change, or different
events within the simulator want to be focused on, a simple
change of where text is output from the simulator is all that
is required. It is also possible to change the iNSpect config-
uration file to no longer recognize specific status strings if
the data represented by those status strings is not desired.

In addition to the basic visualization capabilities that iN-
Spect brings to SENSE, there are several other features that
increase is value immensely. First is the ability to change
the speed of the animation on the fly, including the ability
to skip forward and backward in 5 second increments. If all
that is required is the statistics that are presented at the end
of a simulation, the speed may be set to extremely fast. In
addition, it is possible to rewind the animation, thus review-
ing specific events within the simulation repeatedly. iNSpect
also provides the ability to view node coordinates in the an-
imation. Another extremely useful tool within iNSpect is
the ability to view a connectivity graph or conduct a par-
tition check of the network. These tools give more insight
into the physical layout of the nodes, and can help to iden-
tify connectivity issues within the network. While iNSpect
is running an animation, each time it changes colors due
to an event, statistics are gathered to represent that event
as well. At any time in the simulation, a user may print
the currently collected statistics both for the network as a
whole, or for individual nodes. Lastly, iNSpect provides the
ability capture both still images and animated movies for
later replay. All of these features not only make iNSpect a
great tool for providing wireless network visualization, but
since it now functions well with SENSE, also provides excel-
lent visualization capabilities for simulating wireless sensor
networks.

5. USING VISUALIZATION FOR PROTO-
COL ENHANCEMENT

Although visualization is a wonderful tool to have, it does
not provide any added value if it is not put to good use. To
that end, I will first describe the family of protocols that
we have worked on, and will follow that with two specific
examples of how SENSE with iNSpect has been useful in
this work.

5.1 The SSR family of protocols

As described in [1] the Self-Selective Routing (SSR) family
of protocols was developed as a possible solution to the prob-
lem of Wireless Sensor Network Routing. The SSR family
consists of several different protocols which began with SSR,
followed by Self-Healing Routing (SHR), and Self-Selecting
Reliable Path Protocol (SRP). The common theme between
all of these protocols is that nodes are allowed to make rout-
ing decisions autonomously. These decisions are based sim-
ply on the number of hops required to reach the destination
of a given flow.

At network establishment, each source sends a Destination
Request (DREQ) packet to their flow’s destination. This
DREQ packet is flooded across the network, until every
node has received it and forwarded it. Upon receipt of the
DREQ, each destination node replies with a Destination Re-
ply (DREP) packet, which is also flooded across the network.
As each node receives and forwards the DREP packet, they
record either the hopcount of the current packet or their
current hopcount, if one exists, whichever is lower. At the
completion of the DREQ/DREP phase of the network, each
node in the network knows how many hops they are away
from the destination for any active flow in the network.

Once DREQ/DREP is complete, Data can be sent across the
network by simply selecting a random delay between 0 and
λ, where λ is a delay factor used to tune the network. Once
a packet whose source is further from the destination for the
given flow is received by a node, it selects its random delay
value and sets a timer for that delay. Once a node’s timer
expires, it considers itself the winner of the election, and will
forward the packet unless it was halted due to transmission
of the packet by some other node whose timer expired first.

Originally, SSR provided no ability to repair damaged routes.
Therefore, if a path were to be interrupted by some kind
of failure, the packets would simply be lost. This brought
about the development of SHR, which provides some route
repair facilities. Although seemingly simplistic, the route
repair algorithm used in SHR is the same that is still used
in SRP and the latest version of the protocol, Reliable Path
Self-Selection Protocol (RPSP). If a node does not see the
packet that it sent forwarded by a closer node, it will broad-
cast the packet again. If it fails a second time, it will simply
increase its hopcount to the destination by two and forward
the packet again. This hopcount increase will make it appear
that the forwarding node is further away from the destina-
tion, thus allowing other nodes to compete for the ability
to forward the packet. This will continue until such time as
some other node forwards the packet or the TTL is reached
and the packet dies.

While SHR functioned quite well, an improvement was found
that works extremely well to increase reliability and through-
put. Once a node wins the election for a given flow twice in
a row, it will artificially decrease its delay to just over the
radio transition time. This almost guarantees that the node
will continue to win elections for subsequent packets in the
flow. It was proven in [15] that if at least one reliable path
exists, it can be guaranteed that the network will eventu-
ally converge to the shortest reliable path, hence the name
Self-Selecting Reliable Path Protocol (SRP).



5.2 Visualization to modify DREQ/DREP
After enhancing SENSE with an interface to iNSpect, it was
observed that the network establishment, or DREQ/DREP
phase of the SRP protocol was not working correctly. As
designed, each source node would only send a single DREQ
packet for any given flow. It was observed that when im-
plemented in SENSE, an error occurred that allowed many
nodes to repeatedly send DREQ packets. This only occurred
when the random time selected between packet transmis-
sions at the source was less than the round trip time for the
DREQ/DREP. When this time was small enough, a source
would continually send DREQ packets until such time as the
DREP returned. In some cases, this resulted in hundreds of
DREQ packets being flooded across the network before the
destination could respond with a DREP. Until visualization
with iNSpect was implemented into SENSE, the only way
to identify this problem would have been by searching line
by line through simulator output to find repeated packets.
With visualization, it was simply a matter of watching a
DREQ/DREP cycle, and seeing that nodes were flashing
with the same received DREQ color multiple times. Once
the problem was identified, a simple fix was implemented, in
which nodes which wanted to resend a DREQ were forced
to wait 10 packet transmission cycles. This still resulted in
a few nodes sending multiple DREQ packets, but cut the
number of DREQ/DREP packets drastically.

SENSE and iNSpect were also used to validate this mod-
ification to ensure that the protocol was now functioning
as desired. In order to validate this change, the statistic
printing function that was mentioned earlier was used. If
the protocol is working at its absolutely optimum during
DREQ/DREP, each node will see n-1 DREQ packets and
n-1 DREP packets, where n is the total number of nodes in
the network. This is due to the fact that both the DREQ
and DREP are flooded across the entire network, and ide-
ally, each source only sends one DREQ and each destination
only sends one DREP. Before the modification to the proto-
col, the total number of DREQ packets was approximately
3n, while the number of DREP packets was approximately
1.5n, depending on the random seed used. After modifica-
tion, the total number of DREQ packets was within n/10 of
n and the number of DREP packets was exactly n for every
seed tested.

5.3 Visualization to create variable λ

In addition to modifying the DREQ/DREP stage of SRP,
iNSpect was also used to validate a modification to the se-
lection of λ that the protocol uses. In the original design
of all of the SSR protocols, λ was a fixed value that was
selected at run time. Generally, we’ve maintained λ to be
equal to 100ms. This was a fine solution, except for the fact
that individual nodes have different numbers of neighbors.
Those nodes with more neighbors may require a random de-
lay range larger than 0 to 100ms to avoid collision, while
those nodes with few neighbors may allow a significantly
smaller range to be used. Initially, iNSpect was used to
get a general idea of the high and low values of numbers of
neighbors. Figure 5 is an iNSpect generated plot with the
connectivity graph displayed on a randomly generated net-
work of 75 nodes in a 1000m by 1000m space with a 230m
transmission range. It is easily observed that there is a large
variation in the number of neighbors that nodes have. Some

nodes, such as node 26, have as few as 5 neighbors, while
other nodes, such as node 47, have as many as 17 neighbors.
This large variation in density results in a protocol that is
not completely efficient with a fixed value of λ. In the exam-
ple of node 47, 17 neighbors means that on average, there
will only be a 5.8ms gap between delay selections, which
could lead to a higher probability of collision. On the other
hand, node 26 has only 5 neighbors, which means there will
be an average 20ms gap between delay selections, resulting
in a low probability of collision, but a fairly inefficient node.
Variable λ corrects this variation.

Figure 5: An example of the connectivity graph pro-
vided in iNSpect that was used to identify the vari-
ation in the number of neighbors throughout the
network.

After validating that the number of neighbors varied as much
as it does, a simple solution was devised in which each node
calculates how many neighbors it has using the first DREQ
sent across the network. Since every node will only forward
a DREQ packet once, all that is required is to have each
node count the number of times that it receives that packet.
Upon completion of the initial DREQ packet’s transmission,
each node multiplies the number of neighbors by 15ms to
generate its value for λ. Since the majority of networks that
we work in have an average number of neighbors between
7 and 8, this puts the average value of λ between 105ms
and 140ms. Although this value is greater than the origi-
nal 100ms, because of the reduced number of collisions, it
actually results in faster throughput with higher reliability.

While the varying number of neighbors is easily identifiable
using iNSpect’s Connectivity Graph feature, with SENSE
alone, it would require a fair amount of output decipher-
ing and math to calculate how many nodes are within the
transmission range of each other. Figure 6 shows a sample
of SENSE output that gives location information. Each line
represents a different node at simulation time 0.0, and pro-
vides the node’s identity, in addition to each node’s location



in the simulation field.

Figure 6: An example of the location output from
SENSE.

6. CONCLUSION AND FUTURE WORKS
As was stated in the introduction, a picture is worth a thou-
sand words. The combination of SENSE and iNSpect has
provided us the ability to convert the pages of simulation
output, into a clear and concise view of our networks. The
animations presented through this combination have been
invaluable in our continued development of the family of
Self-Selective Routing protocols. They allow us to present
the textual output of our simulations in such a manner that
problems are easily identifiable, while still maintaining the
basic ability to gather statistics and keep things simple. The
ability to find a visualization tool that would work easily
with our simulator allows us to focus our research efforts
on improving the simulator and our protocols, while always
having access to the state of the art in wireless network sim-
ulator visualization tools. We believe that the combination
of these tools will continue to be very useful to us and other
SENSE users all over the world in support of the research on
wireless sensor networks. At the same time, the separation
of the simulation tool from the visualization tools enables
us and others (both tools are open source) to constantly
improve each tool independently from each other.

In the future, we plan to expand our SSR protocols to in-
clude the capability to handle mobility and provide energy
savings. Since iNSpect is created to handle mobile nodes,
it will be an easy step to make to visualize a mobility pro-
tocol within SENSE. All that will be required in SENSE
will be additional output into the mobility file which will
provide node locations at times other than the beginning of
the simulation. In addition, the output of SENSE is eas-
ily modified to allow a user to identify which nodes may
be in a sleeping state, which are active and listening, and
which are transmitting at any given time by changing node
colors within iNSpect. The statistical collection capability
within iNSpect will also provide the ability to easily gather

power management information. These simple changes to
the SENSE simulator will help to leverage the power within
iNSpect and help to more easily move forward in the im-
provement of our protocols.

7. ACKNOWLEDGEMENT
The authors wish to acknowledge contributions of their col-
leagues at RPI, Gang Chen, Mark Lisee and Joel Branch
(currently at the IBM Watson Research Laboratory) for
their contributions to the early versions of SENSE imple-
mentations.

Research was sponsored by US Army Research laboratory
and the UK Ministry of Defence and was accomplished un-
der Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the au-
thors, and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the US Army Re-
search Laboratory, the U.S. Government, the UK Ministry
of Defense, or the UK Government. The US and UK Gov-
ernments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation hereon.

8. REFERENCES
[1] T. Babbitt, C. Morrell, B.K. Szymanski, and

J. Branch, Self-selecting reliable path for wireless
sensor network routing, Computer Communication
Journal 31(16) (October, 2008), 3799–3809.

[2] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Halmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu, Advances in network simulation,
IEEE Computer 33(4) (2000), 59–67.

[3] G. Chen, J. Branch, M.J. Pflug, L. Zhu, and
B. Szymanski, Sense: A sensor network simulator,
Advances in Pervasive Computing and Networking
(2004), 249–267.

[4] G. Chen and B.K. Szymanski, Cost: A
component-oriented discrete event simulator, Proc.
Winter Simulation Conference, WSC02 (San Diego,
CA), vol. I, December 2002, pp. 776–7809.

[5] D. Estrin, Mark H, J. Heidemann, S. Mccanne, Y. Xu,
and H. Yu, Network visualization with the vint
network animator nam, Tech. report, University of
Southern California, 1999.

[6] K. Fall and K. Varadhan (eds.), The ns manual
(formerly ns notes and documentation), The VINT
Project, 2008,
http://nsnam.isi.edu/nsnam/index.php.

[7] J. Glaser, D. Weber, S.A. Madani, and S. Mahlknecht,
Power aware simulation framework for wireless sensor
networks and nodes, EURASIP Journal on Embedded
Systems 2008 (2008).

[8] C. Goldstein, S. Leisten, K. Stark, and A. Tickle,
Using a network simulation tool to engage students in
active learning enhances their understanding of
complex data communications concepts, 7th
Australasian conference on Computing education,
Australian Computer Society, Darlinghurst, Australia,
2005, pp. 223–228.

[9] T.T. Huynh and C.S. Hong, A novel hierarchical
routing protocol for wireless sensor networks, Mobile



Communications Workshop, LNCS, Springer, New
York, NY, 2005, pp. 339–347.

[10] Chris Johnson, Visualization viewpoints, IEEE
Computer Graphics and Applications (2004), 13–17.

[11] S. Kurkowski, T. Camp, and M. Colagrosso, A
visualization and analysis tool for wireless simulations:
inspect, ACM’s Mobile Computing and
Communications Review, to appear (2008).

[12] S. Kurkowski, T. Camp, N. Mushell, and
M. Colagrosso, A visualization and analysis tool for
ns-2 wireless simulations: inspect, Proceedings of the
IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (2005),
503–506.

[13] H.K. Ryu, Y.Z. Cho D.H. Kim, K.W. Lee, and H.D.
Park, Improved handoff scheme for supporting network
mobility in nested mobile networks, Computational
Science and Its Applications, LNCS, Springer, New
York, NY, 2005, pp. 344–347.

[14] B.K. Szymanski and G.G. Chen, Sensor network
component based simulator, Handbook of Dynamic
System Modeling (Paul Fishwick, ed.), CRC/Taylor
and Francis Publishing, 2007, pp. 35–1–35–16.

[15] B.K. Szymanski, C. Morrell, S.C. Geyik, and
T. Babbitt, Biologically inspired self selective routing
with preferred path selection, Bio-Inspired Computing
and Communication, LNCS, to appear, Springer, New
York, NY, 2008.

[16] H.L. Xuan and S. Lee, Two energy-efficient routing
algorithms for wireless sensor networks, Networking,
LNCS, Springer, New York, NY, 2005, pp. 698–705.


