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Abstract. Radiometric identification is a recently coined term that de-
scribes a broad category of techniques for determining the identity of a
wireless device based on unique characteristics of its transmitted signal
that result from imperfections and variances in the device’s manufactur-
ing processes. Existing techniques are based on extracting and classifying
features from either the transient portion of a signal or, most recently,
from patterns of modulation errors in a received signal, such as symbol
phase and magnitude errors. While the latter approach was shown to
be extremely successful in correctly identifying wireless devices using an
expensive high-end signal analyzer, its accuracy has not been considered
or evaluated under realistic deployment scenarios in the presence of an
adversary who actively tries to manipulate his own radiometric signature.
Using a software-defined radio platform and an implementation of the
IEEE 802.11b PHY layer, we provide preliminary results that suggest a
modulation-based radiometric identification system is both feasible and
reasonably reliable on commodity hardware. We also experimentally eval-
uate the effectiveness of an attacker who actively tries to manipulate his
radiometric signature in order to impersonate another 802.11b wireless
device. We show that even a moderately sophisticated adversary can
likely significantly reduce the accuracy of a modulation-based radiomet-
ric identification scheme based on a commodity RF hardware platform.

1.1 Introduction

Secure authentication is a difficult problem in general. Secure authentication
in wireless ad hoc and sensor networks is potentially even more challenging
due to the often unstructured and potentially hostile deployment environments.
The nature of a wireless network means that an adversary can easily capture
and replay any transmitted information, or insert his own transmitter into the
network. Wireless devices in an adversarial environment may even be subject
to physical compromise, meaning any unprotected keying material stored on
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the device that is used for authentication (e.g., as in a PKI-based scheme) may
become compromised via physical attacks.

In light of these difficulties, researchers have started looking towards sup-
plementing traditional authentication protocols in a wireless network with
biometric-like approaches. Much like fingerprints or iris scans can be used to
identify humans, various related techniques have been proposed that attempt to
extract a “fingerprint” that can be used to characterize and potentially uniquely
identify a physical device in a wireless network. The accuracy of the existing
techniques have ranged from software driver-level fingerprinting to identification
of a single hardware wireless transceiver. The latter approach, which has recently
been termed radiometric identification [3], determines the identity of a wireless
device based on unique characteristics of its transmitted signal that result from
imperfections and variances in the device’s manufacturing processes.

The underlying assumption in security systems based on physical layer wire-
less fingerprinting is that the unique characteristics of a hardware transceiver
cannot practicably be replicated or copied from one device to another with-
out noticeably disturbing the fingerprint. Yet, surprisingly, very little attention
has been given to the actual performance and reliability of such identification
schemes in the presence of a “real world” active adversary. It has simply gener-
ally been assumed that it is impossible—or at least prohibitively expensive—to
accurately replicate another device’s physical fingerprint. While precisely dupli-
cating a wireless transceiver’s fingerprint (or radiometric signature) is indeed
unlikely to be feasible, the proposed biometric-like approaches are inherently
inexact and rely only on probabilistic fingerprint matching. As a result, it is not
strictly necessary to precisely duplicate a radiometric signature; it just has to
be “close enough” some percentage of the time.

While constructing an actual hardware-based wireless transceiver and at-
tempting to tweak it in order to replicate another device’s signature would indeed
be time consuming and potentially ineffective, there is fortunately an alternate
approach. Software-defined radio has recently been emerging as a promising and
economical approach to building flexible radio systems that can be adapted to
a wide variety of purposes. A software-defined radio system typically couples a
hardware RF front end with software running on a host PC that performs signal
processing on a signal received by the RF front end. The host PC can also send
a baseband signal to the RF front end, which will then upconvert it to RF and
transmit the modulated waveform.

The ability to define the transmitted signal in software means the system can
be modified for a variety of purposes very quickly. The downside of software-
defined radio systems, however, is that they can often have a diminished sig-
nal processing capacity compared to a special-purpose hardware system since
they are limited by the processing capability of the host PC. As a result, they
must often operate at a significantly lower sampling frequency than the special-
purpose, expensive signal analyzers used in previous work on radiometric iden-
tification [3, 7]. Additionally, it is possible for the less expensive components to
be of lower quality and therefore introduce additional noise in the ADC or DAC
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conversion. Still, we feel that the off-the-shelf software-defined radio platform
we use in our work is representative of a real-world radiometric identification
deployment scenario, where it is likely infeasible (and unwise) to deploy an ex-
pensive special-purpose vector signal analyzer in an unsecured and potentially
hostile physical environment.

In this technical report, we begin to evaluate the limits of practical radiomet-
ric identification using a software-defined radio platform and an implementation
of the IEEE 802.11b PHY layer. We experimentally evaluate the effectiveness of
an attacker who actively tries to manipulate his radiometric signature in order
to impersonate another 802.11b wireless device. We provide results that suggest
even a moderately sophisticated adversary can significantly reduce the accu-
racy of a radiometric identification scheme based on features extracted from the
modulation domain by a commodity RF hardware platform.

Our Contributions We make the following key contributions in our work:

– Our work is, to the best of our knowledge, the first to consider and exper-
imentally evaluate the ability of an active attacker to defeat a radiometric
identification scheme by attempting to mimic the modulation error character-
istics of another physical wireless device.

– Second, we consider radiometric identification in a more practical setting by
evaluating its effectiveness using only a readily available software-defined radio
platform. In doing so, we augment a previous modulation-based radiometric
identification scheme with a feature that we found improves the accuracy of
wireless transmitter classification performed by our SDR platform.

Outline The rest of this report is organized as follows. First, in Section 1.2,
we will review the existing techniques for physical device fingerprinting. In Sec-
tion 1.3, we describe the hardware and software components of the testbed we
will use for evaluating the effectiveness of active attacks on modulation-based
radiometric identification. A key aspect of our testbed is that it does not rely
on expensive signal analyzers, opting instead for an inexpensive, consumer-level
SDR platform. We also present a baseline evaluation that shows the accuracy
of our radiometric identification implementation in the absence of adversarial
interference.

Before describing the active attacks presented in this report, we will first
review our threat model in Section 1.4. We then begin our attack analysis with
a simple replay attack described in Section 1.5. Unlike traditional replay attacks,
wherein simply the bytes in a wireless frame are captured and retransmitted, we
implement a variation on the replay attack that attempts to sample and replay
the actual waveform transmitted by a wireless transceiver. We show that the
physical layer characteristics of a device are often sufficiently preserved in the
replayed signal, allowing us to bypass radiometric identification a non-trivial
percentage of the time.

Next, in Section 1.6 we present the results of an attack that attempts to char-
acterize the modulation errors of a wireless transceiver using the constellation
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diagram observed for a transmitter by the attacker. The attacker then uses the
observed constellation diagram to inject his own frames into the network that
mimic the modulation error characteristics of the original transmitter.

We finally conclude in Section 1.7 with an overview of our results, a discussion
of our results and the important limitations of our analysis, and some possibilities
for future related research directions.

1.2 Background & Related Work

Previous work on wireless device identification and authentication has typically
followed three general approaches: software-based fingerprinting, channel-based
fingerprinting and hardware-based fingerprinting. We will review the techniques
applicable to each one below, as well as their advantages and disadvantages.

1.2.1 Software-based Fingerprinting

The IEEE 802.11 protocol specification is both large and complex. Invariably,
device manufacturers and driver developers will implement the protocol slightly
differently while still being compliant with the specification. Using these varia-
tions in implementation, one can distinguish between not only devices made by
different manufacturers but even between software revisions for the same device.

Franklin et al. [6] showed that the interval between probe requests sent by
a wireless client varied between manufacturers. Ellch [12] took this line of work
further and incorporated active testing by sending certain management frames,
such as mangled association replies, to wireless clients and observing their re-
sponses.

An advantage of software-based fingerprinting is that it can be done com-
pletely passively, or actively for obtaining quicker results. Unfortunately, the
granularity of identification using software-based approaches provides only for
firmware-level identification at best. It does not allow one to distinguish between
physical devices with the same software. Further, an adversary need only make
some simple software modifications in order to mimic the behavior of another
device.

1.2.2 Channel-based Fingerprinting

Trappe et al. [11, 16] sought to identify and characterize “forge resistant” rela-
tionships between pairs of wireless transceivers. The authors combined channel
probing with periodic hypothesis testing to determine whether subsequent com-
munication attempts are made by the same users as previous attempts. While
this approach can determine if two communications are sent by the same user,
it requires prior authentication in order to verify the identity of a communicant.

Faria and Cheriton [5] devised a scheme whereby wireless access points func-
tion as network sensors. The access points collaborate to use signal strength mea-
surements in order to distinguish between clients located geographically apart.
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The major disadvantage of this approach is that it essentially assumes wireless
devices are immobile. If a device were to move, its observed signalprint thus
changes. It is also unable to distinguish between two devices located in close
proximity to each other.

1.2.3 Hardware-based Fingerprinting

The field of hardware-based fingerprinting is somewhat broad, even within the
domain of wireless network security. We will identify and discuss the three most
prevalent approaches.

Clock Skew Fingerprinting Modern computer hardware clocks are typically
based on inexpensive crystal oscillators. Due to manufacturing variations, defects
and even other environmental effects, the oscillator frequency can vary slightly
between clocks of the same type. Kohno et al. [10] showed that these variations
can be approximated based on TCP or ICMP timestamps and used to identify
physical devices on a network.

Jana and Kasera [8] proposed using clock skew as a method for detecting
rogue 802.11 wireless network access points. A wireless intrusion detection sys-
tem (WIDS) can extract the timestamp values broadcasted by access points
in beacon frames. After collecting a number of timestamp values, clients can
estimate the clock skew of the access point. If the estimation varies from the
expected clock skew of known legitimate access points, the WIDS node can alert
an administrator to the possible presence of a rogue access point.

The current state of the art in clock skew fingerprinting, however, is not
suitable for inclusion an authentication system. Clock skew fingerprinting relies
on the device being fingerprinted returning the true value of its current clock.
If an attacker controlling a rogue access point knows his clock skew relative to
a legitimate access point, he can simply generate fake timestamps by adding or
subtracting the appropriate offset thus appearing to have the same skew as the
legitimate access point.

Physical Unclonable Functions Physical unclonable functions (PUFs) are a
special type of hardware fingerprinting in that they are based on variations in-
tentionally added to specially manufactured integrated circuits (ICs) contained
within a device. As an example, an arbiter PUF is based on the delay of two
signals through a series of MUXes that ends in an arbiter. The arbiter outputs
a single bit whose value depends on relative delay between two signals racing
through the series of MUXes [14]. The arbiter PUF will output a response unique
to that PUF given a particular challenge as input. Someone validating the au-
thenticity of the device containing the PUF can verify that the response is correct
for the given challenge.

A fundamental disadvantage of PUFs, however, is the fact that they do re-
quire specially manufactured ICs in the network devices. Such hardware is not
widely available and would be expensive or impossible to retrofit onto existing
devices. Another disadvantage is that a large number of valid challenge-response
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pairs must be generated for each node prior to deployment and then distributed
to all other nodes so that post-deployment authentication can be done.

Radiometric Identification Hall et al. [1] and Brik et al. [3] both proposed
different techniques with the same goal of identifying wireless transceivers based
on properties of the transmitted signals. Hall et al. focused on extracting the
transient portion at the start of a modulated signal and then classifying the
frame based on features extracted from the transient portion. Danev and Capkun
also successfully used a transient-based approach in identifying nodes in a sensor
network [4].

Brik et al. followed a slightly different approach with their Paradis system,
classifying frames instead based on features extracted from the modulation do-
main (e.g., average phase and magnitude errors). [3] suggested that one of the
advantages of performing radiometric fingerprinting based on features extracted
from the modulation domain was that its simplicity enables the scheme to be
implemented by low-end devices, such as common wireless NICs or WLAN ac-
cess points. Much like per-frame Radiotap or Prism headers are able to expose
physical characteristics, such as channel frequency or RSSI values, to higher layer
applications, a Paradis-enabled NIC could include modulation error statistics
like average phase and magnitude error. In evaluating the accuracy of Paradis,
though, the authors implemented their system using a high-end Agilent vector
signal analyzer. Using such equipment, the authors showed their approach can
yield around 99% accuracy in classifying frames based on five simple features
extracted from a modulated 802.11b wireless frame.

In the remainder of this paper, we will further explore the use of features
extracted from the modulation domain for radiometric fingerprinting. In partic-
ular, we will see that it is indeed possible for economy RF equipment to clas-
sify wireless frames based on a small set of features as the authors of Paradis
envisioned. We will also show that its simplicity in practical deployment envi-
ronments enables an active attacker equipped with only modest hardware can
reduce the accuracy of a modulation-based fingerprinting scheme by replaying
or mimicking the physical characteristics of legitimate network devices.

1.3 Experimental Testbed

We had two main goals when constructing the testbed for our experiments.
First, we wanted to replicate a potential real world deployment environment
for a radiometric identification scheme that also enables us to easily experiment
with active attacks against a modulation-based identification approach, such as
that used by [3]. This meant ensuring that our software radio implementation
must be able to interoperate with standards-compliant 802.11b equipment.

Second, we wanted our feature extraction and classifier implementation to
model as closely as possible the approach described in earlier work [3] to al-
low for a fair comparison. It was not our goal to introduce a new method or
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approach for feature extraction and classification. Rather, we wanted to investi-
gate the resilience of such a scheme against an active adversary under a potential
deployment scenario.

1.3.1 Hardware Setup

We used two USRP2 hardware devices from Ettus Research, each of which was
equipped with a RFX2400 transceiver daughterboard and a VERT2450 antenna.
This hardware configuration allows us to transmit and receive within the 2.40
GHz to 2.48 GHz frequency band. The USRP2 contains dual 14-bit ADCs op-
erating at 100MHz and dual 16-bit DACs operating at 400MHz. Each USRP2
transmitted complex baseband samples at 25MS/s to a host machine via a direct
gigabit Ethernet link.

To replicate a potential deployment scenario, one USRP2 device acted as a
radiometric identification sensor and another as an active attacker. The sensor’s
role was simply to sample the wireless channel, demodulate transmitted wireless
frames, extract the features described next in Section 1.3.2 and record the results.
The second USRP2 served as the active adversary in this context. Its behavior
depended on the type of attack we evaluated (i.e., replay attack or frame injection
attack). We elaborate more on the attack implementation in Sections 1.5 and
1.6.

In addition to the two USRP2 devices, we set up three additional identically-
configured IBM ThinkPad T30 laptops to act as the legitimate or “honest”
network devices. Each laptop contained an internal wireless adapter with an
Intersil Prism 2.5 Wavelan chipset, and each was configured to act as an access
point via the hostapd software operating on the 2.412GHz wireless channel.
The reason for configuring each of the laptops as an access point was so they
would broadcast beacon frames at regular intervals, which were then received
and processed by one of the USRP2 devices. The test environment was located in
an academic building with other wireless devices operating on the same channel,
so real world non-adversarial interference was present during our experiments.

Our hardware platform used for RF signal analysis is certainly less sophisti-
cated than those used in previous studies on RF fingerprinting [3, 7]. At the same
time, we believe it is far more flexible, enabling us to quickly and easily evaluate
and adapt the attacks presented in this paper. Given its modest cost and easily
available hardware, we also believe it to be the most practical testbed and repre-
sentative of hardware likely to be found in real world deployment environments
unlike previous studies.

1.3.2 Software Implementation

We used the GNU Radio1 signal processing library as the basis for the software
portion of our implementation. GNU Radio is a free software project that has de-
veloped a framework for building software-defined radio systems. In traditional
1 http://www.gnu.org/software/gnuradio/
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Attacker

Radiometric
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Fig. 1.1. Configuration of the testbed used in our evaluations. While the two software-
defined radio devices were connected to the same host for signal processing, this was
only for simplicity in conducting the experiments and no information was shared be-
tween the two devices.

radios, modulating, demodulating and processing waveforms is done almost ex-
clusively in hardware. Software radio, on the other hand, processes a digitized
signal using programmer-defined software code. Since the signal processing is im-
plemented in software rather than purely hardware-based circuitry, a software
radio framework is more modular and can easily be adapted for novel purposes.

Signal processing transforms are represented as a graph, with signal process-
ing blocks of code represented as vertices and the edges between them represent
the flow of data as the signal is processed. The signal is modeled as an infi-
nite stream of data that flows from a signal processing block’s input port, into
the block where it is transformed and “pumped” to the block’s output port.
Any number of blocks can be combined to form a flow graph through which
the sampled signal from the USRP2 hardware is processed. The flow graph is
constructed using the Python programming language while the signal processing
blocks themselves are implemented in C++.

For the 802.11b portion of our transceiver’s software implementation we
started with selected portions of existing code previously written for the orig-
inal USRP device by BBN Technologies [2], but with several modifications to
better take advantage of the more powerful USRP2 device and the most recent
GNU Radio framework. Our code was also instrumented to enable the center fre-
quency offset recovery and modulation feature extraction required for analyzing
and classifying the processed wireless frames.

For feature extraction, we used the following modulation error characteristics,
initially identified by the authors of [3]:
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– Frequency offset — Offset from the ideal channel center frequency, fc. The
IEEE 802.11b specification tolerates center frequency offsets up to ±25ppm.

– I/Q origin offset — Distance between the ideal I/Q origin and the origin of a
frame’s observed I/Q constellation.

– Average symbol magnitude error — Difference between the ideal symbol mag-
nitude and the received symbol magnitude, averaged over the entire frame.
See Figure 1.2 for a depiction of symbol magnitude error.

– Average symbol phase error — Phase difference between the ideal symbol phase
and the received symbol phase, averaged over the entire frame. See Figure 1.2
for a depiction of symbol phase error.

In-phase

Q
ua

dr
at

ur
e

Ideal I/Q Sample

Actual I/Q Sample

Magnitude ErrorPhase Error

Error vector

Fig. 1.2. Symbol magnitude error is the difference between the ideal magnitude of the
I/Q signal and the received magnitude. Similarly, phase error describes the difference
between the ideal phase of a symbol in a frame and that of the received symbol. Symbol
magnitude and phase errors are averaged over all symbols in a single frame.

The authors of the Paradis also identified SYNC correlation as a useful
fifth feature. SYNC correlation is defined as the normalized cross-correlation be-
tween the received wireless frame’s synchronization (SYNC) preamble and the
ideal modulation of the SYNC preamble. In implementing our testbed, we opted
to replace the SYNC correlation feature with a simpler new feature we propose
based on the deviation from the expected relative phase shift between two con-
secutive symbols, having found it easier to reliably extract given our available
equipment as well as enhancing frame classification accuracy. We describe this
feature in greater detail in Section 1.3.3.

Given the above set of five modulation features extracted from a transmitted
frame, our implementation—like that in [3]—then uses a support vector machine
(SVM) classifier to identify the most likely sender of the frame.
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1.3.3 Baseline Evaluation

The first step in our experiments was to verify that our implementation was
able to successfully distinguish between separate physical devices in our testbed
without any adversarial interference. Further, we were interested in determin-
ing what, if any, reduction in accuracy we sustained by using an off-the-shelf
software-defined radio platform instead of a special-purpose vector signal ana-
lyzer.

We first collected 500 beacon frames from each of the three identically con-
figured laptops, as well as 500 beacon frames transmitted by the USRP2 that
will be acting as the attacker in Sections 1.5 and 1.6. Each frame was processed
as it was received and the sender’s MAC address, frequency offset, average phase
error, average magnitude error and I/Q offset for the frame. Any beacon frame
with an invalid CRC value was discarded.

After collecting the per-frame statistics, we used a 5–fold cross-validation in
evaluating the classification results over the 500 frames. k–fold cross-validation
is a standard technique in machine learning that divides the input data in to k
subsets, using a different subset each time as the training set and evaluating the
model with the remaining k − 1 subsets.

Using only the initial 4-tuple of features described above, we found the cross-
validation resulted in a classification accuracy of only 66.7%. Given these results,
it’s clear that the baseline accuracy of the radiometric identification scheme di-
minished in our implementation from the 99% reported in [3], most likely as a
result of our limited sampling accuracy. We expected a lower classification accu-
racy as a result of the lower resolution sampling capabilities and likely increased
noise induced by our testbed’s RF hardware, but still sought to improve our
results.

In addition to the metrics described above we also added a new but related
feature to the set, based on the relative phase shifts used to encode data bits.
In phase shift keying (PSK), the phase of the signal itself compared to a known
reference signal is used to convey information. For example, in binary phase shift
keying (BPSK), a shift in phase of 180◦ from the reference signal may represent
a bit value of 1, whereas no phase shift represents a bit value of 0.

In differential phase shift keying (DPSK), shifts in the phase between two
consecutive symbols are used to convey information rather than the absolute
phase itself relative to a reference signal. The degree of phase shift between
two symbols determines the transmitted bit value or values. The advantage of
differential DPSK over PSK in practical applications is that the transmitted
signal can be demodulated without an additional carrier-recovery scheme (i.e.,
demodulation is non-coherent). Table 1.1 gives the expected phase shifts for
1.0 Mbps DBPSK and 2.0 Mbps DQPSK, respectively, as specified by Section
15.4.6.4 of the 802.11 standard.

Thus, in addition to the average symbol phase error described in Section
3.2, we also extracted the average symbol phase shift error computed over each
frame. For example, if the expected phase shift to transmit a the dibit value 01
in DQPSK is π/2 and the actual phase shift relative to the previous symbol is
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Bit Value Phase shift

0 0
1 π

Dibit Value Phase shift

00 0
01 π/2
11 π
10 3π/2

(a) (b)

Table 1.1. 802.11b differential PSK encoding table for (a) DBPSK, and (b) DQPSK.

π/2 + ε, the current symbol would have a phase shift error of ε. We computed
the average ε over all symbols in a single frame. While this metric is quite clearly
related to the absolute phase error of a single symbol, it is slightly different in
that it characterizes the transition between all symbols in a frame rather than the
error in the absolute phase of a single symbol. The intuition is that it is a simple
way to roughly characterize instances of observed quadrature skew–that is, when
the phase angle between the I and the Q vectors is not exactly 90 degrees.

After incorporating this feature into the classification process for the same
500 frames from the previous experiment, we saw the classification accuracy
improve from 66.7% to 87.5%. Note that this value represents average classifier
accuracy, and does not distinguish between false positives and false negatives.
Rather, it simply represents the fraction of the total samples that were classified
as belonging to the correct transmitter. In our evaluations of active attacks in
the remainder of this paper, we will instead focus on false accept rates as that is
the most clearly representative measure of success for an impersonation attack.

While our results are still significantly less than the accuracy in excess of 99%
obtained by other work [3, 4, 9], we have showed that practical and reasonably
reliable radiometric identification is indeed possible using only a commodity
software-defined radio platform.

1.4 Threat Model

We will discuss the implementation and effectiveness of our attacks presently,
but first we will more clearly define the network model, the adversary and the
adversary’s capabilities that we consider in the remainder of this paper.

1.4.1 Network Model

Wireless networks have a unique and particularly challenging threat model when
compared to traditional wired networks. The broadcast nature inherent in a
wireless channel means all communications sent and received can be overheard
by an adversary within transmission range. The 802.11 body of standards have
defined various supplementary security protocols that rely on supplementary
keying information, such as WPA or 802.1x, but control and management frames
are still sometimes sent unencrypted.
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Due to the uncertain, unsupervised and potentially hostile deployment en-
vironment for wireless sensor networks, it is also reasonable and prudent to
consider an active adversary with physical access to one or more network nodes.
Under such a threat model, it becomes more untenable to rely on the secrecy of
key material stored on the devices themselves to provide identification, such as
in PKI-based approaches. It is in exactly such scenarios where radiometric iden-
tification provides a promising addition to existing authentication techniques,
since it can be done without relying on secret keying material that may become
compromised by an active adversary.

In line with previous work on radiometric identification [3, 1], we assume
the presence of one or more radiometric sensors whose responsibility it is to
detect rogue devices in the network. As wireless frames are transmitted, the
radiometric sensors extract one or more features from the transmitted signal in
order to compute the radiometric signature for the transmitting device. If the
computed signature does not match the known signature for a legitimate wireless
device in the network, the radiometric sensor will alert an administrator or other
nodes in the network to the presence of a rogue device.

1.4.2 Adversarial Capabilities

We assume the adversary possesses an RF transceiver capable of operating within
the same frequency range as the legitimate devices in the wireless network. The
adversary is thus able to not only receive any wireless frames sent by other
devices within transmission range, but he is also able to inject his own traffic into
the network. The adversary may simply retransmit (or replay) frames previously
sent by legitimate transmitters, or he may construct and transmit arbitrary
wireless frames as well. In contrast with earlier work, we introduce and consider
an active adversary who purposely tries to modify his radiometric signature in
order to evade detection by the network’s radiometric sensors.

Of course, it is also feasible for an active adversary to simply “jam” the net-
work by constantly broadcasting wireless signals and preventing any legitimate
traffic from being transmitted and thus preventing any node from authenticating
another. While jamming resistance is an active area of research in itself, we do
not consider such a scenario further in this work.

1.5 Replay Attacks

Having described our adversarial model and determined the baseline accuracy
of our radiometric identification implementation, we now move on to evaluating
the potential impact of active attacks against our testbed. We begin our analysis
by implementing a simple replay attack.

1.5.1 Attack Description

The replay attack we implemented has three main steps, each described below.
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1. Capture and extract the frame to be replayed
First, we use a USRP2 to capture beacon frames transmitted by each of
the three test laptops. Rather than processing the received signal, we simply
save all of the captured baseband I/Q samples to disk at 25MS/s. The file
of captured samples was then filtered in order to extract only the sets of
I/Q values corresponding to a transmitted frame from the rest that merely
contain channel noise. To do this, we used a simple exponentially weighted
moving average (EWMA)-based envelope estimation mechanism to quickly
estimate the start and end of a transmission within the set of all captured
samples. The signal envelope E(t) for the complex baseband signal was es-
timated as

E(t) = E(t− 1) · (1− α) +
α

2
· (|I(t)|+ |Q(t)|), (1.1)

where α acts as the “smoothing” factor, and I(t) and Q(t) are the in-phase
and quadrature components of the complex sample. When E(t) exceeds some
threshold τ , then the subsequent samples are processed by our PHY layer
implementation until E(t) falls below τ again. If the processed frame is valid
and has a correct CRC value, the samples corresponding to that frame are
saved to a separate file. The parsed sets of frame samples were then grouped
according to the transmitter’s MAC address parsed from the demodulated
frame.

2. Determine the corrected center frequency offset
One of the features used to classify captured frames is channel center fre-
quency offset. It is a measure of the frequency offset by which the receiver
had to be adjusted in order to obtain carrier lock. The authors of [3] found
it to be the feature that contributed the most towards an accurate classifi-
cation result; however, we also found carrier frequency offset to be an easy
and straightforward feature for an attacker to impersonate.
We first identified the frequency offset of the attacker’s transmitter by trans-
mitting a constant carrier at the ideal channel center frequency fc and mea-
suring the frequency of the actual transmitted carrier f̃c from a reference
receiver. The center frequency offset of the attacker fo was then simply

fo = f̃c − fc.

Let f̃o be the observed frequency offset of the target device whose radio-
metric signature we are attempting to impersonate. When injecting wireless
frames into the network, the center frequency of the attacker’s transmitter
is adjusted to f̂c, where

f̂c = fc − fo + f̃o.

The corrected center frequency f̂c compensates for both the attacker’s own
frequency offset, as well as that of the impersonation target’s device.

3. Replay the captured frame samples
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The attacker’s transmitter is first tuned to the corrected carrier frequency
f̂c. Next, the baseband I/Q samples corresponding to the frame we want
to replay are read from the capture file and then sent from the host to the
attacker’s USRP2, where they are upconverted to RF and transmitted as a
carrier signal modulated according to the previously captured and extracted
I/Q samples.

Thus, rather than simply replaying bytes transmitted by a legitimate device,
we are actually replaying I/Q samples captured during the replayed frame’s orig-
inal transmission. Due to errors introduced by both attacker’s sample capture,
extraction and retransmission process, as well as external factors such as inter-
ference and multipath effects, the replayed waveform will most certainly not be
identical to the original. Our present evaluation shows, however, that its error
characteristics were sufficiently preserved, allowing a majority of the replayed
frames to be misclassified by our USRP2-based implementation as having been
transmitted by the original device.

1.5.2 Evaluation

Using one USRP2 we captured and extracted the complex samples corresponding
the 500 beacon frames for each of the three laptops acting as legitimate trans-
mitters using the process described above. We then retransmitted the captured
samples using the attacker USRP2 and captured them again with the second
USRP2. The modulation error statistics for both the set of original frames and
the frames retransmitted by the attacker were captured and saved. Again, any
frames that did not meet the 802.11b specifications were discarded and not in-
cluded in the analysis.

We then trained the SVM classifier with 50 beacon frames sent by each of
the three legitimate device, and an additional 50 beacon frames transmitted by
the attacker. Since the goal is to determine if replaying the complex samples
captured from another transmitter lets the attacker sufficiently alter his radio-
metric fingerprint, the beacon frames used to train the classifier for the attacker
were modulated and transmitted according to the 802.11b standard. No attempt
was made to alter the attacking USRP2’s radiometric signature, since doing so
would have distorted the classifier’s training phase.

We then attempted to classify 500 beacon frames from each of the three trans-
mitters that had been replayed by the attacker. Classification testing was again
done using 500 frames from each legitimate transmitter that had been replayed
by the attacker, and captured by the other device performing the radiometric
identification and classification. The result of this experiment was a false accept
rate of approximately 75%. We see that the replay attack was not perfectly re-
liable for the attacker, unlike many forms of replay attacks which simply replay
frame bytes; however, it did have a significant measure of success in defeating
our implementation of a modulation-based radiometric identification scheme.
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1.5.3 Discussion

While the replay attack above is simple and straightforward, the implications of
showing its reasonable success against even radiometric identification techniques
is important. Consider, for example, wormhole attacks [13]. In a wormhole at-
tack, the adversary captures transmitted data at one location, sends it over a
separate attacker-controlled link (the “wormhole”), and then replays it at the
other end of the link. Devices at one end of the wormhole thus believe they are
within transmission range of devices transmitting at the other end.

Radiometric identification could be useful in such instances, in order to detect
the adversary-controlled transmitter; however, we have shown that, rather than
simply relaying packet data, theoretically the attacker can sample the transmit-
ted waveform of another device in the network, relay those samples across the
wormhole, and then replay those samples at the other side. If the adversary is
equipped with an accurate enough receiver and corresponding transmitter, de-
vices performing radiometric identification at one end of the wormhole are likely
unable to distinguish between the adversary’s transmitter and a legitimate trans-
mitter located at the other end of the wormhole.

1.6 Frame Injection Attacks

The replay attack presented above allows an adversary to replay a previously
captured wireless frame sent by a legitimate transmitter, while mimicking the
radiometric signature of the frame’s original sender; however, it does not allow
the adversary to generate and insert his own traffic into the network. In this
section, we will explore a variation on the attack that allows the adversary to
generate arbitrary frame content and inject it into the network while still hiding
his own radiometric signature.

1.6.1 Attack Description

Our attack is based on extracting two main properties from a device’s radiometric
signature, and using those to adjust the behavior of the attacker’s transmitter.
We discuss how to define each of these properties below.

1. Determine the corrected center frequency offset
As in the replay attack description in Section 1.5, the attacker first learns the
average center frequency offset of the target device by observing a number
of frames transmitted by the target. The attacker also learns his own trans-
mitter’s center frequency offset with the cooperation of a reference receiver
he controls.

2. Derive the observed PSK constellation
Recall the five characteristics of a modulated signal that we use for feature
extraction: center frequency offset, average symbol magnitude error, average
symbol phase error, average inter-symbol phase shift error and I/Q origin
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offset. With the exception of the center frequency offset, all of these features
characterize the degree to which the actual observed symbol constellation
differs from the ideal constellation given in the 802.11 specification. Thus,
the premise of this step in the attack is to derive an approximate PSK
constellation that the attacker will then use to modulate wireless frames
injected into the network.
To derive the constellation used to impersonate another device, the attacker
starts by collecting 50 frames transmitted by the target device. The I/Q
points from each frame are extracted, forming clusters near the ideal I/Q
constellation points as shown in Figure 1.3(a). We also note that the sam-
pled I/Q points in Figure 1.3(a) are quite noisy, which can help explain the
decreased accuracy of our implementation over an implementation using a
high-end signal analyzer [3].
The center for each symbol cluster is then computed, resulting in an ap-
proximation of the received constellation. An example of the constellations
derived for each of the three legitimate transmitters in our testbed is given
in Figure 1.3(b).
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Fig. 1.3. (a) An example of a subset of I/Q points sampled from a single frame
transmitted by a single laptop that appears to be exhibiting slight quadrature skew,
and (b) Derived QPSK constellation diagrams for the three different transmitters used
in our testbed, compared to the ideal constellation.

3. Transmit injected frame with derived PSK constellation
As in the replay attack, the attacker’s transmitter is tuned to the corrected
center frequency offset, f̂c, computed in Step 1. The attacker then simply
transmits the frame he wants to inject into the network, modulated according
to the PSK constellation derived in the previous step.
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1.6.2 Evaluation

We evaluated the success of our frame injection attack much like we did for the
replay attack above. We started by training the SVM classifier with 50 beacon
frames from each of the three transmitters and the attacker’s USRP2. PSK
constellations for each of the three legitimate transmitters were derived from
the 50 frames from each transmitter used to train the classifier. The results of
this step are shown in Figure 1.3(b).

The attacker then sent 500 forged beacon frames for each legitimate transmit-
ter, which were modulated according to the derived constellation for the target
device. The forged frames were then received by the radiometric sensor and
stored for later processing. If a frame was received with a bad CRC value, it was
discarded and an additional frame would be sent by the attacker. In our evalua-
tion, we found that around 10% of the forged frames received by the radiometric
sensor had to be discarded because of an invalid checksum.

The 1500 successfully received forged frames were then evaluated using the
SVM classifier. We found that the classifier resulted in a combined false accep-
tance rate of 55%. In other words, only around half of the packets sent by the
attacker were able to successfully replicate the features of the target device ac-
curately enough to evade radiometric identification. The remaining frames were
correctly identified as not having been sent by the attacker’s target device.

1.6.3 Discussion

We first note that the 55% success rate in our frame injection attack is markedly
less than the 75% success rate in our frame replay attack; however, this reduc-
tion is not surprising. We do, however, see several possibilities for an ambitious
attacker to improve the success rate of a frame injection attack. In particular,
we have not yet explored the possibility of characterizing more aspects of the
attacker’s own transmitter imperfections (e.g., I/Q offset and phase errors) and
compensating for them when injecting frames into the network under the guise
of another device’s radiometric signature. Doing so would likely improve the at-
tacker’s results under both the replay attack and the frame injection attack, but
we will leave this aspect to future work.

We may also improve results by implementing an approach similar to a hill-
climbing attack against biometric authentication systems [15]. In a hill-climbing
attack on a fingerprint recognition system, the attacker slightly alters the minu-
tiae on a synthetically generated template and submits it to a matcher. Based
on the result, he modifies the template again, attempting to improve the match
score each time until he exceeds the threshold required for acceptance.

Similarly, an active attacker in our scenario may slightly modify the constel-
lation used to modulate the injected frame until its features more closely match
those of the target device. As we have shown above, an attacker using a software-
defined radio platform can enable the attacker to quickly and easily redefine such
properties of the modulated signal. Again, we leave this as a potential direction
for future work.



18 Matthew Edman and Bülent Yener

For now, we simply have sought to show that it is at least possible to im-
personate another device’s radiometric signature when feature extraction and
classification is done in the modulation domain. In doing so, we hope to draw
attention to the fact that a modulation-based radiometric identification scheme,
while simple and efficient, may not offer the best security against active attacks.

1.7 Conclusions

Existing work in the area of RF fingerprinting and identification has implicitly
made the assumption that the minute physical characteristics of physical devices
that result from variations and defects in manufacturing process are unforgeable.
Such work has largely focused on maximizing their ability to correctly distinguish
between unmodified wireless network devices that make no attempt to alter or
disguise their own RF signature.

In this report, we have shown how a software-defined radio platform can
likely be leveraged in order to implement a practical radiometric identification
scheme. Even though we are using more basic hardware than previous studies, we
are still able to achieve over 87% accuracy in 802.11b transceiver identification.
Our use of a software-defined radio platform also allowed us to bring to attention
the potential threat active attackers can pose to a modulation-based radiometric
identification scheme by mimicking such physical layer characteristics of other
devices. We showed that a basic replay attack is able to achieve a success rate
of over 75% against our implementation by retransmitting a sampled complex
signal rather than simply replaying packet bytes. Further, we showed that such
an attacker can not only replay previously sent frames, but also inject his own
arbitrary traffic into the network and evade detection slightly more than 50% of
the time.

While our preliminary work represents a step in the right direction towards
properly considering the security of RF fingerprinting under a more realistic
threat model, it is critical to keep our initial results in perspective. We reiter-
ate that the evaluation of our attacks was conducted with a less sophisticated
testbed than in previous work. This was done first to evaluate earlier speculation
in [3] that an approach based on the modulation domain was more practical and
efficient, which we indeed found to be true. But the SDR-based implementation
also allowed us to evaluate what the security consequences are in moving to a
more practical hardware platform for an identification scheme, which has often
been overlooked by recent work in the field.

It may be argued that a high-end vector signal analyzer capable of a much
greater sampling accuracy would be able to successfully differentiate between
legitimate frames and those transmitted by the attacker in our USRP2-based
testbed. Indeed, we believe this is very likely to be the case; however, we could
also make the counter-argument that the simple impersonation techniques ex-
amined in this paper could similarly be replicated using a much higher-quality
signal generator and perhaps still succeed against a special-purpose signal an-
alyzer. Consequently, the contention between a modulation-based radiometric
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identification scheme and an active attacker may simply be an “arms race” with
respect to who can afford the highest quality equipment. Investigating this aspect
further and more formally is the subject of our future work.

It is also important to note that we have not evaluated the effectiveness of
the attacks presented above against RF fingerprinting techniques that are based
on extracting features from the transient portion of a signal, rather than on
features extracted from the modulation domain. We intend to pursue this direc-
tion in future work, but we currently believe that transient-based schemes are
likely to be immune to the simplistic active attacks presented in this paper. At
the same time, a transient-based identification scheme is less efficient and more
difficult to implement than a modulation-based scheme. Thus, we expect there
to be a tradeoff between the strength and accuracy of a radiometric identifica-
tion scheme, and its ability to be implemented with basic hardware. In future
work, it may be beneficial to more formally quantify such tradeoffs. Still, our
preliminary work here has made a necessary first step towards understanding the
limits of modulation-based radiometric identification under practical deployment
scenarios and adversarial models.
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