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Genome studies are, by definition, very data intensive. Various high-throughput data acquisition 
techniques provide us with a multitude of large-scale datasets, such as whole genome sequences, 
gene expression, protein-protein interactions, functional pathways, location of transcription factor 
binding sites, etc. These datasets are not only large but also highly heterogeneous. Making 
biologically meaningful inferences requires a simultaneous computational analysis of these diverse 
genome-wide datasets. Such analyses, in turn, require linking heterogeneous data sets (data 
integration) and representing them in a form suitable for computational studies (data 
representation). These tasks are addressed by bioinformatics, a highly interdisciplinary field of 
science that, among its other goals, aims to integrate diverse and mutually complementary sources 
of ‘omic’ data (e.g., genomic, proteomic, etc.) into a single coherent systems biology framework 
in order to provide functional inference, reveal essential features of gene and protein interaction 
networks, and ultimately to model these networks. The results of such integrative studies have 
several key advantages (Gerstein et al., 2002; Greenbaum et al., 2001; Vidal, 2001). In particular, 
using multiple sources of information may allow us to reduce systematic noise inherently present 
in all types of experimental data. Integrative approaches are also important for the studies of 
complex diseases, such as cancer (Wachi et al., 2005), since predicting the status of disease cases 
based on multiple biomarkers represents a starting point towards translating genomics research 
into clinical medicine. The integrative approach can also be used for predicting properties of one 
type of data based on other types of ‘omic’ (genomic, proteomic, etc) data (Greenbaum et al., 
2001; Drawid and Gerstein, 2001; Qian et al., 2003; Zhang et al., 2004), for evaluating ‘omic’ 
datasets (Bader et al., 204), and for functional prediction and inference (Goh et al., 2006; 
Gunsalus et al., 2005; Lee et al., 2004). 

Such a promise of the integrative approach is based on the general assumption that, within a 
given genome, there exist inter-relationships between heterogeneous types of genomic data 
(Grigoriev, 2001). Since even seemingly different data types describe various functional aspects of 
the same genome (e.g., the human genome), it seems reasonable to anticipate the existence of non-
random associations among them. However, the existence of such associations needs to be verified 
and their strength needs to be quantified for each particular combination of data types (Vidal, 
2001). In this chapter, we use the term ‘association’ instead of ‘correlation’ in order not to confuse 
it with correlation between expression profiles. 

A number of studies have demonstrated the existence of non-random pairwise associations 
between different types of large-scale ‘omic’ datasets. ‘Non-random association’ or just 
‘association’ in this context means that genes that are functionally related with respect to one data 
type also tend to be related with respect to another data type. For the first time, such an association 
was demonstrated on the example of the yeast interactome and transcriptome. Since interacting 
proteins must be present within the cell at the same time, genes that encode them should also be 
expressed during the same time intervals. Consistent with this reasoning, it was shown that yeast 
genes with similar expression profiles are more likely to encode interacting proteins than 
randomly chosen genes (Ge et al., 2001). A related study of the yeast genome showed that genes 
encoding interacting proteins exhibit higher than average co-expression (Grigoriev, 2001). This 
study also showed that the yeast protein-protein interaction (PPI) dataset contains a larger 
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proportion of strongly co-expressed proteins, compared to their baseline proportion in the entire 
yeast proteome. Similarly, yeast proteins from the same protein complex show a stronger co-
expression than random proteins (Jansen et al., 2002). The interactome-transcriptome correlation 
demonstrated in yeast was also demonstrated for multicellular organism, C. elegans (Gunsalus et 
al., 2005; Walhout et al., 2002; Li et al., 2004). Another important type of association is that 
between expression and transcription factors (TF). It was shown for the yeast genome that when 
the same TFs target the same genes, these genes exhibit stronger co-expression than randomly 
selected ones (Yu et al., 2003).  

The existence of two associations, PPI-expression and expression-TF locations, implies that 
there should also exist an association between PPI and TF locations. Consistent with this 
expectation, it was shown for proteins from the human N-methyl D-aspartate (NMDA) receptor 
that regulatory regions of the genes that encode interacting proteins are targeted by similar sets of 
TFs (Hannenhalli and Levy, 2003; Alter and Golub, 2004). The correlation between PPI and TF 
data was also employed in order to discover cooperative TF pairs that synergistically influence the 
expression of proteins that are located close to each other in the yeast protein-protein interaction 
network (Nagamine et al., 2005). Correlations that involve biological pathways were also studied. 
Since genes that belong to the same pathway are functionally related, they can be expected to be 
co-expressed and co-regulated. An association between pathways and expression was shown for 
both tumor (Yang et al., 2004; Huang and Wallqvist, 2006) and normal cells (Huang and 
Wallqvist, 2006) from the human genome. An association between pathway data and data on 
transcriptional regulation was also demonstrated for several selected human pathways 
(Hannenhalli and Levy, 2003). In yeast, relationships in a combination of three or more 
heterogeneous types of genome-wide datasets have also been studied (Tanay et al., 2004; Hwang 
et al., 2005; Carmona-Saez et al., 2006).  

Most integrative studies have been done on the example of the yeast genome. Because of its 
relative simplicity, yeast is the best experimentally characterized eukaryotic organism for which 
many experimental large-scale datasets, such as PPI and locations of transcription factor binding 
sites (TFBS), are readily available. The human genome, on the other hand, is much more complex 
in nature and significantly harder to study experimentally. For instance, no comprehensive 
experimental datasets on protein-protein interactions and TFBS locations are yet available for the 
human genome. Due to the absence of such experimental datasets, information about multiple 
genome-wide associations that involve PPI and TFBS locations in the human genome is lacking. 
A possible way to overcome this limitation is to study associations using computationally inferred 
genome-wide datasets. 

In this work, we use a novel computational approach to perform a comprehensive analysis of 
four types of data that describe the following functional features of the human genome: functional 
pathways, expression profiles, inferred protein-protein interactions, and inferred locations of 
transcription factor binding sites. We use inferred protein-protein interactions from OPHID 
(Online Predicted Human Interactome Database), the largest publicly available PPI database 
(Brown and Jurisica, 2005) that includes 8,687 human proteins. This PPI dataset is more than two 
orders of magnitude larger than the dataset of only 76 proteins used in a previously reported study 
of correlations involving the human interactome (Hannenhalli and Levy, 2003). We analyze types 
of associations that have not been studied previously for the human genome, including 
associations between expression and TFBS locations, PPI and expression, and pathway 
information and PPI. We study associations not only in pairwise combinations, but also in 
combinations of three and four data types. 

Genome-wide datasets 

This work deals with multiple heterogeneous sources of genomic data. We therefore need to use 
consistent unique gene identifiers for each of these sources. We utilize the human genome 
annotation version 38 from the Ensembl database (Hubbard et al., 2005) to assign a unique id to 
each gene and keep this id for each data type. We obtained the following four types of data for the 
human genome using publicly available sources (Table 1):  
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Table1. Four genome-wide datasets used in this study. 

Data type Description Source Genes 
K Functional pathways KEGG (Kanehisa and Goto, 2000) 4,024 
P Protein-protein interactions OPHID (Brown and Jurisica, 2005) 8,687 
R Expression profiles SymAtlas (Su et al., 2005) 12,306 
T Putative TFBS found in the 

promoter regions 
Ensembl (Hubbard et al., 2005), 
TRANSFAC (Matys et al., 2003) 

23,326 

 
1. Biological pathways from the KEGG database (Kanehisa and Goto, 2000). In KEGG, each 

gene from the human genome is assigned to one or more functional pathways. By mapping 
KEGG identifiers onto Ensembl identifiers, we generated a list of 4,024 genes for which 
pathway annotation is available. 

2. Protein-protein interactions (PPI) from the OPHID database (Brown and Jurisica, 2005). 
OPHID catalogs human protein-protein interactions that are either determined 
experimentally or inferred from known protein-protein interactions in model organisms (S. 
cerevisiae, C. elegans, D. melanogaster, and M. musculus). By mapping OPHID identifiers 
onto Ensembl identifiers, we generated a list of 8,687 genes whose protein products are 
annotated in the OPHID database. 

3. Gene expression data from the SymAtlas database (Su et al., 2004). SymAtlas reports 
genome-scale gene expression measurements for 73 normal human tissues and 6 disease 
state tissues hybridized to Affymetrix HG-U133A array. Two replicates were used for each 
tissue. In our analysis, we excluded disease state tissues and only used 73 normal tissues. 
Expression levels for each tissue were averaged over the two replicates. Thus, each gene 
was represented by an expression profile that consists of 73 data points. By mapping 
Affymetrix identifiers onto Ensembl identifiers, we generated a list of 12,306 genes whose 
expression profiles are annotated in the SymAtlas database. 

4. The data on transcription factor binding sites (TFBS) were obtained as follows. First, we 
used the Ensembl human genome assembly version 38 (Hubbard et al., 2005) to retrieve 
regulatory upstream region of each gene. We define regulatory upstream region as a 2KB 
region upstream of the transcription start site. In Ensembl, a gene can be annotated as 
producing multiple transcripts, 1.3 transcripts per gene on average (Curwen et al., 2004). In 
cases when more than one transcript is annotated for a given gene, we use known transcript 
with most 5’ transcription start site. We choose known transcripts over novel transcripts 
because the former have more supporting evidence that the latter (Curwen et al., 2004). We 
used this procedure to retrieve regulatory upstream regions of all protein-coding genes (a 
total of 23,326 genes). Second, we used the Match software program (Kel et al., 2003) to 
scan the upstream regions for TFBS annotated in the TRANSFAC database (Matys et al., 
2003). The TRANSFAC database is a library of experimentally identified transcription 
factor binding sites represented in the form of a position weight matrix (PWM). Match is a 
tool that searches for putative TFBS in input DNA sequences by using a library of PWMs. 
Match was run using the library of high-quality vertebrate PWMs and the option to 
minimize the number of false positives. By parsing Match output, we obtained a list of 
putative TFBS found in the upstream regions of 23,326 human genes. 

Conversion of the datasets into a unified matrix format  

Each type of genomic data was converted into a unified matrix format. In this format, a symmetric 
n by n matrix numerically summarizes a particular type of functional relationships observed 
among n genes. Each of the four types of data described above was converted into a matrix format 
as follows:  
1. KEGG pathways are represented by matrix K (size 4,024 × 4,024). An element kij in K 

matrix is equal to 1 if products of genes i and j belong to at least one common KEGG 
pathway and 0 otherwise. 

2.  Protein-protein interactions are represented by matrix P (size 8,687 × 8,687). An element pij 
in P matrix has a binary value of 1 or 0, indicating the presence or absence of protein-
protein interaction between products of genes i and j.  
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3.  Expression profiles are represented by matrix R (size 12,306 × 12,306). An element rij in R 
matrix is the Pearson correlation coefficient (PCC) between expression profiles of genes i 
and j. For the cases when at least one gene in a pair (i,j) is mapped onto multiple 
Affymetrix probe sets (3,837 out of 12,306 genes), we calculate PCC between all probe set 
pairs that correspond to (i,j) and choose a PCC with the largest magnitude. Negative 
correlations in R matrix were set to zero. For analyses that involve computing association 
scores (see below), we use a binary version of R matrix in which all elements that have 
values equal to or greater than 0.7 (strong correlation) are set to 1 and all elements that have 
values below 0.7 are set to 0.  

4.  The cis-similarity between promoter regions of genes is represented by matrix T (size 
23,326 × 23,326). An element tij in T matrix is the number of unique TFBSs observed in the 
promoter regions of both gene i and j. Unique means that all occurrences of binding sites 
for the same TF are counted only once for each promoter region. For instance, if the 
promoter region of gene i contains 4 sites for transcription factor A and 1 site for 
transcription factor B, whereas the promoter region of gene j contains 2 sites for 
transcription factor A and 3 sites for transcription factor B, the value of tij will be equal to 2. 
The idea of this definition of cis-similarity is to attempt to account for the number of 
common transcription factors that control both gene i and j.  

When we study a combination of two or more types of data, we only use genes for which all 
types of required annotation are available and exclude genes with missing annotation. For 
example, when we study associations between K and P matrices, we take a set of genes for which 
both KEGG pathway and protein-protein interaction data are annotated.  

Statistical significance of associations among multiple data types 

There are two main ideas behind presenting a particular type of genomic data as a symmetric 
matrix that describes a certain type of functional relationship between gene pairs. One idea is to 
reveal statistically significant functional associations among multiple matrices by using 
multiplication of equivalent matrix elements. The other idea is to use a matrix to construct a graph 
that displays the strength of relationships among genes. In such a graph, a pair of functionally 
related genes is represented by two connected nodes corresponding to a non-zero matrix element 
(see below). In general, when elements from k matrices of dimension n, M1…Mk, that repr esent k 
types of genomic data for n genes are multiplied, and a final matrix is obtained, 
F[i,j]=M1[i,j]*…*Mk[i,j] (note that this is an element-wise multiplication, not a conventional 
matrix product). In this final matrix F, gene pairs that exhibit strong associations across all k types 
of data will correspond to elements with large absolute value. The overall strength of functional 
associations within a group of n genes represented by k matrices can be quantified by computing 
the sum of all elements in the final matrix, S(n,k), as follows: 

∑
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If S(n,k) is significantly higher than that expected by chance, it will indicate that genes in the 
multiplied matrices exhibit a strong non-random association across k types of genomic data. We 
estimate the statistical significance of S(n,k) by comparing it to the distribution of random scores. 
A random score is obtained by randomly permuting elements in each matrix M1,…,Mk and then 
using these permuted matrices to obtain a score according to Eq.1. For each matrix combination 
we generate 10,000 random scores. The p-value of the observed score, P(R(n,k)≥S(n,k)), is 
computed as follows: 

000,10
)),(),((

)),(),((
knSknRN

knSknRP
≥=≥  (2) 

where R(n,k) is random score and N(R(n,k)≥S(n,k)) is the number of random scores that are 
equal to or larger than S(n,k). We applied the Shapiro-Wilk normality test and found random 
association scores to be normally distributed (data not shown). Histograms of the distributions of 
random scores can be found in Supplementary information. Since most p-values obtained from 
random simulations are zero, we use the z-score to rank the associations: 

),(

),(),(
)),((

knR

knRknS
knSscorez

σ
><−=−  (3) 



 Integration of multiple genome-wide datasets 55 
 

 

where <R(n,k)> is the average and σR(n,k) is the standard deviation of the random score. 

Functional associations observed in multiple types of genome-wide datasets 

In this section, we perform a qualitative study of genome-wide associations observed among the 
four types of genomic data. The idea of this study is to examine whether the properties of genes 
with respect to one type of functional data are correlated with other types of functional data. For 
example, we can classify pairs of genes into interacting and non-interacting categories and 
examine the average correlation coefficient between their expression profiles in order to see 
whether expression profiles of genes whose products interact tend to have a higher correlation 
coefficient than the profiles of non-interacting ones. Here, we study global genome-wide 
associations for the following combinations of data types: K-P, R-T, K-R, P-T, K-P-R, and K-P-T 
and demonstrate the existence of potentially significant relationships observed among these data 
types. A rigorous statistical analysis of the significance of associations for all possible 
combinations of data types that confirms the qualitative trends discussed here is presented in the 
following sections of the manuscript.  

First, we analyze the associations between functional pathways and protein-protein 
interactions (K-P association). The comparison of pathway information for interacting and non-
interacting proteins shows that 40.82% of interacting protein pairs share at least one functional 
pathway (meaning that both proteins in the pair belong to the same pathway), whereas only 5.55% 
of non-interacting protein pairs share pathway annotation (Figure 1A). This means that interacting 
protein pairs are seven times more likely to participate in the same pathway than non-interacting 
protein pairs. Analysis of the reverse relation shows that if two proteins participate in the same 
pathway, they are eleven times more likely to interact than proteins from different pathways 
(Figure 1B). 

 
Figure1. Associations exist among the four types of functional data. (A) Interacting protein pairs are more likely to 

participate in the same pathway than non-interacting protein pairs. (B) Protein pairs from the same pathway are 

more likely to interact than protein pairs from different pathways. (C) A pair of genes that share common TFBS in 

the promoter regions shows a higher correlation between expression profiles than a pair without any shared TFBS. 

(D) An increase in correlation between expression profiles is associated with an increase in the number of shared 

TFBS. (E) Pairs of proteins from the same pathway and/or pairs of interacting proteins are more likely to show 

correlated expression. (F) Pairs of protein from the same pathway and/or pairs of interacting proteins are more 

likely to share common TFBS in their promoter regions. 
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Second, we analyze the associations between co-expression and cis-similarity of promoter 
regions (R-T association). This analysis shows that, on average, correlation between expression 
profiles of genes that share common TFBS is higher (PCC=0.375) than that between expression 
profiles of genes that do not share any common TFBS (PCC=0.369) (Figure 1C). Analysis of the 
reverse relation shows that an increase in the level of co-expression of gene pairs is associated 
with an increase in the number of common TFBS found in their promoter regions (Figure 1D). 
These results confirm to an empirical expectation that co-expressed genes should have similar cis-
profiles and vice versa. However, the trends shown in Figure 1C and 1D are very subtle and their 
statistical significance is not obvious. One possible reason of weak trends is that the computational 
identification of putative TFBS via sequence motif-based methods is inherently prone to noise 
because of a very high percentage of false positive predictions (Robinson et al., 2006). 

Third, we analyze the following three types of associations: K-R, P-R, and K-P-R. We 
divided all gene pairs into six categories according to whether their products are interacting and/or 
participating in same functional pathways and compared the average correlations between 
expression profiles for these six categories (Figure 1E). From right to left in Figure 1E, the largest 
average PCC between expression profiles is found for gene pairs that both interact and participate 
in same pathways (PCC = 0.4331), whereas the smallest average PCC is found for gene pairs that 
neither interact nor participate in same pathways (PCC = 0.3216). We also observe that the 
average PCC is higher for gene pairs that participate in same pathways (PCC = 0.4028) than for 
interacting pairs (PCC = 0.3773). These observations suggest that, with respect to concerted 
expression, genes from the same pathway act as a more cohesive biological module than genes 
producing physically interacting proteins. Experimental evidence shows that interacting proteins 
from the same complex are not necessarily produced by co-regulated genes. For example, cyclin-
dependent kinase and cyclin together form a protein complex. While the former is produced from 
a constantly transcribed gene, the latter is produced in a regulated manner (Ge et al., 2001). 

Fourth, we analyze K-T, P-T, and K-P-T associations by computing the average number of 
common TFBS for the same six categories of gene pairs described above. The results of this 
analysis, shown in Figure 1F, reveal a trend very similar to the one shown in Figure 1E: the largest 
number of common TFBS is observed for gene pairs that both interact and participate in the same 
pathways, whereas the smallest number of common TFBS is observed for gene pairs that neither 
interact nor participate in the same pathway. These two related trends indirectly indicate that the 
level of co-expression (measured by PCC) and the cis-similarity (measured by the number of 
common TFBS) are correlated with each other, which is in agreement with the direct relationship 
between them shown in Figure 1C and 1D. The small differences in the number of common TFBS 
observed in Figure 1F can be attributed to the fact that the computational procedure for the 
identification of putative TFBS produces a very large number of false positives (Robinson et al., 
2006). 

Statistical significance of functional associations observed in multiple datasets 

The qualitative analyses shown in the previous section indicate the existence of potentially 
significant associations among various types of ‘omic’ data. In this section, we use a rigorous 
quantitative approach to evaluate the statistical significance of the observed associations on the 
genome-wide scale. Given two or more matrices that represent particular types of ‘omic’ data for a 
group of genes, we measure the strength of association among these data types by means of an 
association score. This association score is defined as the sum of products between corresponding 
elements of the matrices under consideration (Eq. 1). Statistical significance of the observed 
association score is estimated by comparing it to the distribution of random association scores 
obtained from randomly permuted matrices. Since we have four matrices that correspond to the 
four types of data, there are eleven possible combinations of two, three and four matrices. P-values 
and z-scores for each combination are shown in Table 2. Histograms of all random distributions 
can be found in Figure 2. 
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Table2. P-values and z-scores estimated from the random permutation experiment. 

Data analyzed Type of 
association 

Genes p-value z-score 

Pairwise combinations K-P 2,424 0 160.97 
 K-R 3,271 0 85.35 
 R-T 11,775 0 75.63 
 P-R 6,784 0 7.70 
 K-T 3,939 0 7.59 
 P-T 8,513 0.0498 1.66 
     
Triple combinations K-P-T 2,424 0 142.26 
 K-P-R 2,154 0 82.22 
 K-R-T 3,271 0 73.90 
 P-R-T 6,784 0 7.47 
     
Quadruple combination K-P-R-T 2,154 0 75.65 

 

 
Figure2. Distributions of random association scores 

The results shown in Table 2 indicate that all eleven combinations of data types demonstrate 
significant associations as evidenced by low p-values. Below, we briefly discuss biological 
implications of each association. The results for pairwise combinations indicate: 

K-P (z-score=160.97, p=0) - the existence of a highly significant association between protein-
protein interactions and protein function. Since in our methodology associations are not 
directional, K-P association is equivalent to P-K association, thus implying that interacting 
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proteins tend to participate in the same functional pathway, and vice versa, proteins from the same 
functional pathway tend to interact.  

K-R (z-score=85.35, p=0) - the existence of a highly significant association between co-
expression and gene function. It shows that genes participating in the same pathway tend to be co-
expressed, and vice versa, co-expressed genes tend to participate in the same pathway.  

R-T (z-score=75.63, p=0) - co-expressed genes tend to share similar cis-profiles, and vice 
versa, genes with similar cis-profiles tend to be co-expressed.  

P-R (z-score=7.70, p=0) - genes that encode interacting proteins tend to be co-expressed, and 
vice versa, co-expressed genes tend to encode interacting proteins.  

K-T (z-score=7.59, p=0) - genes from the same pathway tend to have similar cis-profiles, and 
vice versa, genes with similar cis-profiles tend to participate in the same pathway. 

P-T (z-score=1.66, p=0.0498) - the existence of a marginally significant association between 
protein-protein interactions and the similarity of cis-profiles of the genes that encode interacting 
proteins.  

The results for all combinations of three data types, described below, also demonstrate highly 
statistically significant genome-wide associations: 

K-P-T (z-score=142.26, p=0) - the existence of a highly significant association that links gene 
function, K, interactions between gene products, P, and cis-similarity of the promoter regions, T. 
This association implies that genes from the same pathway both tend to code for interacting 
proteins and share a similar set of TFs in their promoter regions. 

K-P-R (z-score=82.22, p=0) - the existence of a highly significant association that links gene 
function, K, interactions between gene products, P, and co-expression, R. Biologically, this 
association is similar to K-P-T association and implies that genes from the same pathway both 
tend to code for interacting proteins and to be co-expressed. 

K-R-T (z-score=73.90, p=0) - the existence of a highly significant association that links gene 
function, K, co-expression, R, and cis-similarity of the promoter regions, T. This association 
implies that genes from the same pathway tend to be both co-expressed and have a similar set of 
TFs in their promoter regions. 

P-R-T (z-score=7.47, p=0) - the existence of a significant association that links interactions 
between gene products, P, co-expression, R, and cis-similarity of the promoter regions, T. This 
association implies that genes whose products interact tend to be co-expressed and have a similar 
set of TFs in their promoter regions. However, it should be pointed out that the strength of P-R-T 
association is much weaker than that of other triple associations as indicated by a considerably 
lower z-score. 

Finally, the results for the combination of all four data types, K-P-R-T, indicate that this 
quadruple association is also highly significant (z-score=75.65, p=0). This association indicates 
that genes from the same pathway simultaneously tend to encode interacting proteins, be co-
expressed, and have a similar set of TFs in their promoter regions. 

Pathway-level analysis of functional associations  

The analysis reported in the previous section summarizes global genome-wide relations among 
data types by considering all genes in the human genome simultaneously. A similar analysis can 
be performed by considering a group of genes that belong to a particular functional category. A 
good example of a functional category is a functional pathway, which can be considered as a 
biological module that carries out a specific genomic function. Depending on the function of the 
pathway, one may expect certain pathway-specific associations to be more pronounced than the 
others. In this section, we use the classification of functional pathways from the KEGG database. 
The main difference from the global analysis reported in the previous section is that pathway-level 
analysis is done for a group of functionally related genes that belong to a particular KEGG 
pathway. This kind of analysis enables us to categorize the associations between the pathway data 
and other types of genomic data and to determine which types of associations are most profound 
in a particular functional category. Since the TFBS data seem to be noisy and therefore least 
reliable, we use only the PPI data and the gene expression data for the pathway-level analysis. 
This leaves us with three combinations to analyze for pathway-level associations: K-P, K-R and 
K-P-R. These three combinations provide the following biological information for a given 
pathway: K-P describes its relative enrichment in interacting proteins, K-R describes its relative 
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enrichment in co-expressed genes, and K-P-R describes its relative enrichment in genes that are 
both co-expressed and code for interacting proteins. When we use Eqs.2-3 to analyze a group of m 
genes that belong to a particular pathway, each random m by m matrix for a given type of data is 
obtained by randomly sampling, without replacement, m genes from a list of all human genes 
annotated with this particular data. Pathways containing less than five annotated genes were 
excluded from this analysis.  

Out of 174 pathways annotated in the KEGG database for the human genome, we identified 
98 pathways that are significantly (p<0.05) enriched in interacting proteins, 34 pathways that are 
significantly enriched in co-expressed genes, and 75 pathways that are significantly enriched in 
genes that are both co-expressed and code for interacting proteins. Lists for all pathways and all 
combinations, ranked by z-score, are given in Table 3, 4 and 5. It should be noted that when 
pathways are analyzed with respect to concomitant enrichment in co-expressed genes whose 
protein products also interact (the triple K-P-R association), several additional pathways emerge as 
significant (Table 5). For example, two pathways (‘Glutamate metabolism’ and ‘Glutathione 
metabolism’) are identified as showing significant concomitant enrichment, even though they do 
not show enrichment in interacting proteins or co-expressed genes. Some pathways are 
concomitantly enriched even though they show enrichment in either interacting proteins or co-
expressed genes, but not both. For example, ‘Cholera’ pathway shows very strong concomitant 
enrichment (top 5th in Table 5), but it does not show enrichment in co-expressed genes. Similarly, 
‘Olfactory transduction’ pathway shows a significant concomitant enrichment without being 
enriched in interacting proteins. These observations indicate that combining multiple types of 
genomic data reveals additional functional features of individual pathways that cannot be revealed 
by studying simple pairwise associations. 

 
Table 3. Pathways enriched in interacting proteins. 

 
KEGG ID z-score p-value Pathway name KEGG category 
hsa03050 237.19 0 Proteasome Genetic Information Processing 
hsa03020 134.22 0 RNA polymerase Genetic Information Processing 
hsa03010 86.94 0 Ribosome Genetic Information Processing 
hsa00193 61.66 0 ATP synthesis Metabolism 
hsa00240 48.63 0 Pyrimidine metabolism Metabolism 
hsa04110 44.15 0 Cell cycle Cellular Processes 
hsa03022 40.98 0 Basal transcription factors Genetic Information Processing 
hsa04130 39.30 0 SNARE interactions in 

vesicular transport 
Genetic Information Processing 

hsa00020 39.19 0 Citrate cycle (TCA cycle) Metabolism 
hsa04350 34.76 0 TGF-beta signaling pathway Environmental Information 

Processing 
hsa00970 33.41 0 Aminoacyl-tRNA 

biosynthesis 
Genetic Information Processing 

hsa00230 33.08 0  Purine metabolism Metabolism 
hsa04660 30.70 0 T cell receptor signaling 

pathway 
Cellular Processes 

hsa04664 29.88 0  Fc epsilon RI signaling 
pathway 

Cellular Processes 

hsa04210 29.36 0  Apoptosis Cellular Processes 
hsa05010 28.28 0  Alzheimer's disease Human Diseases 
hsa04662 26.97 0  B cell receptor signaling 

pathway 
Cellular Processes 

hsa04650 26.85 0  Natural killer cell mediated 
cytotoxicity 

Cellular Processes 

hsa05040 26.80 0  Huntington's disease Human Diseases 
hsa04510 25.42 0  Focal adhesion Cellular Processes 
hsa04630 24.95 0  Jak-STAT signaling pathway Environmental Information 

Processing 
hsa04610 23.97 0  Complement and coagulation 

cascades 
Cellular Processes 

hsa00190 23.76 0  Oxidative phosphorylation Metabolism 
hsa04920 23.34 0  Adipocytokine signaling Cellular Processes 
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pathway 
hsa05120 23.30 0 Epithelial cell signaling in 

Helicobacter pylori infection 
Human Diseases 

hsa05110 23.02 0  Cholera Human Diseases 
hsa00252 22.89 0  Alanine and aspartate 

metabolism 
Metabolism 

hsa04512 22.13 0  ECM-receptor interaction Environmental Information 
Processing 

hsa04520 22.09 0  Adherens junction Cellular Processes 
hsa04010 21.83 0  MAPK signaling pathway Environmental Information 

Processing 
hsa04330 21.63 0  Notch signaling pathway Environmental Information 

Processing 
hsa04310 20.44 0  Wnt signaling pathway Environmental Information 

Processing 
hsa05020 20.21 0  Parkinson's disease Human Diseases 
hsa00220 20.18 0  Urea cycle and metabolism 

of amino groups 
Metabolism 

hsa03030 20.14 0  DNA polymerase Genetic Information Processing 
hsa05030 19.83 0  Amyotrophic lateral sclerosis 

(ALS) 
Human Diseases 

hsa04320 19.55 0  Dorso-ventral axis formation Cellular Processes 
hsa04910 19.48 0  Insulin signaling pathway Cellular Processes 
hsa04810 19.48 0  Regulation of actin 

cytoskeleton 
Cellular Processes 

hsa04620 19.36 0  Toll-like receptor signaling 
pathway 

Cellular Processes 

hsa04710 17.90 0  Circadian rhythm Cellular Processes 
hsa00620 17.69 0  Pyruvate metabolism Metabolism 
hsa04120 17.26 0  Ubiquitin mediated 

proteolysis 
Genetic Information Processing 

hsa04670 17.19 0  Leukocyte transendothelial 
migration 

Cellular Processes 

hsa04930 16.28 0  Type II diabetes mellitus Human Diseases 
hsa04370 15.93 0  VEGF signaling pathway Environmental Information 

Processing 
hsa05050 15.09 0  Dentatorubropallidoluysian 

atrophy (DRPLA) 
Human Diseases 

hsa03060 14.11 0.0001  Protein export Genetic Information Processing 
hsa00563 13.96 0  

Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 

Metabolism 

hsa04540 13.80 0  Gap junction Cellular Processes 
hsa04360 13.73 0  Axon guidance Cellular Processes 
hsa04150 13.16 0  mTOR signaling pathway Environmental Information 

Processing 
hsa00720 13.15 0.0001  Reductive carboxylate cycle 

(CO2 fixation) 
Metabolism 

hsa00100 11.62 0.0001  Biosynthesis of steroids Metabolism 
hsa00010 11.21 0  Glycolysis / 

Gluconeogenesis 
Metabolism 

hsa04730 11.12 0  Long-term depression Cellular Processes 
hsa05130 10.44 0  Pathogenic Escherichia coli 

infection 
Human Diseases 

hsa00130 9.95 0.0015  Ubiquinone biosynthesis Metabolism 
hsa00290 9.85 0.0007  Valine, leucine and 

isoleucine biosynthesis 
Metabolism 

hsa00860 9.82 0.0002  Porphyrin and chlorophyll 
metabolism 

Metabolism 

hsa00271 9.77 0  Methionine metabolism Metabolism 
hsa04060 9.74 0  Cytokine-cytokine receptor 

interaction 
Environmental Information 
Processing 

hsa00500 9.72 0  Starch and sucrose Metabolism 
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metabolism 
hsa04514 9.45 0  Cell adhesion molecules 

(CAMs) 
Environmental Information 
rocessing 

hsa00920 9.44 0.0111  Sulfur metabolism Metabolism 
hsa04612 9.37 0  Antigen processing and 

presentation 
Cellular Processes 

hsa00790 9.14 0.0002  Folate biosynthesis Metabolism 
hsa00330 9.13 0  Arginine and proline 

metabolism 
Metabolism 

hsa04340 9.01 0  Hedgehog signaling pathway Environmental Information 
Processing 

hsa04720 8.97 0  Long-term potentiation Cellular Processes 
hsa04530 8.91 0  Tight junction Cellular Processes 
hsa00640 8.84 0.0001  Propanoate metabolism  Metabolism 
hsa04640 8.65 0  Hematopoietic cell lineage  Cellular Processes 

hsa05060 7.89 0.0008  Prion disease  Human Diseases 
hsa00400 7.63 0.0012  Phenylalanine, tyrosine and 

tryptophan biosynthesis 
 Metabolism 

hsa00710 7.51 0.0002  Carbon fixation  Metabolism 
hsa00650 7.05 0.0002  Butanoate metabolism  Metabolism 
hsa00030 6.93 0.0005  Pentose phosphate pathway  Metabolism 
hsa04950 6.63 0.0011  Maturity onset diabetes of 

the young 
 Human Diseases 

hsa04020 6.57 0  Calcium signaling pathway  Environmental Information 
Processing 

hsa00670 6.49 0.0023  One carbon pool by folate  Metabolism 
hsa00630 6.47 0.0055  Glyoxylate and 

dicarboxylate metabolism 
 Metabolism 

hsa00071 5.26 0.0016  Fatty acid metabolism  Metabolism 
hsa00260 5.25 0.0016  Glycine, serine and threonine 

metabolism 
 Metabolism 

hsa04742 5.21 0.0037  Taste transduction  Cellular Processes 
hsa04140 5.21 0.0026  Regulation of autophagy  Genetic Information Processing 
hsa04940 4.98 0.0027  Type I diabetes mellitus  Human Diseases 
hsa00040 4.84 0.0370  Pentose and glucuronate 

interconversions 
 Metabolism 

hsa02010 4.77 0.0052  ABC transporters  Environmental Information 
Processing 

hsa00564 4.56 0.0027  Glycerophospholipid 
metabolism 

 Metabolism 

hsa04080 4.34 0.0006  Neuroactive ligand-receptor 
interaction 

 Environmental Information 
Processing 

hsa00280 4.22 0.0058  Valine, leucine and 
isoleucine degradation 

 Metabolism 

hsa00150 4.13 0.0125  Androgen and estrogen 
metabolism 

 Metabolism 

hsa00052 4.12 0.0077  Galactose metabolism  Metabolism 
hsa00930 3.82 0.0222  Caprolactam degradation  Metabolism 
hsa00450 3.77 0.0159  Selenoamino acid 

metabolism 
 Metabolism 

hsa00510 3.15 0.0268  N-Glycan biosynthesis  Metabolism 
hsa04070 2.71 0.0214  Phosphatidylinositol 

signaling system 
 Environmental Information 
Processing 

Graph-theoretical analysis of gene networks 

The analyses presented in the previous sections dealt with the overall statistical significance of 
multiple associations among genes from a given group (such as a specific pathway, for instance). 
However, characterizing genes involved in particular cellular processes requires not only an 
analysis of the overall strength of functional associations among these genes, but also an 
identification of the fine structure of the process-specific gene network(s) (Myers et al., 2005). 
Reconstructing and modeling gene networks is one of the most challenging problems of genomic 
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research. Usually, a gene network is described as a graph. A graph consists of a set of points, 
called nodes, along with a set of lines, called edges, which connect the nodes. Each edge connects 
two nodes. A sub-graph S of a graph V is a graph whose nodes and edges are also in V. A graph is 
said to be connected if there exists a path between any pair of nodes (Figure 3). In a graph 
describing a gene network each node represents a gene and the presence of an edge connecting 
two nodes indicates the existence of a functional association between the corresponding connected 
genes. An edge can mean the presence of either a direct physical interaction or an indirect 
functional association between gene products. The representation of genome-wide data in a 
unified matrix format described above is perfectly suited for the reconstruction of gene networks 
using a graph-theoretical approach. In this approach, a matrix element M[i,j] describes the strength 
of connection (association) between genes i and j. If the value of M[i,j] is 0, it means there is no 
edge (no connection) between genes i and j. For the sake of simplicity, we used a binary version of 
the co-expression matrix R, in which all elements that have value of 0.8 or higher were set to 1 
(high co-expression) and all other elements were set to 0 (low co-expression). Matrices K and P 
are binary by definition. After multiplying these matrices we obtain a final binary matrix (F=P*R 
or F=P*R*K), which is subsequently supplied to a graph-mining algorithm that finds all connected 
sub-graphs in this final matrix. Graphs were visualized using the GOlorize plugin (Garcia et al., 
2007). 

 
Figure3. An example of a graph that consists of 10 nodes (numbered 1 through 10). 

There are three connected sub-graphs: 1st consists of nodes 1 through 5, 2nd consists of node 6, 
3rd consists of nodes 7 through 10 

The largest connected sub-graph obtained from the analysis of the final matrix P*R is shown 
in Figure 4. It consists of 249 nodes (genes). In this graph, according to the definition of P*R 
multiplication, two genes are connected by an edge if they both are co-expressed and code for 
interacting proteins. There are 9 pathways significantly over-represented among these genes. 
These pathways include ATP synthesis, Epithelial cell signaling in H. pylori infection, Insulin 
signaling, MAPK signaling, Oxidative phosphorylation, Cholera, Toll-like receptor signaling, T-
cell receptor signaling, and Adherense junction. Notably, most of them are signaling pathways. 
Analysis of the structure of this sub-graph shows that genes from most pathways (such as 
Adherense junction, MAPK signaling, Toll-like signaling, Epithelial cell signaling, Insulin 
signaling, and ATP synthesis) form a densely inter-connected network core. On the other hand, 
genes from Oxidative phosphorylation pathway, which is the largest gene group, form a loosely 
connected set of peripheral nodes all around the core. This example of network topology illustrates 
that, when a connection (edge) in a gene network is defined as a concerted expression of 
interacting proteins, a core set of nodes (proteins) involved in cell signaling is revealed. These 
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core nodes transmit signals in concerted manner to numerous peripheral proteins involved in 
phosphorylation, which subsequently modify other proteins regardless of mutual co-expression. A 
very different picture is observed when the largest connected sub-graph from the final matrix 
P*R*K is analyzed (Figure 5). In this graph, according to the definition of P*R*K multiplication, 
two genes are connected by an edge if they are co-expressed and code for interacting proteins and 
belong to the same pathway. This sub-graph is smaller (56 nodes) and does not have many 
homogenous peripheral nodes. The number of over-represented pathways is larger (13) and they 
are more diverse than in the case of the P*R sub-graph, many being involved in extra-cellular 
interactions and immune response. 

 

 
Figure 4. The largest connected sub-graph found in the final P*R matrix (249 nodes). Each node is colored 
according to over-represented KEGG pathway(s) it belongs to. Over-represented means that the probability 
of observing the same or greater number of genes from a given pathway in a graph of the same size is less 

than 0.05. There are 9 over-represented pathways: ATP synthesis, Epithelial cell signaling in H. pylori 
infection, Insulin signaling, MAPK signaling, Oxidative phosphorylation, Cholera, Toll-like receptor 

signaling, T-cell receptor signaling, and Adherense junction 
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Figure5. The largest connected sub-graph found in the final matrix P*R*K (56 nodes). Each node 

is colored according to over-represented KEGG pathway(s) it belongs to. Over-represented 
means that the probability of observing the same or greater number of genes from a particular 
pathway in a graph of the same size is less than 0.05. There are 13 over-represented pathways: 

Jak-STAT signaling, Focal adhesion, Insulin signaling, Fc epsilon RI signaling, Natural killer cell 
mediated cytotoxicity, Type II diabetes mellitus, T-cell receptor signaling, Leukocyte 

transendothelial migration, Regulation of actin cytoskeleton, Cytokine-cytokine receptor 
interaction, Epithelial cell signaling in H. pylori infection, Adherense junction, Dorso-ventral axis 

formation 

Discussion and Conclusion 

In general, the results of the quantitative analysis of the genome-wide pairwise associations are 
consistent with the qualitative study performed on the same datasets (see Figure 1) and discussed 
in the first section of Results, thus confirming the utility of the proposed approach. For instance, 
Figure 1E shows that the average correlation between expression profiles is larger for gene pairs 
from the same pathway, K, (PCC=0.4028) than for gene pairs that encode interacting proteins 
(PCC=0.3773). This observation is consistent with a larger z-score observed for K-R association 
(z-score=85.35) compared to that for P-R association (z-score=7.70). Similarly, Figure 1F shows 
that the average number of shared TFBS is larger for gene pairs from the same pathway (3.2869) 
than for gene pairs whose products interact (3.2705). This observation is also consistent with a 
larger z-score observed for K-T association (z-score=7.59) compared to that for P-T association 
(z-score=1.66). If we assume that K and P matrices contain similar amounts of noise, then the 
observation that the z-scores for K-R and K-T associations are larger than those for P-R and P-T 
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suggests that transcriptional co-regulation is more important for genes from the same pathway 
than for genes that encode interacting proteins. It should also be noted that, to the best of our 
knowledge, out of the six pairwise combinations of data types utilized in this work, three (P-R, R-
T, and K-P) have never been studied for the human genome.  

The strongest pairwise associations, indicated by very high z-scores, are observed for 
combinations involving pathway data, K-P and K-R. This observation is consistent with empirical 
expectations and confirms that genes from the same functional pathway tend to be co-expressed 
and code for interacting proteins. The only marginally significant genome-wide association is 
observed between PPI data and cis-similarity of promoter regions (P-T combination, p=0.0498, 
Table 2). The relatively low z-scores for two associations involving the T matrix (P-T and K-T) 
are not straightforward to interpret. On one hand, a large amount of noise present in matrix T may 
dampen real biological associations. On the other hand, the R-T association is quite significant (z-
score=75.63) despite the noise present in the T matrix. The observation that P-R association, 
which is related to P-T, also has a relatively low z-score of 7.7 provides an additional argument in 
favor of the assumption that the weakness of the genome-wide P-T association may reflect a real 
biological phenomenon.  

The application of our methodology to study associations in groups of genes from individual 
functional pathways shows that pathways enriched in interacting proteins (K-P association, Table 
3) are mostly the ones for genetic information processing. These pathways tend to contain large 
protein complexes, such as the ribosome and DNA/RNA polymerases. Pathways enriched in co-
expressed genes (K-R association, Table 4) are mostly the pathways for environmental 
information processing. These pathways can be thought of as biological modules whose genes 
need to be expressed in a concerted manner in response to external stimuli. Metabolic pathways 
seem to be under-represented in the list of pathways enriched in co-expressed genes. There are 112 
metabolic pathways, comprising 64% of all 174 annotated pathways. However, out of the total of 
34 pathways significantly enriched in co-expressed genes, only six (18%) are metabolic pathways. 
This observation is consistent with previously reported results that metabolic pathways do not 
show similar cis-profiles (Hannenhalli and Levy, 2003). The proposed element-wise matrix 
multiplication can also be used to combine multiple types of data and reconstruct combination-
specific gene networks by applying a in graph-theoretical approaches. The graph-theoretical 
analysis of human gene network obtained using the P*R association showed that it consists of a 
set of core nodes, mostly represented by genes involved in various signaling pathways, and 
numerous peripheral nodes represented by genes involved in oxidative phosphorylation. The 
analysis of human gene network obtained using P*R*K association showed that it is dominated by 
genes involved in extra-cellular interactions. Thus, different combinations of genome-wide data 
types reveal different types of gene networks.  
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Table4. Pathways enriched in co-expressed genes.

KEGG ID z-score p-value  Pathway name  KEGG category 
hsa04080 9.73 0  Neuroactive ligand-receptor 

interaction 
 Environmental Information 
Processing 

hsa04630 5.11 0  Jak-STAT signaling pathway  Environmental Information 
Processing 

hsa04620 4.94 0.0003  Toll-like receptor signaling 
pathway 

 Cellular Processes 

hsa00190 4.91 0.0003  Oxidative phosphorylation  Metabolism 
hsa04020 4.69 0  Calcium signaling pathway  Environmental Information 

Processing 
hsa00602 4.60 0.0007  Glycosphingolipid biosynthesis - 

neo-lactoseries 
 Metabolism 

hsa04010 3.86 0.0006  MAPK signaling pathway  Environmental Information 
Processing 

hsa04060 3.81 0.0005  Cytokine-cytokine receptor 
interaction 

 Environmental Information 
Processing 

hsa04730 3.57 0.0022  Long-term depression  Cellular Processes 
hsa04664 3.51 0.0022  Fc epsilon RI signaling pathway  Cellular Processes 
hsa04320 3.50 0.0043  Dorso-ventral axis formation  Cellular Processes 
hsa00534 3.40 0.0098  Heparan sulfate biosynthesis  Metabolism 
hsa04140 3.04 0.0099  Regulation of autophagy  Genetic Information Processing 
hsa04120 2.89 0.0094  Ubiquitin mediated proteolysis  Genetic Information Processing 
hsa04742 2.87 0.0114  Taste transduction  Cellular Processes 
hsa04330 2.85 0.0099  Notch signaling pathway  Environmental Information 

Processing 
hsa04540 2.81 0.0082  Gap junction  Cellular Processes 
hsa04910 2.76 0.0060  Insulin signaling pathway  Cellular Processes 
hsa04370 2.72 0.0118  VEGF signaling pathway  Environmental Information 

Processing 
hsa04740 2.69 0.0153  Olfactory transduction  Cellular Processes 
hsa04650 2.66 0.0090  Natural killer cell mediated 

cytotoxicity 
 Cellular Processes 

hsa00601 2.54 0.0299  Glycosphingolipid biosynthesis - 
lactoseries 

 Metabolism 

hsa04610 2.50 0.0154  Complement and coagulation 
cascades 

 Cellular Processes 

hsa00230 2.47 0.0150  Purine metabolism  Metabolism 
hsa04930 2.46 0.0198  Type II diabetes mellitus  Human Diseases 
hsa00510 2.45 0.0210  N-Glycan biosynthesis  Metabolism 
hsa05120 2.37 0.0208  Epithelial cell signaling in 

Helicobacter pylori infection 
 Human Diseases 

hsa04720 2.29 0.0231  Long-term potentiation  Cellular Processes 
hsa04340 2.11 0.0312  Hedgehog signaling pathway  Environmental Information 

Processing 
hsa04520 2.02 0.0350  Adherens junction  Cellular Processes 
hsa04310 1.94 0.0388 Wnt signaling pathway  Environmental Information 

Processing 
hsa04810 1.91 0.0362  Regulation of actin cytoskeleton  Cellular Processes 
hsa04660 1.83 0.0450  T cell receptor signaling pathway  Cellular Processes 
hsa04530 1.80 0.0455  Tight junction  Cellular Processes 
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Table5. Pathways enriched in both interacting and co-expressed genes. 

 
KEGG ID z-score p-value Pathway name  KEGG category 
hsa00193 78.58 0 ATP synthesis  Metabolism 
hsa03050 76.25 0 Proteasome  Genetic Information 

Processing 
hsa03020 44.87 0 RNA polymerase  Genetic Information 

Processing 
hsa00190 36.83 0  Oxidative phosphorylation  Metabolism 
hsa05110 30.64 0  Cholera  Human Diseases 
hsa04350 29.41 0  TGF-beta signaling pathway  Environmental 

Information Processing 
hsa04660 27.01 0  T cell receptor signaling pathway  Cellular Processes 
hsa03010 25.52 0  Ribosome  Genetic Information 

Processing 
hsa05120 25.18 0  Epithelial cell signaling in 

Helicobacter pylori infection 
 Human Diseases 

hsa04610 23.94 0  Complement and coagulation 
cascades 

 Cellular Processes 

hsa04620 23.80 0  Toll-like receptor signaling pathway  Cellular Processes 
hsa00240 23.00 0  Pyrimidine metabolism  Metabolism 
hsa04650 22.40 0  Natural killer cell mediated 

cytotoxicity 
 Cellular Processes 

hsa03030 22.38 0  DNA polymerase  Genetic Information 
Processing 

hsa04910 21.16 0  Insulin signaling pathway  Cellular Processes 
hsa00230 20.90 0  Purine metabolism  Metabolism 
hsa04320 20.85 0  Dorso-ventral axis formation  Cellular Processes 
hsa04210 20.71 0  Apoptosis  Cellular Processes 
hsa04010 20.54 0  MAPK signaling pathway  Environmental 

Information Processing 
hsa00860 19.91 0  Porphyrin and chlorophyll 

metabolism 
 Metabolism 

hsa04664 19.46 0  Fc epsilon RI signaling pathway  Cellular Processes 
 
Another possible application of the proposed methodology is to benchmark the quality of 

various large-scale datasets. In this work, we used PPI from the OPHID database (Brown and 
Jurisica, 2005), where about 60% of all annotated interactions were inferred computationally, 
rather than obtained experimentally. Obviously, the quality of this inference needs to be validated. 
Since proteins that participate in the same functional pathway often form multi-protein complexes 
and can be expected to interact, the strength of K-P association can be used as an indicator of the 
non-randomness of PPI annotations. The fact that, according to our results, K-P association ranks 
highest among all pairwise combinations studied, suggests that the assignment of PPI in groups of 
functionally related proteins is highly non-random, thus confirming the quality of the OPHID 
annotation. Therefore, the present work can also be considered as an independent validation of 
OPHID, in addition to the validation provided by the authors of this database. A similar approach 
can be used to benchmark other types of data. For instance, given several methods for finding 
TFBS in promoter regions, the R-T association experiment can be used as a quantitative 
evaluation procedure to benchmark which of these methods gives the best correlation with 
expression data. 
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