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Abstract—We consider the problem of how to maximize
secure connectivity of multi-hop wireless ad hoc networks after
deployment. Two approaches, based on graph augmentation
problems with nonlinear edge costs, are formulated. The first
one is based on establishing a secret key using only the links
that are already secured by secret keys. This problem is in
NP-hard and does not accept polynomial time approximation
scheme PTAS since minimum cutsets to be augmented do not
admit constant costs. The second one is based of increasing the
power level between a pair of nodes that has a secret key to
enable them physically connect. This problem can be formulated
as the optimal key establishment problem with interference
constraints with bi-objectives: (i) maximizing the concurrent key
establishment flow, (ii) minimizing the cost. We show that both
problems are NP-hard and MAX-SNP (i.e., it is NP-hard to
approximate them within a factor of 1 + ε for ε > 0) with a
reduction to MAX3SAT problem. Thus, we design and implement
a fully distributed algorithm for authenticated key establishment
in wireless sensor networks where each sensor knows only its one-
hop neighborhood. Our witness based approaches find witnesses
in multi-hop neighborhood to authenticate the key establishment
between two sensor nodes which do not share a key and which
are not connected through a secure path.

I. INTRODUCTION

Efficient key management schemes are essential to ensure
authentication, integrity and confidentiality in multi-hop wire-
less ad hoc networks. An example of such networks are multi-
hop wireless sensor networks operating in adversarial condi-
tions. Many different key management schemes are proposed
for wireless sensor networks. Some solutions assign each node
a key-chain, a set of symmetric keys or keying materials (e.g.,
ID, master keys, hash functions, pseudo random functions,
shared polynomials, key matrices and location information),
to be shared with some of its neighbors after deployment
with high probability. Others are based on trusted entities
(e.g., base stations, trusted nodes and certificate authorities)
to establish symmetric or asymmetric keys between sensor
nodes. The unique key-chain assigned to each node creates
a binding between the identity of a node and its set of keys;
thus, provides authentication which is limited by the resilience
of the underlying key distribution scheme. A detailed compar-
ative survey on wide range of key management schemes for
such networks can be found in [1], [2].

Keys and keying materials may be pre-distributed to nodes
during key pre-distribution phase in a central location. There

has been a significant focus in designing probabilistic, deter-
ministic and hybrid key management schemes to ensure that
neighboring sensor nodes can find a key to secure their link
with high probability. In random key pre-distribution scheme
[3] and its variants [4], [5], [6], [7], [8], each node receives a
key-chain which is randomly drawn from a pool. In [9], [10],
[4] random and expander graphs are used to generate key-
chains of dedicated pairwise keys for the nodes. In [11], [12],
[13], [14], [15], [16], [8], [17], [18], deterministic techniques
from algebra and design theory are used to generate a key-
chain for each node. In [19], [20], [21], [22], [23] deployment
knowledge, in [24], [25] master keys and in [14] node IDs
are used to improve the probability of finding common key.
Finally, there are promising attempts to use RSA, elliptic curve
and ID-based cryptography on sensor networks [26], [27],
[28], [29], [30].

In wireless sensor networks, sensor nodes are usually ran-
domly scattered over a large application area which might
be inaccessible or infeasible to access after the deployment.
Even with controlled placement of sensor nodes, due to envi-
ronmental challenges and deployment errors, post-deployment
network configuration might be unknown a priori. After the
deployment, each node discovers its neighbors and tries to find
a symmetric key to secure its links in shared-key discovery
phase. Majority of key management schemes can not guarantee
a symmetric key to secure each link. Therefore, in the key
establishment phase, each pair of neighboring nodes, which
do not have common keys, establish one or more keys. Key
establishment between two nodes can be achieved by using
pre-distributed keying materials and by exchanging messages
directly over their insecure wireless link or over one or more
secure paths on which each link is secured with a symmetric
key.

There is no one-size-fits-all solution and there are significant
trade-offs among these solutions in terms of their scalability,
probability of finding a key, resilience and overhead (commu-
nication, storage and processing). A set of deterministic solu-
tions guarantee a key between each pair of nodes regardless of
the underlying physical network topology. But, these solutions
can not scale, provide low resilience, introduce high overhead
or may not support node addition and deletions. Focus of this
work is on multi-hop wireless ad hoc networks with key pre-
distribution schemes in which not every link is protected. Thus,
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secure connectivity cannot be ensured or the network cannot
be utilized fully.

Utilization of multi-hop wireless networks is investigated as
wireless scheduling problem which assigns transmission power
levels to the network nodes and tries to schedule all the links
in an arbitrary network topology. Scheduling complexity of
arbitrary topologies in wireless networks in the context of
physical Signal-to-Interference-plus-Noise-Ratio (SINR) has
been investigated in [31], [32], [33], [34] and shown to be
NP-complete in various formulations. Secure capacity of a
randomly deployed network is analyzed in [35] where each
node receives a key-chain due to random key pre-distribution
scheme [3]. In [36] a framework is proposed to improve
existing key pre-distribution schemes by assuming that sensors
are deployed in groups and group members are located close
to each other after deployment. Hence, more research attention
is required on analyzing the complexity of increasing the
secure connectivity and capacity in multi-hop wireless ad hoc
networks after deployment.

Our Contribution:
Our first contribution is theoretical as we formulate the

different variants of the problem and analyze their complexity.
Our practical contribution is to provide distributed heuristic
algorithms.

In particular, we present two approaches: (i) establish new
symmetric keys on the existing physical links (problem P1),
and (ii) establish new physical links by increasing transmission
power to connect the nodes that they do share a symmetric
key (problem P2). Both of the problems are variants of
graph augmentation problem which are in general NP-hard
for fixed cost functions and accept polynomial time constant
approximation schemes (PTAS) [37]. However, our problems
are more complex.

Problem P1 is a variant of optimal graph (edge) augmenta-
tion problem on key graph GK (Figure 1). However, instead
of a fixed cost assignment, it defines a nonlinear cost function
on the links since the order of augmentation changes the cost
assignment. In problem P2, new physical links can be created
by increasing the power levels to reach a node with a shared
secret key. Although this problem can also be formulated as
an optimal graph augmentation problem on physical graph
GP (Figure 1), it has two main differences. First, increasing
power levels induce interference on the nodes and may have
an adverse effect on the overall network capacity. Thus, there
are interference constraints on the nodes in P2 to ensure
an acceptable signal to interference plus noise ratio (SINR).
Second, the cost of each link has two parameters: (i) energy
cost for establishing this link, and (ii) amount of interference
this links induces on the other nodes. We show that neither
P1 nor P2 accepts PTAS.

Given the complexity of P1 and P2, we present a distributed
heuristic for increasing secure connectivity and study its
performance.

Organization of the Paper: Rest of the paper is organized
as follows: in Section II, we describe the network model and
basic notations. We break problem of optimally increasing se-
cure connectivity into three optimization problems. In Section
III, we formulate the first problem P1 as an instance of edge

augmentation problem on the key graph. In Section IV, we
formulate the second problem P2 as a constrained optimization
problem with interference constraints on the physical graph.
In Section V, we provide a witness based distributed key
establishment algorithm for increasing the secure connectivity.
Finally, in Section VI we conclude.

II. NOTATIONS AND PROBLEM DEFINITION

A. Network Model
We model a multi-hop wireless ad hoc network as a set of

nodes WN = {n1, n2, . . . , nN} distributed over an Euclidean
plane. The Euclidean distance between two nodes ns and nr is
represented by d(ns, nr). In this work, we assume that each
node ns has discrete power levels (1, 2, 3, . . . , limax). Each
node may have different maximum power level lmax due to its
battery condition. By changing their power levels (P l

s: node ns

transmitting at power level l), nodes can control the received
signal strength P l

s

d(ns,nr)α (α is a constant that depends on the
medium) on the intended recipient. Successful reception of
the message depends on transmission power of the sender,
interference and noise on the environments. We use Signal-to-
Interference-plus-Noise-Ratio (SINR) model because graph-
theoretic modeling of interference ignores the fact that inter-
ference coming from different transmitters accumulate and can
not be limited to specific border. SINR model considers that
a message is successfully received by a receiver if the ratio
between received signal strength and noise plus interference
from other nodes exceeds a threshold β (Equation 1) which is
defined by the hardware.

P l
s

d(ns,nr)α

Noise +
∑

nk∈WN\ns

P l
k

d(nk,nr)α

≥ β (1)

Wireless networks are generally represented with undirected
graphs where uniform transmission range and symmetric links
are assumed. Physical Graph GP = (V, EP ) represents
network where each node is represented with a vertex, and
there is an edge between two vertices if the corresponding
nodes are within each others transmission range. For the
same vertex set V , Key Graph GK = (V, EK) represents
the key connectivity where there is an edge in between two
vertices if the corresponding nodes share or can establish one
or more symmetric key to secure their communication. In
Secure Graph GS = (V, ES), there is an edge in between
two vertices if they have an edge both in GP and GK . In
other words, ES = EP

⋂
EK as illustrated in Figure 1.

B. Notations
Nodes which are within each other’s radio range are called

neighboring nodes. A wireless link between two neighboring
nodes is called a physical link. A physical link between two
neighboring nodes that share a key is called a secure link.
If the nodes don’t share a key, then it is an insecure link. A
secure (trust) path is a path on which each physical link is
a secure link. A key path is a secure path which is used to
exchange a shared-key (i.e. with a mechanism similar to Diffie-
Hellman [38]). Table I lists the notation used throughout this
paper.
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Fig. 1. Physical graph GP = (V, EP ), Key graph GK = (V, EK) and
Secure graph GS = (V, ES) where ES = EP

⋂
EK .

TABLE I
ABBREVIATIONS

WN Network with nodes {n1, n2, . . . , nN}
N Network size
F Set of flows (s,t)
T Set of transmitters ni,l

R Set of receiver ni

T (i) Transmitters of node ni

R(j) Receiver of the transmitter j ∈ T
P l

i Transmission power of ni,l at power level l

fs,t
i,j Flow on edge (i, j) due to

flow fs,t, fs,t
i,j ∈ {0, 1}

fs,t Flow (s, t), fs,t ∈ {0, 1}
ni,l ith node transmitting at lth power level
limax Maximum power level for node ni

Ki,j Shared key between nodes ni and nj

KCi Key-chain of node ni

ER Receive cost of a unit flow
ET Transmission cost of a unit flow
GP (V, EP ) Physical graph
GK(V, EK) Key graph
GS(V, ES) Secure graph
GA(VA, EA) Auxiliary graph

C. Problem Definition

Upon deployment of a multi-hop wireless ad hoc network,
the induced secure graph may be under-utilized (i.e., although
GS = GK ∩ GP is connected many physical links are not
secured by a shared-key, resulting in inefficient routing as
shown in Figure 2-C.) or it may be even disconnected as
depicted in Figure 2-E.

In this paper we consider the problem of how to optimally
increase secure connectivity by either establishing new keys
using the secure paths (we rule out executing Diffie-Hellman
(DH) [38] or similar techniques over an insecure wireless link
due to lack of authentication that makes man-in-the-middle
attacks possible), or adding new physical links between nodes
that share a key by increasing transmission power.

We consider three optimization problems in this paper as
summarized in Table II. Problem P1 is a variant of edge aug-
mentation problem on the keying graph GK (Figure 2-(A,B)).
However, the cost function to be minimized is different from
the ones studied in the literature (since the cost assignment of
the edges changes as a function of augmentation order).

In problem P2, we assume adjustable power levels available
to each node and consider the optimal power selection problem
to create a physical link between a pair of nodes that share
a pre-distributed key. Cost of a physical link depends on the

TABLE II
RESEARCH PROBLEMS CONSIDERED IN THIS PAPER.

Problem Definition and Approach
P1: GK → GS Find order of shared key establishment for

unsecured physical links. Find optimal
secure paths to establish shared keys
Approach: Graph augmentation on GK

P2: GP → GS Find optimal set of new physical links to be
established between the nodes with shared keys
Approach: Graph augmentation on GP

constrained with interference
P3: Distributed Distributed version of P1

Approach: Set coverage problem.

energy consumption which in turn depends on the distance be-
tween the corresponding nodes. The optimization problem here
is to determine which nodes should increase their power levels
to provide secure connectivity at a minimum cost (Figures 2-
E,F). Increasing power levels decreases the number of hops
in a secure path as illustrated in Figures 2-(C,D). However,
increasing transmission power generates more interference on
surrounding nodes that also communicate. Enforcing a bound
on instantaneous interference to ensure acceptable SINR for
wireless communications, yields to a mixed integer non-
linear optimization problem [39]. Thus P2 aims to determine
the optimal power level assignments so that maximal secure
connectivity is obtained under interference constraints.

III. PROBLEM P1: (GK → GS ) AUGMENTING THE KEY
GRAPH GK

Fig. 2. (A) Under-utilized secure graph GS = (V, ES). (B) Order
of DH key establishment for minimized cost (e.g., establishing key
for (n1, n2) first results in shorter secure path for (n3, n4). Thus,
the order of a key establishment should be {(n1, n2), (n2, n7)} and
{(n3, n4)}). (C) Secure graph is connected. Nodes n1,1 and n2,1

have a physical link but don’t share a key. They can communicate
through a secure path of 3 hops to establish a key. (D) Nodes n2,
n3 or n6 can establish new secure links at power level 2 to provide
shorter secure paths for nodes n1 and n2. Let E(li) be total energy
consumed when the node transmits in power level li, we simply
assume that E(li) + E(lj) > E(li+j). But, increased power level
also means more interference is caused on surrounding nodes. (E)
Secure graph is disconnected. Nodes n1 and n2 have a link but they
do not share a key, and they can not find a secure path to establish
key. (F) Nodes n2 and n6 share a key, and they can establish a new
link at power level 3 to provide secure connectivity.
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Problem P1 assumes both key graph GK and physical
graph GP are connected and it adds edges to GK to increase
key connectivity of under-utilized multi-hop wireless ad hoc
network to obtain κ− connected secure graph where κ ≥ 2

In problem P1 adding an edge between the nodes ni and
nj in GK means establishing keys between node ni and nj

through a secure path by using Diffie-Hellman (DH) or similar
key establishment algorithms. Recall that DH itself does not
provide authentication, thus it should be applied through a
secure path where each pair of neighboring nodes on the path
shares a key.

Consider Figure 2-(A,B) as an example where secure graph
is connected. Although each node pairs (n1, n2), (n3, n4) and
(n2, n7) has a physical link, they do not share a key to secure
their links. These node pairs have to communicate through
secure paths yielding under-utilized multi-hop wireless ad hoc
network. In this problem, our challenge is three-fold. First, a
pair of nodes should be identified to establish a key between
them. Second, a minimum cost (e.g., shortest hop count)
secure path for each node pair should be found through which
DH key establishment can be executed. Third, we should
find the order in which DH key establishment should be
executed for these pairs. In the secure graph of Figure 2-(A,B),
establishing a key for (n1, n2) first results in a shorter secure
path for the nodes (n3, n4).

Problem P1 is a variant of graph augmentation problem on
the keying graph GK . Given a graph G = (V, E) with n nodes
and m edges where each edge (u, v) has an arbitrary non-
negative weight c(u,v), let G′ = (V, E′) be its subgraph where
E′ ⊆ E. The edge augmentation problem is to find minimum-
weight set of edges from edge set E\E′ whose addition makes
G′ κ−edge−connected. The node connectivity augmentation
version is slightly different. Given a graph G = (V,E) and
a set of vertices V ′ ⊆ V , problem is to find a set of edges
with minimum-weight whose addition provides connectivity
between every pair of vertices in V ′.

The augmentation problem is NP-Hard when κ − edge or
κ − vertex disjoint paths are required between every pair of
nodes in V ′ for κ ≥ 2. However, for fixed cost assignment
on the edges it has an approximation (PTAS) which achieves
a factor of 2 for κ = 2 [37]. There is a rich literature of
previous work for such tractable variant of P1 that offers both
deterministic [40], [41], [42] and randomized [43] approaches.

However, the cost function to be minimized in P1 is
different from classical graph augmentation since cost of each
edge-to-be-inserted (call this a new-edge) to GS may change
as the new edges are added to GK . For example, suppose
the cost or weight of a new-edge (i, j) is the length of the
shortest path between i and j in GS , then this cost will change
depending on the order of insertion. This dependency presents
a non-linear cost function on the links and makes the order
of augmentation important. Thus, optimality depends upon
the ordering of the set of node pairs (EW ⊆ EP \EK) as
illustrated in Figure 2-(A,B). This problem is not only NP-
Hard but also it does not admit a PTAS since minimum cutsets
to be augmented do not admit constant costs.

IV. PROBLEM P2: (GP → GS ) AUGMENTING THE
PHYSICAL GRAPH GP

In this problem, we consider adjusting power levels to create
a (new) physical link between a pair of nodes that share a
symmetric key. Since increasing transmission power levels
generates more interference on surrounding nodes. We enforce
a bound on interference to ensure acceptable SINR for wireless
communications. As a result, problem P2 has two parts: (i)
identification of optimal number of edges to augment GP , and
(ii) interference constrained power selection for materializing
these edges. We use an auxiliary graph representation similar
to [39] for representing the power levels and formulating the
interference constraints.

We note that problem P2 can be formulated also as an
instance of the edge augmentation problem. However, there are
two complications: (i) interference constraints on the nodes,
and (ii) a complex cost function on the edge set that must
capture not only the energy cost but also the interference
induced on the other nodes. Thus, P2 is optimal augmentation
of GP subject to interference constraints with a nontrivial cost
function.

We formulate edge augmentation problem with the inter-
ference constraints on nodes and transmission costs on edges
as a flow problem using an auxiliary graph GA = (VA, EA)
similar to [39].

A. Auxiliary Graph Representation

In this representation, for each node ni, auxiliary GA

includes a receiver vertex ni and limax transmitter vertices
(ni,1, ni,2, . . . , ni,limax

) corresponding to the each discrete
power level. Receivers from all nodes form the receiver
set R = {n1, n2, . . . , ni}, and transmitters form the trans-
mitter set T = { n1,1, . . . , n1,l1max

, n2,1, . . . , n2,l2max
, . . . ,

ni,1, . . . , ni,limax
} where VA = R

⋃
T . T (i) represents all

transmitters {ni,1, ni,2, . . . , ni,limax
} of the receiver ni, and

R(j) represents receiver nj of the transmitter nj,l. Edge set
EA includes edges (i, j) of types: (1) i ∈ R and j ∈ T (i),
and (2) i ∈ T and j ∈ R where there is a shared-key
between nodes ni and nj (i.e. (i, j) ∈ EK). First rule states
that there are edges from the receiver of each node to all
of its transmitters (dashed edges in Figure 3). Second rule
states that there is an edge from each transmitter to each
receiver located within the transmission range required that
both nodes share a key (solid edges in Figure 3). Second types
of edges have the costs associated for the energy consumption
due to message transmit and receive. All edges have infinite
capacities but the network is capacitated due to interference.
There is a limit on the amount of interference a receiver can
handle meaning that not all transmitters can transmit at the
same time. Figure 3 illustrates auxiliary graph corresponding
to the example network of Figure 1.

Cost of a physical link (u, v) between nodes u and v is
the amount of energy consumed to transfer one unit of flow.
Energy consumption depends on the transmit power level. The
transmit power level of (u, v) link is the lowest power level
which provides transmission radius greater or equal to the
Euclidian distance between the nodes.
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Fig. 3. Auxiliary graph GA = (VA, EA) corresponding to the
secure graph GS = (V, ES) of Figure 1. Black vertices are
receivers R = {n1, n2, n3, n4, n5, n6}. Each node has two trans-
mit power levels which are the white transmitter vertices T =
{n1,1, n1,2, n2,1, n2,2, . . . , n6,1, n6,2}. Each solid edge has a cost
associated which might be the total energy used by the system to pass
one unit of flow and/or the energy consumption due to interference
created on the surrounding receivers. Dashed edges have no cost. All
edges have infinite capacities but the network is capacitated due to
interference because there is a limit on the amount of interference a
receiver can handle due to SINR model.

We force a limit on the amount of interference plus noise
that a node can tolerate as the Reception Quality constraint.
This constraint requires that a message is received by a
receiver if the ratio between received signal strength and noise
plus interference due to surrounding transmitters do not exceed
a threshold as specified in Equation 1.

Then, our optimization problem becomes finding minimum
cost set of edges on the auxiliary graph subject to the inter-
ference constraint where cost of an edge is E = ET + ER so
that resulting secure graph is κ− connected.

The optimization problem P2 has bi-objectives: (1) maxi-
mizing the number of concurrent flows -this is the augmen-
tation part, and (2) minimizing the cost which is defined
w.r.t. power consumption (since we handle the interference in
constraints). Thus, we break the problem into two subproblems
and formulate two integer programs. In maximum key estab-
lishment flow problem P2.1, we seek for the maximum amount
of flow FMax ⊆ F that we can grant subject to interference
constraints. In minimum cost key establishment flow problem
P2.2, we seek for minimum cost flow assignment on the
auxiliary graph edges while keeping |FMax| and interference
as the constraints.

It can be shown that both problems are NP − Hard and
MAX − SNP −Hard based on reduction from MAX3SAT
(see appendix for formal proofs) which means that they are
intractable and it is NP-Hard to approximate them within a
factor 1 + ε for some fixed ε > 0.

We formulate P2.1 as a constrained optimization problem.
The optimization problem aims to maximize the number of
source-destination pairs (s, t) ∈ F be granted on the auxiliary
graph concurrently subject to interference thresholds on each
vertex.

B. Problem P2.1: Mathematical Programming Formulation

Fig. 4. (A) Receiver flow conservation for Equation 2, (B) Transmitter flow
conservation for Equation 3, (C) Receiver utilization for Equation 5, and (D)
Transmitter utilization for Equation 6.

Definition 1 (MaxKeyEstabFlow Problem P2.1): Given the
auxiliary graph GA = (VA, EA) representation of a deploy-
ment, euclidian distances d(ni, nj) between nodes for all
node pairs (ni, nj), SINR constants β and α, power levels
(1, 2, 3, . . . , limax) for all nodes ni and set of flows F for
the key establishment traffic, P2.1 is the problem of max-
imizing the number X (X = |F ′| where F ′ ⊆ F) of
source-destination pairs that can exchange key establishment
messages concurrently on the auxiliary graph GA subject to
interference constraints. Solution to the problem is the subset
F ′ of source-destination pairs, and flows of source-destination
pairs (s, t) ∈ F ′ assigned to a subset of edges E′

A ⊆ EA.
Problem is similar to integer multiflow optimization problem

[44] because flows belonging to multiple source-destination
pairs (s, t) ∈ F is assigned to edges of the auxiliary graph.
Vertices of the edges having non-zero flow in the auxiliary
graph will correspond to power level of the corresponding
pairwise communication.

Let GA be the auxiliary graph corresponding to a deploy-
ment with N nodes. Also, F is the set of node pairs (s, t)
representing neighboring nodes which don’t share a key, and
which need to exchange key establishment messages. We
assume that key establishment is done by exchanging two units
of messages between s and t, thus the demand for (s, t) and
(t, s) are both one. Then, problem is to find largest routable
subset of F in GA subject to: (i) flow conservation, (ii) flow
symmetry, (iii) utilization, and (iv) reception quality.

Receiver flow conservation constraint requires that the dif-
ference between flows coming and leaving a receiver (as in
Figure 4-A) due to a flow between (s, t) should be: (i) zero if
the node is not the source or the destination, (ii) fs,t ∈ {0, 1}
if the node is destination, and (iii) (−fs,t) ∈ {−1, 0} if the
node is source. Thus, for each j ∈ R and ∀(s, t) ∈ F :

∑

i∈T

fs,t
i,j −

∑

i∈T (j)

fs,t
j,i = x s. t.





x = fs,t, j=t;
x = −fs,t, j=s;
x = 0, o/w.

(2)

Transmitter flow conservation constraint requires that all
flows coming and leaving a transmitter (as in Figure 4-B) due
to a flow between (s, t) should be equivalent. Thus, for each
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j ∈ T and ∀(s, t) ∈ F :
∑

i∈R(j)

fs,t
i,j −

∑

i∈R

fs,t
j,i = 0. (3)

Flow symmetry constraint requires that when there is a flow
on link (ni,l, nj) (1 ≤ l ≤ limax) due to the flow between
(s, t) ∈ F , there should be a flow on link (nj,l′ , ni) (1 ≤ l′ ≤
ljmax) due to the flow between (t, s) ∈ F . In other words, key
exchange request and response messages between two nodes
use the same path in secure graph. This assumption helps in
that whenever the transmitter ni,l or nj,l′ can not be activated
due to interference, the other one should not be. Thus, for each
node pair ni and nj , and ∀(s, t) ∈ F :

limax∑

l=1

fs,t
ni,l,nj

−
ljmax∑

l′=1

f t,s
nj,l′ ,ni

= 0. (4)

Receiver utilization constraint requires that receiver utiliza-
tion (as in Figure 4-C) due to a flow should not exceed unity.
Thus, for each j ∈ R and ∀(s, t) ∈ F :

∑

i∈T

fs,t
i,j ∈ {0, 1}. (5)

Transmitter utilization constraint requires that transmitter
utilization (as in Figure 4-D) due to a flow should not exceed
unity. Thus, for each j ∈ R and ∀(s, t) ∈ F :

∑

i∈T (j)

fs,t
j,i ∈ {0, 1}. (6)

Reception Quality constraint states that flow fs,t
i,k (flow on

edge (i, j) due to flow fs,t) exists if the ratio between received
signal strength and noise plus interference, due to surrounding
transmitters, do not exceed a threshold as specified in Equation
1. This threshold is applicable to a receiver if there exists a
flow on this receiver. Thus, given δk and fs,t

i,j which are the
indicator of flow on a transmitter k and on the receiver j
respectively:

∀k ∈ T, δk =
{

1,
∑

(s,t)∈F
∑

m∈R fs,t
k,m > 0;

0, o/w.

For each j ∈ R:

P l
i

d(ni,nj)α

Noise +
∑

k∈T\{i}
P l

k
×δk

d(nk,nj)α

≥ β × fs,t
i,j (7)

Our mathematical program becomes:

Maximize X =
∑

(s,t)∈F
fs,t

Subject to (2), (3), (4), (5), (6), (7).

We prove that MaxKeyEstabFlow is NP-hard using a reduc-
tion from MAX3SAT problem, which is a truth assignment to
the variables, to find maximum number of clauses that can
be satisfied in a boolean formula in 3CNF form. We define
reduction from MAX3SAT to MaxKeyEstabFlow in two steps.
First, given a boolean formula in 3CNF form with n variables
and m clauses, we create a WSN deployment in an Euclidian

plane. We create sensor nodes Ci and Di for ith clause, and
sensor nodes xj and xj for jth variable where only the sensor
nodes xj and xj create interference on each other. We define
set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}. Second,
using this WSN deployment we create an auxiliary graph
representation as described in Section IV-A. Thus, objective
of finding a truth assignment to the variables so that number
of clauses that can be satisfied becomes finding maximum
number of source-destination pairs in F which can be granted
concurrently both on the WSN and on the auxiliary graph GA

subject to interference constraints.
Inapproximability results for P2.1 comes from the inter-

ference created by the links and the interference threshold
constraint. We show that for every ε > 0, there is a gap
preserving reduction from MAX3SAT to MaxKeyEstabFlow
that has parameters (c, 1+ε, c|F|/2, 1+ε) where F is the set of
flows. We show that MAX3SAT (ϕ) = c ⇔ MaxKeyEstabFlow
(τ(ϕ)) = c.m. (see appendix for formal proofs).

C. Problem P2.2 Mathematical Programming Formulation

Definition 2 (MinCostKeyEstabFlow Problem P2.2):
Given the auxiliary graph GA = (VA, EA) representation of
a deployment, euclidian distances d(ni, nj) between nodes
for all node pairs (ni, nj), SINR constants β and α, power
levels (1, 2, 3, . . . , limax) for all nodes ni, set of flows F for
the key establishment traffic and the maximum number X
of concurrent key establishment flow, it is the problem of
finding at least X source-destination pairs which can exchange
key establishment messages on the auxiliary graph GA at a
minimum cost subject to interference constraints. Solution
to the problem is the subset F ′ of source-destination pairs,
flows of source-destination pairs (s, t) ∈ F ′ assigned to a
subset of edges E′

A ⊆ EA and overall cost.
Our objective is to grant at least X flows through the aux-

iliary graph GA with a minimum cost. Result of the program
is the flow assigned to each link on the auxiliary graph GA.
This result will also imply the power level assignment to each
sensor node so to grant at least X flows between source-
destination pairs. Our formulation has the same constraints
as the maximization problem: (i) flow conservation, (ii) flow
symmetry, (iii) utilization, and (iv) reception quality. In ad-
dition to these constraints, we want total flow to be at least
X :

Flow bound constraint requires total flow granted by the
flow assignment should be at least X . Thus:

∑

(s,t)∈F
fs,t ≥ X . (8)

Our mathematical program becomes:

Minimize
∑

(s,t)∈F

∑

i∈T, j∈R

fs,t
i,j Ci,j

Subject to (2), (3), (4), (5), (6), (7), (8).

where Ci,j = ET + ER is the energy cost of a unit flow on
the edge (i, j) where i ∈ T and j ∈ R. All other edges have
zero costs.
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We prove that MinCostKeyEstabFlow is NP-hard using a re-
duction from Weighted MAX3SAT problem where each clause
has a weight, and the problem is to maximize the sum of the
weights of satisfied clauses. Weighted MAX3SAT is both NP-
hard and MAX-SNP [45] problem. We use similar approach
as in MaxKeyEstabFlow to show that MinCostKeyEstabFlow
problem is both NP-hard and MAX-SNP (see appendix for
formal proofs).

V. PROBLEM P3: WITNESS BASED AUTHENTICATED KEY
ESTABLISHMENT

We consider multi-hop wireless ad hoc networks where pairs
of nodes do not share keys to secure their links and can not find
secure paths for authenticated key establishment. In Problem
P2, we show that optimally increasing transmission powers of
nodes to establish new secure links is both NP-hard and MAX-
SNP. Moreover, establishing a key over an insecure wireless
link with Diffie-Hellman or similar techniques can not be used
due to lack of authentication which also makes the man-in-
the-middle kind of attacks possible. Hence, authentication can
be achieved if trusted neighbors act as the witness for au-
thentication purpose. We investigate how to integrate witness-
based mechanisms in a fully distributed algorithm. Key pre-
distribution solutions in general require every pair of neighbors
to exchange list of IDs of the keys in their key-chains during
shared-key discovery phase. Thus, every node knows key-
chains (i.e., only the key IDs) of its one-hop neighbors. Let
KC1

i be the set of key IDs known to one-hop neighbors of
node ni in the secure graph (e.g., node ni in Figure 5-A has
KC1

i ={(ni,KCi = {key IDs}), (nj ,KCj = {key IDs}),
(nk,KCk = {key IDs})}). Assume that nodes ni and nj

want to establish a key. During key establishment phase, ni

and nj can exchange key ID lists KC1
i and KC1

j (with blinded
node IDs) through their insecure link. After this exchange one
of the following cases may happen: (i) node ni shares a key
with nj , (ii) ni or one of ni’s neighbors shares a key with nj

or one of nj’s neighbors, and (iii) there is no common key so
that next-hop neighbors (Figure 5-B) should be involved.

A. Witness Scheme I: One-hop Neighborhood

Figure 5-C and Table III illustrates the message flow for
authenticated key establishment between the nodes ni and nj

with their one-hop trusted neighbors nk and nl respectively.
Assume that nk and nl share a key Kk,l (i.e., KC1

i

⋂
KC1

j =
{Kk,l}). With messages (1) and (2), nodes ni and nj exchange
the list of key IDs of one-hop neighbors. Once a common key
Kk,l is identified, the owners nk and nl (i.e., key Kk,l is
in both nodes’ key-chain) are requested to witness the key
establishment between nodes ni and nj with messages (3)
and (5). Nodes nk and nl do not reveal the key Kk,l, but they
independently send its hash value K ′

i,j to nodes ni and nj

with encrypted messages (6) and (4) respectively. Nodes ni

and nj can use the common key K ′
i,j as the session key or

use this key to authenticate a Diffie-Hellman or similar key
exchange where a fresh session key Ki,j is generated through
messages (7) and (8). It is also possible that node ni shares a
key with one of nj’s neighbors (a.k.a., nj shares a key with

one of ni’s neighbors). In this case authenticated key exchange
can be completed using messages (1), (2), (3), (4), (7) and (8)
(a.k.a., messages (1), (2), (5), (6), (7) and (8)).

Fig. 5. A distributed approach for authenticated key establishment.
Key establishment is authenticated by two witness nodes nk and nl

located (A) in one-hop, or (B) in two-hop neighborhood of nodes ni

and nj . (C) Authenticated key establishment between nodes ni and
nj by using trusted neighbors nk and nl as witnesses.

TABLE III
AUTHENTICATED KEY ESTABLISHMENT MESSAGE FLOW DUE TO THE

SCENARIO DESCRIBED IN FIGURE 5-C.

No Source Destination Message
(1) ni nj KC1

i

(2) nj ni KC1
j

(3) nj nl ENCKj,l
[ID(Kk,l), ni, nj ]

(4) nl nj ENCKj,l
[K′

i,j = H(Kk,l, ni, nj)]

(5) ni nk ENCKi,k
[ID(Kk,l), ni, nj ]

(6) nk ni ENCKi,k
[K′

i,j = H(Kk,l, ni, nj)]

(7) ni nj ENCK′
i,j

[gx mod p]

(8) nj ni ENCK′
i,j

[gy mod p]

Next we briefly analyze probability of finding a witness
within one-hop neighborhood using sample probabilistic key
management schemes ([3], [4]), combinatorial key manage-
ment scheme ([13]) and graph theoretic key management
scheme ([10]). Table IV lists probability of key share pS

between a pair of nodes for sample key pre-distribution
schemes. Parameters are: (k) and (s) size of the key-chain,
(KP) key pool, (b) the network size N , (s) and (t) design
parameters for Generalized Quadrangle (GQ) and Ramanujan
Expander Graph based solutions.

Due to the results of Xue and Kumar in [46], each node
should be connected to log N nearest neighbors for the wire-
less network to be asymptotically connected with probability
one as N → +∞. This result is extended to the secure
wireless networks in [10]. Thus, in our secure network, each
node should be connected to log N nearest neighbors for the
secure multi-hop wireless ad hoc network to be asymptotically
connected. This means, nodes ni and nj each has average
log N nodes in its one-hop neighborhood. Let pS be the
probability of key share between a pair of nodes ni and nj

due to the underlying key management technique (sample
probabilities pS are listed in Table IV). Probability that ni

shares a key with one of nj’s neighbors (a.k.a., nj shares a
key with one of ni’s neighbors) is given by the Equation 9.
Probability that one of ni’s neighbors shares a key with one
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of nj’s neighbors is given by the Equation 10.

p(x) = 1− (1− pS)(log N). (9)

p(x) = 1− (1− pS)(log N)2 . (10)

Key Pre-distribution Key Sharing Probability pS

Random [3], [4] PRAND = 1− (1− k
|KP | )

2(|KP |−k+1/2)

(1− 2k
|KP | )

(|KP |−2k+1/2)

Combinatorial [13] PGQ(s,t) =
t(s+1)

b
=

t(s+1)
(t+1)(st+1)

Expander [10] PXs,t = s+1
t+1

TABLE IV
PROBABILITY OF KEY SHARE pS BETWEEN A PAIR OF NODES FOR

SAMPLE KEY PRE-DISTRIBUTION SCHEMES.

B. Witness Scheme II: Next-hop Neighborhood

Figure 5-B and Table V illustrates the message flow for
authenticated key establishment between the nodes ni and
nj when they can not find a witness within their one-hop
neighborhood. Assume that nk and nl share a key Kk,l. With
messages (1) and (2), nodes ni and nj exchange the list of key
IDs of their one-hop neighbors and can not find a shared key
(i.e., KC1

i

⋂
KC1

j = ∅). With messages (3+) and (4+) either
ni or nj forward their witness request to their neighbors along
with the list of key IDs KC1

j and KC1
i respectively. These

messages may be forwarded multiple hops until a witness is
found. Assume that nl is such a witness located in two-hop
neighborhood of node nj . Node nl shares a key with node nk

which is located in one-hop neighborhood of node ni. With
message (5+), node nl responds to node nj through a secure
path. Node nj informs ni, and ni informs nk with messages
(6) and (7). Nodes nk and nl do not reveal the key Kk,l, but
they independently send its hash value K ′

i,j to nodes ni and
nj with encrypted messages (8) and (5) respectively. Nodes
ni and nj can use the common key K ′

i,j as the session key
or use this key to authenticate a Diffie-Hellman or similar key
exchange where a fresh session key Ki,j is generated through
messages (9) and (10). Flood of messages (3+) and (4+) can be
limited by using the knowledge coming from node deployment
or key management scheme.

Next, we briefly analyze probability of finding a witness
within x-hop neighborhood. In authenticated key establishment
scheme, nodes ni and nj first check their one-hop neighbors
and if there are no nodes which can witness their key establish-
ments, either one of the nodes ni and nj checks their two-hop
neighborhood. This process continues until a witness is found.
We assume that key and physical graphs are connected. Similar
to discussions in previous section, in our secure network, each
node should be connected to log N nearest neighbors for the
secure network to be asymptotically connected. For simplicity,
we assume that N sensor nodes are uniformly deployed in
a unit area. That means, each node with transmission radius
r, covers an area of πr2 and has log N one-hop neighbors.
Two-hop neighborhood will cover a circle with radius 2r with
approximately 4 log N nodes, and x-hop neighborhood will
have x2 log N nodes. Probability that one of ni’s neighbors

TABLE V
AUTHENTICATED KEY ESTABLISHMENT MESSAGE FLOW DUE TO THE

SCENARIO DESCRIBED IN FIGURE 5-B.

No Source Destination Message
(1) ni nj KC1

i

(2) nj ni KC1
j

(3+) ni ... KC1
j , ni, nj

(4+) nj ... KC1
i , ni, nj

(5+) nl nj ENC...[ID(Kk,l) ||
K′

i,j = H(Kk,l, ni, nj)]

(6) nj ni ID(Kk,l), nk

(7) ni nk ENCKi,k
[ID(Kk,l), ni, nj ]

(8) nk ni ENCKi,k
[K′

i,j = H(Kk,l, ni, nj)]

(9) ni nj ENCK′
i,j

[gx mod p]

(10) nj ni ENCK′
i,j

[gy mod p]

shares a key with one of nj’s x-hop neighbors is given by the
Equation 11.

p(x) = 1− (1− pS)x2(log N)2 . (11)

VI. CONCLUSION AND DISCUSSIONS

We consider the problem of how to maximize the number
of secure links (ones that are protected by secret keys) in a
multi-hop wireless ad hoc network in order to increase its
secure connectivity after deployment.

Key management solutions for in multi-hop wireless ad hoc
networks usually assign each node a set of symmetric keys
or keying materials (e.g., ID, master keys, hash functions,
pseudo random functions, shared polynomials, key matrices
and location information), called key-chain, to be shared with
some of its neighbors after deployment. Although, the unique
key-chain assigned to each node before deployment creates
a binding to its identity, key pre-distribution schemes are
blind to after deployment properties of such ad hoc networks.
As a result, many physical links may be left unprotected
(i.e., without a shared key on them) which may result in
a suboptimal secure routing, or even worse: secured links
may not induce a connected network. What is needed is to
optimally increase the secure connectivity after deployment.

We present several mathematical programming formula-
tions, namely maximum key establishment flow and minimum
cost key establishment flow, as variants of graph augmenta-
tion problems. We prove that finding optimum solutions and
finding polynomial time approximations are both NP-hard. We
place these problems in inapproximability Class I [37] which is
the richest class of all. Thus, we present a distributed heuristic
algorithm for increasing the secure connectivity of multi-hop
wireless ad hoc networks after deployment and analyze its
performance.
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[43] A. A. Benczúr and D. R. Karger, “Augmenting undirected edge connec-
tivity in (n2) time,” in ACM-SIAM SODA, 1998.

[44] M.-C. Costa, L. Létocart, and F.Roupin, “Minimal multicut and maximal
integer multiflow: a survey,” Elsevier J. of Operational Research, vol.
162, 2005.

[45] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation,
and complexity classes,” J. Computer and System Sciences, vol. 43,
no. 3, 1991.

[46] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, vol. 10, 2004.

APPENDIX

Proof: (MaxKeyEstabFlow in NP-hard) We prove that
MaxKeyEstabFlow is NP-Hard using a reduction from
MAX3SAT problem which is a truth assignment to the
variables {x1, x2, . . . , xn} to find maximum number of
clauses that can be satisfied in a boolean formula ϕ in 3CNF
form with clauses {C1, C2, . . . , Cm}. We define reduction
τ from MAX3SAT to MaxKeyEstabFlow in two steps. In
the first step we show how to reduce a MAX3SAT problem
instance into WSN problem instance, and in the second step
reduce it into an auxiliary graph representation.

Fig. 6. Placement of sensor nodes on a unit disk area as the part of
the reduction from MAX3SAT problem to MaxKeyEstabFlow in WSN (NP-
hard proof of MaxKeyEstabFlow). Step-1 item-7 of the proof describes the
replacement algorithm. Each sensor node xj is placed at the center of a
random grid location. Node xj is placed at a random location in the grid
at a distance which ensures interference with xj . Sensor nodes Ci and Di

are placed at any random locations. No two sensor nodes (corresponding to
boolean variables) except pairs xj and xj can create interference on each
other.
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Step 1: Given a boolean formula ϕ in 3CNF form with n
variables and m clauses, create a WSN deployment in an
Euclidian plane (for 1 ≤ i ≤ m and 1 ≤ j ≤ n):

1) Create sets of sensor nodes: C = {Ci|1 ≤ i ≤ m},
D = {Di|1 ≤ i ≤ m}, X = {xj |1 ≤ j ≤ n} and
X = {xj |1 ≤ j ≤ n}. Namely, create sensor nodes Ci

and Di for ith clause, and sensor nodes xj and xj for
jth variable.

2) Sensor nodes xj and xj have a maximum power level
of ljmax = 1. Sensor nodes Ci and Di have a maximum
power level of limax = Lmax which covers whole WSN
and can use RTS/CTS signalling to check availability of
channel at receivers.

3) Only the sensor nodes xj and xj create interference on
each other. This means boolean variables xj and xj can
not be true at the same time; similarly, sensor nodes xj

and xj can not transmit at the same time.
4) Distribute a key-chain KC to each sensor node. KCCi

and KCxj
(a.k.a., KCxj

) should share a distinct key if
variable xj (a.k.a., xj) appears in ith clause. Similarly,
KCDi and KCxj (a.k.a., KCxj

) should share a distinct
key if variable xj (a.k.a., xj) appears in ith clause. All
other pairs of key-chains should be distinct.

5) Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤
m}. These are the pairs of nodes which have physical
links but do not share keys to secure their communica-
tions.

6) Place the sensor nodes on a unit disk area as illustrated
in Figure 6:

a) Draw v × v (v = d√ne) grid for n variables.
b) Each grid location should be a square of size 4I×

4I where I is the minimum distance that two nodes
can communicate without creating interference on
each other.

c) For each sensor node xj , select a random empty
grid coordinate and locate the node at the center
of the grid location.

d) Place each sensor node xj at a random location
where Euclidian distance between d(xj , xj) < I .
This and grid location sizes guarantee that no two
sensor nodes (corresponding to boolean variables)
except pairs xj and xj fall into each others radio
or interference range.

e) Place sensor nodes Ci and Di at any random
location.

Step 2: Given a WSN deployment which is reduced from
a boolean formula ϕ in 3CNF form with n variables and m
clauses, create an auxiliary graph representation as described
in Section IV-A:

1) Create auxiliary graph GA = (VA, EA) (for 1 ≤ i ≤ m,
1 ≤ j ≤ n and 1 ≤ g ≤ Lmax):

a) Receiver nodes are R = C
⋃

D
⋃

X
⋃

X .
b) Add transmitter nodes C

Tg

i , D
Tg

i , xT
j and xT

j .
c) Add directed edges (CR

i , C
Tg

i ) and (DR
i , D

Tg

i ),
(xR

j , xT
j ) and (xR

j , xT
j ).

d) Add directed edges (CTg

i , xR
j ) (a.k.a., xR

j ) and
(xT

j , CR
i ) (a.k.a, xT

j ) if xj (a.k.a, xj) shares a key

with Ci.
e) Add directed edges (DTg

i , xR
j ) (a.k.a., xR

j ) and
(xT

j , DR
i ) (a.k.a, xT

j ) if xj (a.k.a, xj) shares a key
with Di.

2) Set edge capacities as infinite.
3) Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤

m}. Figure 7 provides an auxiliary graph reduced from
a sample boolean formula.

This algorithm transforms a boolean formula ϕ in 3CNF form
with n variables and m clauses first into a WSN deployment
with 2(m + n) nodes, then into an auxiliary graph GA with
(2m(Lmax + 1) + 4n) nodes and O(m + 2n) edges where
|F| = 2m. Objective of finding a truth assignment to the
variables so that number of clauses that can be satisfied is
maximized becomes finding maximum number of source-
destination pairs in F which can be granted concurrently both
on the WSN and on the auxiliary graph GA subject to inter-
ference constraints. Thus, the transformation from MAX3SAT
to MaxKeyEstabFlow can be carried out in polynomial time.

Fig. 7. Auxiliary graph GA = (VA, EA) reduced from sample boolean
formula ϕ = ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)) as an illustration
of the reduction (τ : MAX3SAT → MaxKeyEstabFlow) described in the
NP-hard proof of MaxKeyEstabFlow. There is only one transmit power
level for the nodes corresponding to the boolean variables. Nodes C1, C2,
D1, D2 have Lmax transmit power levels. Set of receivers are R =
{xR

1 , xR
2 , xR

3 , xR
1 , xR

2 , xR
3 , CR

1 , CR
2 , DR

1 , DR
2 }, and set of transmitters are

T = {xT
1 , xT

2 , xT
3 , xT

1 , xT
2 , xT

3 , C
Tg

1 , C
Tg

2 , D
Tg

1 , D
Tg

2 } for 1 ≤ g ≤
Lmax where VA = R

⋃
T . All edges have infinite capacities. Finally set of

flow is F = {(C1, D1), (C2, D2), (D1, C1), (D2, C2)}.

Solution to the problem instance τ(ξ) of MaxKeyEstabFlow
in auxiliary graph representation can be converted to the
solution of problem instance ξ of MAX3SAT in two easy
steps in linear time. First, if total flow on the transmitter
xT

j ≥ 1 (a.k.a. xT
j ≥ 1) then set boolean variables xj = True

(a.k.a. xj = True) and xj = False (a.k.a. xj = False)
for 1 ≤ j ≤ n. Note that interference constraint does not
permit both flows xT

j ≥ 1 and xT
j ≥ 1. Second, if total

flow on both transmitters are xT
j = 0 and xT

j = 0, then set
either (xj = True and xj = False) or (xj = False and
xj = True) for 1 ≤ j ≤ n. This assignment does not change
the number of the satisfied clauses in ξ, but some satisfied
clauses have more than one variable set to True. Very similar
steps apply for converting the solution to the problem instance
τ(ξ) of MaxKeyEstabFlow in WSN to solution to the problem
instance ξ of MAX3SAT in linear time. The flows on sensor
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nodes xj and xj should be considered instead of the flows on
transmitters xT

j and xT
j .

Optimal solution to the instance ξ of MAX3SAT has c
satisfied clauses if and only if the optimal solution to the
instance τ(ξ) of MaxKeyEstabFlow on WSN and auxiliary
graph representations has c source-destination pairs (C, D)
(i.e. flows (C, D), (D, C) ∈ F) which are granted. For
MAX3SAT → MaxKeyEstabF low, assume that τ(ξ) has
optimal solution d > c. Then it would be possible to satisfy
more than c clauses by simply setting True value for the
variables which have more than one unit of flow on the
corresponding transmitter node. This contradicts the fact that ξ
has optimal solution c. Similarly for MaxKeyEstabF low →
MAX3SAT , assume that ξ has optimal solution d > c. Then
it would be possible to grant flow for d source-destination
pairs by putting more than one unit of flow on transmitters
(sensor nodes in the WSN deployment) corresponding to
d variables, one True variable from each satisfied clauses
without contradicting interference constraints. This contradicts
the fact that τ(ξ) has optimal solution c.

Definition 3: [37, Definition 10.4] A maximization problem
Π is MAX-SNP-Hard if for every MAX-SNP problem Γ and
every two constants c ≤ 1, ρ > 1, there are two constants
c′ ≤ 1, ρ′ > 1 such that there is a gap preserving reduction
from Γ to Π with parameters (c, ρ, c′, ρ′).

MAX3SAT is a MAX-SNP problem [45] where its optimum
c is a fraction equivalent to the maximum number of satisfiable
clauses divided by the total number of clauses. It is NP-Hard
to approximate MAX3SAT within a fixed ratio ρ = 1 + ε
for ε > 0. For proving inapproximability results, we use gap
preserving reduction as described in Definition 3.

Proof: (MaxKeyEstabFlow in MAX-SNP) For every
ε > 0, there is a gap preserving reduction from MAX3SAT
to MaxKeyEstabFlow that has parameters (c, 1+ε, c|F|/2,
1+ε) where F is the set of flows. We use the polynomial
time reduction τ from MAX3SAT to MaxKeyEstabFlow
described in the NP-hard proof of MaxKeyEstabFlow. Let ϕ
be a boolean formula in 3CNF form with n variables and m
clauses. MAX3SAT(ϕ) represents the maximum number of
satisfiable clauses divided by the total number of clauses, and
MaxKeyEstabFlow (τ(ϕ)) represents the maximum number
of source-destination pairs that can exchange messages. We
will show that MAX3SAT (ϕ) = c ⇔ MaxKeyEstabFlow
(τ(ϕ)) = c.m. First, assume that MAX3SAT(ϕ)=c. There
must be c.m satisfied clauses. Each satisfied clause Ci must
have at least one satisfied variable where the corresponding
transmitter node (sensor node in WSN deployment) may
have one or more unit of flow, meaning that corresponding
source-destination pair (Ci, Di) can be granted. Thus,
MaxKeyEstabF low (τ(ϕ)) ≥ c.m. Second, assume that
MaxKeyEstabFlow (τ(ϕ)) = c.m. There must be c.m source-
destination pairs granted. Each granted source-destination pair
(Ci, Di) means one satisfied clause Ci so that MAX3SAT(ϕ)
≥ c. Thus:

MAX3SAT (ϕ) = c ⇒ MaxKeyEstabF low(τ(ϕ)) = c.m

MAX3SAT (ϕ) < c
1+ε

⇒ MaxKeyEstabF low(τ(ϕ)) < c.m
1+ε

.

This gap-preserving reduction from MAX3SAT shows that
it is NP-Hard to approximate MaxKeyEstabFlow within factor
1 + ε. Thus, MaxKeyEstabFlow is MAX-SNP-Hard, meaning
also that MaxKeyEstabFlow doesn’t have a polynomial time
approximation scheme (PTAS) unless P = NP .

Proof: (MinCostKeyEstabFlow in both NP-hard and
MAX-SNP-hard) We use Weighted MAX3SAT problem where
each clause has a weight, and the problem is to maximize the
sum of the weights of satisfied clauses. Weighted MAX3SAT
is both NP-Hard and MAX-SNP-Hard [45] problem. We can
show that MinCostKeyEstabFlow problem is both NP-Hard
and MAX-SNP-Hard by using a polynomial time reduction
from Weighted MAX3SAT to MinCostKeyEstabFlow which is
obtained by adding two simple steps to reduction algorithm τ
of NP-hard proof of MaxKeyEstabFlow. Consider a boolean
formula ϕ in 3CNF form with n variables and m clauses
with weights (i.e. weight wi for the clause Ci). First, for
1 ≤ i ≤ m and 1 ≤ j ≤ n, set cost (−wi/2) for the
edge (Ci, xj) (a.k.a. (Ci, xj)) of WSN deployment where
xj (a.k.a xj) appears in clause Ci (set cost (−wi/2) for
the edge (CTg

i , xR
j ) (a.k.a. (CTg

i , xR
j )) of auxiliary graph

representation where 1 ≤ g ≤ Lmax. All other edges have
zero costs. Second, set X = 1. Problem of maximizing the
sum of the weights of the satisfied clauses becomes problem of
minimizing the cost of granting one or more source-destination
pairs subject to interference constraint. The rest of the proof
follows the discussions in NP-hard and MAX-SNP proofs of
MaxKeyEstabFlow. We conclude that MinCostKeyEstabFlow
problem is both NP-Hard and MAX-SNP-Hard, meaning also
that MinCostKeyEstabFlow doesn’t have a polynomial time
approximation scheme (PTAS) unless P = NP .


