
Practical Static Ownership Inference

Ana Milanova and Yin Liu

Rensselaer Polytechnic Institute, Troy NY 12110, USA,
milanova@cs.rpi.edu, liuy@cs.rpi.edu

Abstract. There are many proposals for ownership type systems de-
signed to control aliasing in object-oriented programs. Most systems re-
quire significant annotation effort and therefore it may be difficult to
adopt these systems in software practice.
Ownership inference has received less attention, while it is an impor-
tant problem because it could ease the annotation effort and facilitate
application of ownership type systems in real-world software systems.
This paper presents novel static analyses for Java that infers ownership
according to two known ownership protocols: the owner-as-dominator
protocol, and the owner-as-modifier protocol. Our analyses do not re-
quire annotations. They are based on the cubic Andersen-style points-to
analysis, and therefore, remains relatively inexpensive.
We perform experiments on a set of Java programs. The experiments
show that the analyses are practical and relatively precise. In addition,
the experiments show that ownership occurs frequently in real-world ap-
plications, and that the owner-as-dominator protocol and the owner-as-
modifier protocol capture distinct ownership properties.

1 Introduction

It is widely acknowledged that reasoning about ownership in object-oriented
languages has important benefits for software development; it can help control
aliasing and prevent certain unexpected object accesses, which could improve
software quality and software security. Consequently, there are many proposals
for ownership type systems designed to control aliasing. Most of these systems
require significant annotation effort and therefore, it may be difficult to adopt
these systems in practice.

Ownership inference, the problem of recovering the ownership structure of an
object-oriented program, has received less attention. We believe that ownership
inference is an important problem for several reasons.

First, ownership inference could ease the annotation effort and facilitate the
application of ownership type systems in real world software systems. It could
help bridge the gap between ownership type theory and software practice.

Second, ownership inference could enable the study of the occurrence of own-
ership in real-world software systems. Although there are many ownership proto-
cols proposed in literature, experience with them is limited. Practical ownership
inference could facilitate the comparative study of ownership protocols and help
design new appropriate protocols.

Last, but not least, ownership has implication to a relevant and pressing
problem: understanding and verification of concurrent software systems. More
concretely, ownership guarantees that appropriate synchronization on a shared
object o protects o as well as all objects encapsulated in o; conversely, lack of
appropriate synchronization on o may expose concurrency errors such as data
races on o as well as on objects encapsulated (sometimes deeply) in o. We believe
that ownership inference may lead to better understanding of concurrent software
systems, and better algorithms for detection of concurrency errors.

Therefore, we believe that it is important to study ownership inference and
to develop practical and precise ownership inference techniques.

This paper presents novel static analyses for Java that infer ownership accord-
ing to two well-known protocols: owner-as-dominator and owner-as-modifier.
Our analyses work directly on Java programs and do not require annotations by
the programmer. They are based on the cubic Andersen-style points-to analysis,
and therefore remain relatively inexpensive.

We implemented the analyses and performed an empirical study on a set
of Java benchmarks. The study shows that ownership occurs frequently in Java
programs, and that the owner-as-dominator and the owner-as-modifier protocols
capture distinct ownership properties. In addition, the study shows that the
analyses are relatively practical and adequately precise.

This work has the following contributions:

– We develop a novel static analysis for ownership inference according to the
owner-as-dominator protocol.

– We develop a novel static analysis for ownership inference according to the
owner-as-modifier protocol.

– We present an empirical study on small to relatively large Java programs.

2 Problem Statement

This paper considers ownership inference according to two known protocols:
the owner-as-dominator protocol and the owner-as-modifier protocol. Owner-
as-dominator is exemplified by Clarke et al.’s classical ownership type system [7].
It enforces representation containment: it requires that all accesses to an object
must go through its owner (i.e., an object can be accessed only by its owner or
objects from the same boundary). Owner-as-modifier is exemplified by the Uni-
verses ownership type system [10]. Informally, it requires that all modifications
to an object must go through its owner (i.e., an object can be modified only by
its owner or peers from the same boundary).

Throughout the paper, run-time objects are denoted by o with superscript
r: e.g., or, or

1, o
r
i . Abstract objects (i.e., representatives of run-time objects), are

denoted using exactly the same notation, but without superscript r: e.g., o, o1

and oi are the representatives of or, or
1 and or

i respectively. The set of all ab-
stract objects is denoted by O. In our analysis, run-time objects are represented
by their allocation sites: for each allocation site si, there is an object oi ∈ O
which represents all run-time objects created at this site. Objects from the code

examples in the paper are denoted using boldface: e.g., oA denotes the A object
created at line 2 in Figure 1. The examples are simple enough and in most cases
one abstract object represents exactly one run-time object; whenever this is not
the case (i.e., one abstract object represents more than one run-time objects),
this is stated explicitly.

Informally, the analysis first infers an abstract object graph, which approxi-
mates the accesses between run-time objects. The analysis subsequently infers
two sets of ownership annotations associated to the edges of the abstract object
graph. The first set of annotations are the dominator annotations: they induce
ownership trees consistent with the owner-as-dominator protocol. The second
set of annotations are the modifier annotations: they induce ownership trees
consistent with the owner-as-modifier protocol.

2.1 Owner-as-dominator Protocol

The analysis infers two dominator annotations: owned and any. An abstract
edge oi → oj annotated as owned states that for every run-time edge or

i → or
j

represented by it, or
i is the owner of or

j (i.e., or
i is the parent of or

j in the ownership
tree). An abstract edge annotated as any states that or

i is not the owner of or
j ;

it does not specify other ownership information.
The correctness requirements imposed by the owner-as-dominator protocol

are stated informally below; these requirements are formalized in a theorem in
Section 4.

(1) The inferred annotations induce an ownership tree (in other words, in the
run-time ownership hierarchy, each object has exactly one owner).

(2) If or
i is the owner of or

j (i.e., or
i is the parent of or

j in the ownership tree), then
or

i dominates or
j in the run-time object graph (in other words, all accesses to

or
j go through its owner or

i as required by the owner-as-dominator ownership
protocol).

From now on, we refer to these annotations as dominator annotations and
to the ownership tree induced by them as dominator ownership tree or just
dominator tree.

2.2 Owner-as-modifier Protocol

The analysis infers three modifier annotations: owned, peer and any. Analo-
gously to dominator annotations, an abstract edge oi → oj annotated as owned,
states that for every run-time edge or

i → or
j represented by it, or

i is the owner of
or

j (i.e., or
i is the parent of or

j in the ownership tree). An abstract edge oi → oj

annotated as peer, states that for every run-time edge or
i → or

j represented by it,
or

i and or
j are peers — that is, they have the same owner (the same parent in the

ownership tree). An abstract edge annotated as any does not specify ownership
information.

The correctness requirements imposed by the owner-as-modifier protocol are
stated informally bellow; again, the requirements are formalized in a theorem
later in the paper.

(1) The inferred annotations induce an ownership tree (in other words, each
run-time object has exactly one owner).

(2) If object or
i modifies object or

j
1, then one of the following is true: or

i is the
owner of or

j (i.e., or
i is the parent of or

j in the ownership tree), or or
i and or

j

are peers (i.e., siblings in the ownership tree). In other words, an object or
j is

modified only by its owner or its peers as required by the owner-as-modifier
ownership protocol.

From now on, we refer to these annotations as modifier annotations and to
the ownership tree induced by them as modifier ownership tree or just modifier
tree.

class Demo { class B {
public static void main(String[] args) { /*@ owned/peer @*/ C c;

1 new Demo().testA(args.length > 0); //oDemo /*@ owned/owned @*/ D d;
} B(A a) {
public void testA(boolean b) { 6 c = new C(a); //oC

2 A a = new A(b); //oA 7 d = new D(); //oD

} }
} }
class A { class C {

boolean mod; /*@ any/peer @*/ A a;
/*@ owned/peer @*/ B b; C(A na) {
A(boolean m) { 8 a = na

3 mod = m; 9 if (a.mod) { a.off();}
4 b = new B(this); //oB }
} }
void off() { class D {

5 mod = false; int i;
} 10 D() { i = 0; }

} }

Fig. 1. Example 1.

2.3 Examples

We illustrate the ownership protocols with two examples.
Consider the code in Figure 1 (the example is due to Dietl and Muller [11]).

For readability, fields are annotated with the inferred annotations. Figure 2(i)
shows the abstract object graph for this code. The edges in the abstract ob-
ject graph are annotated with the inferred annotations. Each edge (except for
oA → oA) has two annotations: the first one is the dominator annotation, and
the second one is the modifier annotation. Figure 2(ii) shows the dominator own-
ership tree — that is, the run-time tree induced by the dominator annotations.
Figure 2(iii) shows the modifier ownership tree — the run-time tree induced

1 A precise definition of ”object or
i modifies object or

j” is given in Section ??.

oA

oDemo

oB oC oD

root

any/peer

owned/peer owned/owned

owned/peer
any/any

owned/owned

owned/any

oA

oDemo

oB

oC oD

root

oA

oDemo

oB oC

oD

root

(i) Abstract object graph (ii) Dominator ownership tree (iii) Modifier ownership tree

Fig. 2. Abstract object graph and ownership trees for Example 1. Blue (thick) edges
denote create edges.

by the modifier annotations. Note that the nodes in the ownership trees are
run-time objects, not abstract objects.

Consider edge oA → oB in the abstract object graph which represents the
access from oA to oB through field B b in class A. Its dominator annotation
is owned because clearly, oB is dominated by oA (i.e., all accesses to oB go
through oA). Therefore oA is the owner of oB, and in the dominator tree, oA

is the parent of oB. Its modifier annotation is not owned, but peer — that is,
oA is not the owner of oB but its peer. This is because oB can cause an update
to field mod of oA (indirectly, through oC); the modification of oA by oC forces
oA, oC and oB to be peers. Therefore, in the modifier tree oA, oC and oB are
siblings, children of oDemo.

Figure 3 presents another example. It shows a simplified container (class
Container) and its iterator (class Iterator). The abstract object graph with
the inferred annotations is given in Figure 4(i). Again, Figure 4(ii) shows the
corresponding dominator tree and Figure 4(iii) shows the corresponding modifier
tree.

Consider edge oX → oCx. It has dominator and modifier annotations owned.
The enclosing X object dominates its container, and also, the enclosing object
is the only object that can cause a modification to its container. The owned
dominator annotation causes oX to be the parent of oCx in the dominator tree.
Analogously, the owned modifier annotation causes oX to be the parent of oCx

in the modifier tree.
Consider edge oCx → od[]. It has dominator annotation any — this is be-

cause the array of X’s container can be accessed through its iterator and therefore
it is not dominated by its creating container. It has modifier annotation owned
though — this is because the creating container is the only object that can cause
a modification to the array; the iterator accesses the data array in a read-only
manner.

class Main { class Container {
public static void main(String[] args) { /*@ any/owned @*/ int[] data;

1 X x = new X(); Container(int size) {//oX

2 x.mx(); 10 data = new int[size]; //od[]

3 Y y = new Y(); //oY }
4 y.my(); void put(int i) {
} 11 data[i] = 1;

} }
class X { Iterator getIt() {

/*@ owned/owned @*/ Container cx; 12 return new Iterator(this); //oI

void mx(Z zx) { }
5 cx = new Container(10); //oCx }

6 cx.put(0); class Iterator {
7 Iterator itx = cx.getIt(); /*@ any/any @*/ int[] data;
} Iterator(Container c) {

} 13 data = c.data;

class Y { }
/*@ owned/owned @*/ Container cy; }
void my() {

8 cy = new Container(10); //oCy

9 cy.put(0);
}

}

Fig. 3. Example 2.

Note objects od[],Cx and od[],Cy in the ownership trees. The first object is
the data array of X’s container, and the second one is the data array of Y’s
container; these two objects are represented by the same abstract object, od[].
The dominator annotations on oX → od[] and oI → od[] are any; this disallows
run-time objects oX and oI from being the owners of run-time object od[],Cx

and od[],Cx remains without an owner. Our analysis handles this case by forcing
od[],Cx up the dominator tree, as a child of root. On the other hand, the modifier
annotation on oX → od[] is owned which causes od[],Cx to be owned by oCx.

2.4 Discussion

On one hand, the owner-as-modifier protocol ”relaxes” the owner-as-dominator
protocol by allowing observational exposure. Thus, an exposed object that has
any dominator annotation, may still have owned modifier annotation. This was
the case with edge oCx → od[] in Figures 3 and 4: the data array od[] is exposed
to the iterator which causes a path that does not go through the enclosing
container (hence the any dominator annotation); however, the iterator access is
read-only (hence the owned modifier annotation).

On the other hand, the owner-as-modifier protocol is ”more strict” than the
owner-as-dominator protocol because it disallows modifications to objects that
belong to enclosing boundaries. Thus, an object that has owned dominator
annotation can have non-onwed modifier annotation. This was the case with
edge oA → oB in Figures 1 and 2. This edge is owned according to the owner-

root

oCx
oCy oI

od[]

oX oY

owned/owned owned/owned

owned/owned

any/owned owned/owned

owned/any

any/owned

owned/owned

any/any

any/any

root

oCx
oCy oI

od[],Cy

oX oY od[],Cx

root

oCx

oCy

oI od[],Cy

oX oY

od[],Cx

(i) Abstract object graph (ii) Dominator ownership tree (iii) Modifier ownership tree

Fig. 4. Abstract object graph and ownership trees for Example 2. Blue (thick) edges
denote create edges.

as-dominator protocol, because oB is dominated by its enclosing object oA.
However, it is non-owned (i.e., it is peer), according to the owner-as-modifier
protocol due to the fact that oB triggers an update to field mod of oA (i.e., causes
a modification to oA), and oA belongs to an enclosing boundary.

3 Analyses Needed for Inference of Dominator
Annotations

In this section, we describe the analyses that are needed for the inference of
dominator annotations. Later, in Section 5, we describe the additional analyses
that are needed for the inference of modifier annotations.

Section 3.1 defines the notions of object graph, and dominance boundary. Sec-
tion 3.2 briefly describes the underlying points-to analysis. Section 3.3 describes
the computation of the object graph, and Section 3.4 describes the computation
of the dominance boundary.

To simplify the presentation, which is quite intense, we do not discuss static
methods and static fields. They are handled correctly in the analyses and in the
implementation; aspects of the handling are described in our previous work [19].

3.1 Notation and Terms

Notation for Objects, Methods and Variables Run-time objects are de-
noted by o with superscript r: e.g., or, or

1, o
r
i . Analysis objects (i.e., representa-

tives of run-time objects), are denoted without the superscript r: e.g., o, o1, oi;
the set of all analysis object is denoted by O. In our analyses, run-time objects
are represented by their allocation sites: for each allocation site si, there is an
analysis object oi ∈ O which represents all run-time objects crated at this site.
For the rest of the paper we use the following notational convention: run-time

objects are denoted with superscript r and their analysis representatives are de-
noted using exactly the same o notation but without the superscript; for example,
or
1’s representative is o1, and or

k’s representative is ok. Analysis objects from the
concrete code examples are denoted using boldface without a superscript: e.g.,
oA denotes the A object created at line 3 in Figure 1.

Methods are denoted by m and n with various subscripts: e.g., mi, m1.
Methods from our code examples are denoted with their class: e.g., C.C denotes
the constructor of class C in Figure 1, and A.off denotes method off in class A.

Local variables are denoted by lower case letters: e.g., l, r, p, q. Variables
from our code example are denoted with a subscript that shows their enclosing
method: e.g., thisC.C denotes implicit parameter this of C.C in Figure 1.

Object Graph The notion of the object graph is central to our inference
analyses. A run-time object graph represents a program execution. The nodes in
the run-time object graph are the run-time objects, and the edges represent the
access relationships between these run-time objects.

Let Pe be an execution of program P , and let Ogr
Pe

be the run-time object
graph for this execution. Ogr

Pe
is constructed as follows:

– There is an edge or → or
1 in Ogr

Pe
if at some point of the execution Pe, a

field of object or refers to object or
1.

– There is an edge or → or
1 in Ogr

Pe
if or is an array object, and at some point

of the execution Pe, or has element or
1.

– There is an edge or → or
1 in Ogr

Pe
if at some point of the execution Pe, an

instance method invoked on receiver object or has local variable l, l 6= this,
that refers to object or

1
2.

The main method is treated as a special instance method executed on a
special receiver object root — that is, if main has a local variable l that refers
to an object or

1, then there is an edge root→ or
1 ∈ Ogr

Pe
.

This definition of the run-time object graph is consistent with earlier defi-
nitions [7, 30]. Note that the run-time object graph Ogr

Pe
”accumulates” edges

as the program executes and never ”deletes” edges; at the end of the execution,
Ogr

Pe
contains all edges that have been active during the program run.

Dominance Boundary Let Pe be an execution of program P , and let
Ogr

Pe
be the run-time object graph for this execution. Let or be any object

in Ogr
Pe

. The dominance boundary of or, denoted by Boundary(or), is the sub-
graph of Ogr

Pe
dominated by or — that is, all paths from root to the objects in

Boundary(or) go through or.

3.2 Points-to Analysis

Points-to analysis determines the set of objects that a given reference variable
or a reference field may point to. This analysis is the foundation of all other
2 We require that there be an explicit reference variable for each object that is ac-

cessed (i.e., a statement r.m().n() is re-written into an equivalent sequence r1=r.m();
r1.n()).

analyses in this paper. For the purposes of this paper, we use the well-known
Andersen-style flow- and context-insensitive points-to analysis for Java from [33,
18].3 The Andersen-style analysis is inclusion-based, and it distinguishes objects
per allocation sites — each allocation site si corresponds to analysis object
oi ∈ O. It has cubic worst case complexity, it is well-understood, and there are
several scalable publicly available implementations. The fact that our analyses
are based on this relatively inexpensive points-to analysis allows them to remain
efficient and practical.

The points-to analysis computes the points-to graph, Pt , of the program. We
extend the Pt notation to denote points-to sets. Pt(l) denotes the points-to set
of variable l and Pt(o.f) denotes the points-to set of reference field f of object
o. We assume that the reader is familiar with this analysis, and do not elaborate
on its semantics.

3.3 Object Graph Analysis

This object graph analysis uses the result of the points-to analysis, Pt , and
constructs Og , the approximation of all run-time object graphs Ogr

Pe
. If there is

an execution Pe with a run-time object graph Ogr
Pe

, such that edge or → or
1 ∈

Ogr
Pe

, then there is an edge o→ o1 ∈ Og where o is the representative of or and
o1 is the representative of or

1.

〈si: l = new C(r1) in m〉 Og ∪ {o→ oi | o ∈ Pt(thism)} // create
∪ {oi → oj | oj ∈ Pt(r1)} // in

〈l = r.f, r 6= this, l = r[k] in m〉 Og ∪ {o→ oi | o ∈ Pt(thism) ∧ oi ∈ Pt(l)} // out

〈l.f = r, l 6= this, l[k] = r in m〉 Og ∪ {oi → oj | oi ∈ Pt(l) ∧ oj ∈ Pt(r)} // in

〈l = r.n(r1), r 6= this in m〉 Og ∪ {o→ oj | o ∈ Pt(thism) ∧ oj ∈ Pt(l)} // out
∪ {oi → oj | oi ∈ Pt(r) ∧ oj ∈ Pt(r1)} // in

〈l = r.m(this), ... = this, in m〉 Og ∪ {oi → oi | oi ∈ Pt(this)} // self

foreach oi → oj ∈ Og s.t. oj ∈ Pt(oi.f) label the edge with f : oi
f→ oj ∈ Og

Fig. 5. Transfer functions for construction of Og .

Figure 5 gives the transfer functions for construction of the object graph
Og . The analysis starts with an empty Og and adds edges to Og as it processes
program statements. There are four kinds of edges: (i) create edges (due to object
creation), (ii) in edges (due to arguments), (iii) out edges (due to return), and
(iv) self edges (due to leak of this); an edge oi → oj may be of more than one
kind. The significance of these kinds of edges will become clear in Section 3.4.

3 Flow-insensitive analyses do not take into account the flow of control between pro-
gram points and are less precise and less expensive than flow-sensitive analyses.
Context-sensitive analyses distinguish between different calling contexts of a method
and are more precise and more expensive than context-insensitive ones.

An object creation statement si: l = new C(r1), in method m, results in two
kinds of edges. First, there are edges from each receiver of method m to oi, the
object created at that site. These edges are labeled as create edges. They capture
run-time object creation: when an object is created, this newly created object
becomes accessible to the receiver of method m. Second, there are edges from oi,
the newly created object, to each oj in the points-to set of argument r1. These
edges are labeled as in edges. They capture run-time access ”due to arguments”:
when an object is passed as an argument to a constructor, it becomes accessible
to the newly crated object.

An instance field read statement l = r.f , r 6= this, and an array read
statement l = r[k] in method m, result in edges from every receiver oi of m
to each oj in the points-to set of l. These edges are labeled as out edges. They
capture run-time access ”due to return”: when an object accessible to the object
referred by r, is ”returned” at this statement, it becomes accessible to the receiver
of m.

An instance field write statement l.f = r, l 6= this, and an array write
statement l[k] = r in method m, result in edges from every object oi in the
points-to set of l to every object oj in the points-to set of r. These edges are
in edges. They capture access ”due to arguments”: when an object referred by
r (and accessible to the receiver of m) is assigned to l.f , this object becomes
accessible to the object that l refers to.

A virtual call l = r.n(r1), r 6= this in method m results in two kinds of
edges. First, there are edges from each receiver of m to each object oj in the
points-to set of l. These edges are labeled as out edges. They capture access ”due
to return”: when the object, accessible to the object referred by r, is returned
due to this call, it flows to the receiver of m. Second, there are edges from each
object oi in the points-to set of r to each object oj in the points-to set of r1.
These edges capture flow ”due to arguments”, and are labeled as in edges.

Statements where implicit parameter this is leaked (namely, statements l =
r.m(this), l.f = this, and l = this), result in self edges. These edges account
that the this object accesses itself, and thus, it may pass a reference to itself
to other objects. These edges are needed for the correctness of the dominance
boundary analysis presented in Section 3.4.

The final line in Figure 5 examines each edge oi → oj in the constructed Og ,
and if oj is in the points-to set of some field f of oi (i.e., oj ∈ Pt(oi.f)), the edge

is determined to be a field edge and is labeled with f : oi
f→ oj .

Example Consider the code in Figure 3.Line 1, an object creation statement,
results in create edge root→ odemo: we have Pt(thismain) = {root}, and the
object created at site 1 is odemo. Line 2 does not result in edges because the
call has no reference arguments and no reference return. Line 3 results in create
edge odemo → oA. Line 5 results in craete edge oA → oB, in edge oB → oA,
and self edge oA → oA. Line 7 results in create edge oB → oC and in edge
oC → oA. Finally, statement 8 results in create edge oB → oC. The object
graph constructed by the analysis is given in Figure 2(i). The field edges are the
following: oA

b→ oB, oB
c→ oC, oB

d→ oD and oC
a→ oA.

Note that the analysis ignores statements through this (this.f = r, l =
this.f and this.n(r1)) and direct assignments (l = r); this is correct because
these statements do not result in new run-time edges. For example, consider
this.f = r in method m; the run-time access edge between the receiver of m
and the object referred by r is already there; it is due to object creation (e.g,
r = new C()), due to a return (e.g., r = r1.n()), or it is due to arguments.

Note that a straight-forward (and naive) object graph can be obtained di-
rectly from points-to information as follows. First, one can add an edge oi → oj

to Og for each field edge in the points-to graph (i.e., oj ∈ Pt(oi.f)). Second,
one can consider each variable l in method m, and for each oi ∈ Pt(thism)
and each oj ∈ Pt(l), add edge oi → oj to Og . This construction inherits signifi-
cant imprecision from the context-insensitive Andersen’s points-to analysis. For
example, consider the following common object-oriented code, which initializes
an instance field through an instance method. We assume that classes Y and Z
inherit from superclass X.

class A {
X f;
m(X xa) { this.f = xa; }
}

A a1 = new A();// oa1 a1.m(new Y()); // oy

A a2 = new A();// oa2 a2.m(new Z()); // oz

The context-insensitive points-to analysis merges the contexts of invocation
of method m, which results in having fields f of each of the A objects, oa1 and
oa2, point to both oy and oz. Using the naive construction of the object graph
results in access edges from oa1 to both oy and oz, and from oa2 to both oy

and oz. This is imprecise — oa1 accesses only oy, and oa2 accesses only oz.
The object graph analysis in Figure 5 handles this case and other idiomatic

cases precisely. It ignores this.f=xa, the statement that would have caused
imprecision; it processes statements a1.m(new Y()) and a2.m(new Z()); the
first statement results in an access edge from oa1 to oy, and the second statement
results in an edge from oa2 to oz. The analysis achieves good precision ”for free”
— its worst-case complexity is cubic, the same as the worst-case complexity of
Andersen’s analysis.

3.4 Dominance Boundary Analysis

In this section, we present the dominance boundary analysis. This analysis is
at the heart of the inference of dominator and modifier annotations, and the
central contribution of this paper. It uses the object graph Og described above.

The dominance boundary of object oi ∈ O is a subgraph of Og rooted at oi.
The analysis that computes the dominance boundary of oi is presented in Fig-
ure 7. It uses Og (as well as other information which will be explained shortly),
takes as input oi, and computes the dominance boundary of oi, Boundary(oi).
The correctness of this computation is stated by the following lemma.

o
A

o
C

o
X

root main {

 C c = new C(); //o
C

 A a = c.m();

 ...

}

class C {

 A a;

 A m() {

 X x = new X(); //o
X

 A a = new A(); //o
A

 a.x = x;

 return a;

 }

}

o
A

o
C

o
X

root main {

 C c = new C(); //o
C

 A a = new A(); //o
A

 c.m(a);

 ...

}

class C {

 void m(A a) {

 X x = new X(); //o
X

 a.x = x;

 }

}

(i) flow due to return (ii) flow due to arguments

Fig. 6. Object flows. Blue (thick) edges denote create edges.

Lemma 1. Let oi be any analysis object and let Boundary(oi) be the dominance
boundary of oi computed by the analysis in Figure 7. Let Ogr

Pe
be any run-time

object graph and let or
i ∈ Ogr

Pe
be any run-time object represented by oi.

For every path p: or
i → ... → or

j ∈ Ogr
Pe

, such that the representative of p is
in Boundary(oi), we have that or

i dominates or
j in Ogr

Pe
.

Informally, the lemma states that the computed static boundary of oi (under)
approximates the run-time dominance boundary of each object or

i represented
by oi. The rest of this section describes the intuition behind the analysis. The
correctness proof of the lemma is given in Appendix A.

Create Reachability One important observation is that in order for an
object or

j to be in the boundary of or
i , or

j must have been created by or
i , directly

or indirectly. Let set createClosure(oi) include oi and the set of objects reachable
on create edges from oi in the object graph Og . In the running example from
Figures 1 and 2(i), createClosure(odemo) = { odemo, oA, oB, oc, oD}— odemo

creates oA, then oA creates oB, and oB creates oC and oD.
createClosure(oi) is an upper bound on the nodes in Boundary(oi); intu-

itively, an object oj in createClosure(oi) stays in the boundary until (roughly)
oj flows to an ”outside” object ok.

Object Flow Another important observation is the flow of objects. Let or
i

be a run-time object that has access to another object, or
j — that is, there is

an access edge or
i → or

j in the current run-time object graph. Object or
j can

flow from or
i to another object, or

k, in one of two cases: (i) due to a return: or
j is

returned from or
i to or

k, or (ii) due to an argument: oj is passed as an argument
from or

i to or
k. Below, we describe the two cases:

(i) Flow due to return. Recall that or
i has access to or

j — i.e., there is edge
or

i → or
j in the current object graph. Object or

j flows from or
i to or

k due to
a return if we have (1) or

k has access to or
i , i.e., there is edge or

k → or
i , and

(2) method m invoked on receiver or
k executes statement l = r.n() where r

points to or
i , and l points to or

j (i.e., or
j is returned from or

i to or
k due to

statement l = r.n())4. Og reflects this flow by edge triple ok → oi, oi → oj

and ok → oj .
(ii) Flow due to arguments. Again, we have or

i → or
j . Object or

j flows from or
i to

or
k due to arguments if we have (1) or

i → or
k, and (2) method m invoked on

receiver or
i , executes statement r.n(r1) where r points to or

k and r1 points to
or

j (i.e., or
j is passed from or

i to or
k as an argument in statement r.n(r1)). Og

reflects this flow by edge triple oi → ok, ok → oj and oi → oj .

Consider Figure 6(i) which illustrates case (i). We have that root has access
to oC (root creates oC) and oC has access to oA (again, oC creates oA).
Subsequently statement a = c.m() in main returns oA to root which results in
an access edge from root to oA. The flow of oC from oA to root is reflected
by edge triple root→ oC, oC → oA, root→ oA. Now consider Figure 6(ii)
which illustrates case (ii). We have that root accesses oC and oA (root creates
both objects), and statement c.m(a) passes oA to oC which results in an access
edge from oC to oA. The flow of oa from root to oC is reflected by edge triple
root→ oC, oC → oA, root→ oA (note that this triple is identical to the triple
in case (i)).

The notion of the edge triple is central to the analysis; the tracking of flow
of objects is at the heart of the precise computation of dominance boundary
information. From now on, we will interchangeably denote an edge triple as a
triple of edges, or as an ordered triple of nodes. An edge triple ok → oi, oi → oj ,
ok → oj is denoted as an ordered triple of nodes as follows: ok, oi, oj .

Valid Triple Yet another important observation is that not every edge triple
ok → oi, oi → oj , ok → oj represents valid object flow. For example, consider
triple oc, oA, oA from the graph in Figure 2(i) (this triple involves self edge
oA → oA). It is easy to see that this triple does not represent valid flow: there is
no flow from oa to oC due to a return, and there is no flow from oC to oA due
to arguments. The only triple that involves oA → oA and represents valid flow
is oA, oB, oA: oA accesses oB, oA accesses itself through this, and oA passes
itself to oB as an argument in new B(this).

The analysis uses predicate validTriple(ok, oi, oj) to filter out invalid triples.
Predicate validTriple is implemented by recording the statement that causes
the creation of an edge; validTriple(ok, oi, oj) examines a triple ok, oi, oj and
checks the two cases: (i) if ok → oj is an out edge, and there is a statement
l = r.n() associated to this edge such that oi ∈ Pt(r), validTriple(ok, oi, oj)
returns true; (ii) if oi → oj is an in edge and there is a statement l.n(r) in
method m associated to it such that ok ∈ Pt(thism), validTriple(ok, oi, oj)
returns true as well; otherwise, validTriple(ok, oi, oj) returns false. The predicate
increases the memory needed to store the object graph; however, the impact of
validTriple on scalability and precision is significant — in fact, without it, the
analysis does not scale even to a relatively small program.

The analysis makes use of predicate isOutside(oi → oj). isOutside(oi → oj)
returns true if there exists ok such that ok, oi, oj is a valid triple — that is, there
4 For brevity, we mention statement kind l = r.n() only; the other statements that

result in out edges, namely l = r.f , and l = r[i] can be exectuted as well.

procedure computeBoundary
uses Og , createClosure, validTriple, isOutside
input oi

outputBoundary(oi)
[1] Out = {oj | isOutside(oi → oj)}
[2] In = createClosure(oi) - Out
[3] W = {o1 → o2 | o1 ∈ In ∧ o2 ∈ Out}

[4] while W 6= ∅
[5] remove o→ oj from W , mark it as visited
[6] if oj is not visited ∧ oj ∈ createClosure(oi)
[7] mark oj as visited
[8] remove createClosure(oj) from In
[9] add createClosure(oj) to Out
[10] foreach ok′ ∈ createClosure(oj)
[11] foreach create edge ok′′ → ok′ s.t. ok′′ ∈ In
[12] if ok′′ → ok′ is not visited, add ok′′ → ok′ to W
[13] foreach validTriple(o, oj , ok)
[14] add ok to Out ;
[15] if o→ ok is not visited, add o→ ok to W
[16] foreach validTriple(o, ok′ , oj) s.t. ok′ ∈ In
[17] if ok′ → oj is not visited, add ok′ → oj to W
[18] foreach validTriple(ok′ , o, oj) s.t. ok′ ∈ In
[19] if ok′ → oj is not visited, add ok′ → oj to W

[20] Boundary(oi) = {o→ oj ∈ Og | o ∈ In ∧ oj ∈ In}.

Fig. 7. computeBoundary computes the boundary of oi.

exists some ”outside” ok such that either (i) oj is returned from oi to ok, or (ii)
oj is passed as an argument from ok to oi; as a result, there could be a path to
oj through ok (and not through oi) in which case oi may not dominate oj .

Analysis Description The analysis maintains sets Out , In, and worklist W .
Set Out contains the current set of ”outside” objects accessible to the boundary.
These are objects that either (i) flow to the ”outside” from the boundary of oi, or
(ii) they flow to the boundary of oi from ”outside”. Set Out is initialized to the
set of objects oj such that isOutside(oi → oj) is true (line 1). The initial set Out
captures the objects oj such that one of the following is true: (i) oj is directly
returned from oi (e.g., through a statement such as a = c.m() in Figure 6(i)
which causes edge oC → oA to be an outside edge, and oA to be in the initial
Out), or (ii) oj is passed from outside into oi as an argument (e.g., through a
statement such as c.m(a) in Figure 6(ii) which causes edge oC → oA to be an
outside edge and oA to be in the initial Out). Set In contains the current (over)
approximation of the dominance boundary; it is initialized to createClosure(oi)
minus the objects returned from oi, i.e, createClosure(oi)−Out (line 2). Worklist
W contains the set of cut edges — edges between the boundary In and the
outside objects Out (line 3).

Oi

Oout O

O1 O2

O3 O4

“outside”

“inside”

Initialization: In = { oi, o1, o3, o4 }, Out = { o2 }, W = { oi ! o2 }

Iteration 1 : In = { oi, o1, o3, o4 }, Out = { o2 }, W = { o1 ! o2 }

Iteration 2 : In = { oi, o1, o3 }, Out = { o2, o4 }, W = { o1 ! o4 }

Iteration 3 : In = { oi, o1 }, Out = { o2, o4, o3 }, W = { o1 ! o3 }

Iteration 4 : In = { oi, o1 }, Out = { o2, o4, o3 }, W = { }

Fig. 8. Boundary computation example. The boxed objects are found to be in Out .

The analysis starts with initial sets In, Out and W and proceeds to identify
all objects, originally in In, that are reachable from the initial Out . For every
new edge o → oj (o ∈ In is an ”inside” object, and oj ∈ Out is an ”outside”
object) taken from the worklist, the analysis does three things.

First, it examines oj (lines 6-12). If oj was in In (i.e., in createClosure(oi))
and was found to be in Out , the analysis removes the entire createClosure(oj)
from In and adds it to Out (lines 8-9). Clearly, of oj is reachable from the
”outside”, then the objects reachable on create edges from oj are also reachable
from the ”outside”. Next, the analysis identifies create edges whose source ok′′

is in In and target ok′ was just found to be in Out , and adds these edges to
W (lines 10-12)5.

Second, the analysis identifies objects ok, such that o, oj , ok is a valid triple
— in other words, we may have that ok flows from o to ”outside” oj , or ok flows
from ”outside” oj to o. The analysis adds ok to Out and o → ok to W (lines
13-15). If ok was in In until this point (i.e., ok was an ”inside” object, until
it was passed to ”outside” object oj), when the edge is removed from W , ok’s
createClosure will be removed from In and added to Out .

Third, the analysis identifies objects ok′ in In such that ”outside” object oj

flows to ok′ (lines 16-19); this may cause an object deeper in the boundary to
become reachable from outside, which will be discovered when edge ok′ → oj

is examined at line 5 in a subsequent iteration of the while loop. The analysis
terminates because each object graph edge appears in W at most once.

Examples Consider the object graph in Figure 2(i), and consider the com-
putation of the boundary of oA. Out and W are empty and In is initialized to
createClosure(oA) = {oA, oB, oC, oD}. The while loop at lines 4-19 never exe-
cutes and Boundary(oA) consists of nodes oA, oB, oC, oD and the edges between
them.

As another example, consider Figure 8. ”Outside” object o2 is passed as an
argument to oi. oi then passes o2 to ”inside” object o1; o1 then passes ”inside”

5 We conjecture that these edges are actually unnecessary; however, they are needed
by our correctness proof, which requires that all cut edges are seen on W .

object o4 to o2 and o4 becomes ”outside”; o1 passes ”inside” object o3 to o4 and
o3 becomes ”outside”. The workings of the analysis are shown in Figure 8.

These examples, which are intentionally simplified, may create the impression
that dominance inference could be done by using known dominator algorithms
on the object graph. This is not the case, because the object graph is a static
representation of objects and object accesses — that is, a node in the object
graph typically correspond to multiple run-time objects and an edge corresponds
to multiple run-time access edges. Using standard dominator algorithms on the
object graph would affect both correctness and precision. For example, consider
Figure 2(ii). A dominator algorithm will determine that Y’s container, oCy, does
not dominate its array, oD, because of the multiple paths from root to od[] that
do not go through oCy; in contrast, our analysis determines that Boundary(oCy)
equals {oCy → od[]}. Therefore, we have that oCy dominates its array od[].

4 Inference of Dominator Annotations

Function dom: E(Og)→ {owned, any} gives the assignment of dominator an-
notations to the edges of Og . It is defined as follows:

dom(oi → oj) =
{

owned if oi → oj ∈ Boundary(oi)
any otherwise

Let Ogr
Pe

be any run-time object graph. Function domPe
: E(Ogr

Pe
)→ {owned, any}

gives the assignment of dominator annotations to the edges of Ogr
Pe

. It is defined
in the obvious way:

domPe
(or

i → or
j) = dom(oi → oj).

That is, each run-time edge or
i → or

j receives the dominator annotation assigned
to its representative oi → oj . domPe

induces an ownership tree as follows:

(Dominator ownership tree DPe
for program execution Pe.) Let Ogr

Pe
be the

run-time object graph for Pe and let domPe be the assignment of dominator
annotations to the edges of Ogr

Pe
. DPe is construted as follows:

foreach or
i → or

j ∈ Ogr
Pe

s.t. domPe
(or

i → or
j) is owned

add or
i → or

j to DPe

foreach ok
i ∈ Ogr

Pe
without parent in DPe

add root→ or
k to DPe

The following theorem formalizes the correctness requirements imposed by
the owner-as-dominator protocol:

Theorem 1. (Correctness of owner-as-dominator inference). Let Ogr
Pe

be the
run-time object graph for execution Pe, and let DPe

be the dominator ownership
tree for Pe as defined above. The following holds:

(1) DPe
is a tree.

(2) For every or
i → or

j ∈ DPe , or
i dominates or

j in Ogr
Pe

.

The theorem follows easily from Lemma 1.
Note that our inference simplifies the classical ownership types [7] because it

does not consider ownership parameters. We believe that the dominance bound-
ary information can be successfully used to reason about ownership parameters,
and we plan to extend our work with such reasoning in the future.

5 Analyses Needed for the Inference of Modifier
Annotations

In addition to object graph and dominance boundary information, the inference
of modifier annotations requires information about object modification. Tradi-
tionally, reasoning about object modification is done by using method purity
annotations (i.e., annotations that designate a method as side-effect free) [11].
This approach has two disadvantages. First, it places a burden on the program-
mer to provide correct and precise method purity annotations. Second, method
purity typically forbids all updates, which is a stronger requirement than needed
for the inference of modifier annotations; using method purity annotations could
lead to imprecise assignment of modifier annotations.

This section presents several analyses that are needed for the inference of
modifier annotations. The ultimate goal is to capture necessary information
about object modification automatically (i.e., without annotations) and pre-
cisely.

Section 5.1 defines two important notions: method sequence and object mod-
ification. Sections 5.2, 5.3, 5.4, and 5.5 present the analyses that capture infor-
mation about object modification in the context of modifier annotations.

5.1 Notation and Terms

Notation for paths Notation or
i →∗ or

j denotes a path of 0 or more edges, and
or

i →+ or
j denotes denotes a path of 1 or more edges in some run-time object

graph Ogr
Pe

. Analogously, oi →∗ oj denotes a path of 0 or more edges, and
oi →+ oj denotes a path of 1 or more edges in Og .

Method Sequence The notion of method sequence is central to the analysis.
It represents the transfer of control between distinct run-time objects.

Notation or.m() denotes that instance method m is invoked on receiver or.
Notation or

1.m1() → or
2.m2() denotes a run-time method sequence. It represents

that instance method m1 invoked on receiver or
1 calls instance method m2 on

receiver or
2. Method sequence or

1.m1()→ or
2.m2() happens as follows: m1 invoked

on receiver or
1, executes a call site p.m2(), p 6= this (i.e., p.m2() is in m1), where

p refers to or
2. This leads to the invocation of the appropriate m2 on receiver or

2.6

6 Method sequences ”hide” calls through this; for example, if there is m1 invoked on
receiver or

1, then m1 executes this.m′1() and in turn, m′1 executes a call site p.m2(),
p 6= this, where p refers to or

2, then there is a method sequence or
1.m1()→ or

2.m2().
Calls through this require several special cases in the analysis; they are handled
correctly in the implementation, but for brevity, discussion is omitted.

For example, consider method C.C in Figure 1. C.C is invoked on receiver
oC, and when a.mod is true, it executes call site a.off(), which leads to the
execution of method A.off on receiver oA. Therefore, there is a method sequence
oC.C.C()→ oA.A.off().

For convenience, we treat field accesses not through this (i.e, p = q.f , q 6=
this and p.f = q, p 6= this), and array accesses (i.e., p = q[i] and p[i] = q)
as special method calls. Notation or

1.m1() → or
2.rd denotes that method m1()

invoked on receiver or
1 executes a read p = q.f , p 6= this where q refers to or

2.
Similarly, or

1.m1() → or
2.wr denotes that method m1() invoked on receiver or

1

executes a write p.f = q, p 6= this where p refers to or
2.

Notation or
1.m1() →∗ or

2.m2() denotes that or
2.m2() is reachable through

zero or more method sequences from or
1.m1(): we have or

1.m1() → or
i .mi() →

or
j .mj()→ ...→ or

2.m2() (in other words, or
1.m1() eventually calls or

2.m2()).
Object Modification Recall that the correctness theorem for modifier an-

notations is stated in terms of the notion of object modification; it is necessary
to give a precise definition of object modification.

We say that or.m() is an update of object or if m executes a statement
this.f = q, or m is a wr . (i.e., or.m() updates a field of or).

We say that object or
i modifies object or

j , if the following conditions are true:

(i) There is a method sequence path or
i .mi() → or

j .mj() →∗ or
k.mk() (i.e., a

sequence of stack frames or
i .mi(), or

j .mj(), etc. that leads to or
k.mk().

(ii) or
k.mk() is an update.

(iii) There is an object or such that there is a local variable l (including this)

on a stack frame before or
j .mj , which refers to or, and or

f

→∗ or
k (i.e., or

k is
part of visible state, and the update caused by oi.mi() → oj .mj() is visible
after the execution of or

j .mj()).

To the best of our understanding, this definition coincides with the definition
of object modification in Universes [10, 25].

It is easy to see that this definition subsumes the more standard definition
that uses the notion of method purity. That is, or

i modifies or
j if one of the

following is true:

(1) Object or
i updates a field of or

j . That is, there is a method executed on
receiver or

i which executes a statement p.f = q, p 6= this and p refers to or
j .

or
(2) Object or

i calls an impure method on or
j . That is, there is a method executed

on receiver or
i which executes a statement p.m(), p 6= this where p refers

to or
j and p.m() dispatches to impure method mj (i.e., or

j .mj() leads to an
update of an object or

k which is visible after the execution of or
j .mj()).

5.2 Method Sequence Analysis

The method sequence analysis infers method sequences oi.mi()→ oj .mj() which
approximate run-time method sequences as defined in Section 5.1. Method se-
quence information helps propagate updates, and reason about object modifica-
tion precisely and efficiently.

procedure computeMethodSequences
uses Og
input -
outputOg+

[1] foreach statement l.mj(), l 6= this, in method m
[2] foreach oi → oj ∈ Og , s.t., oi ∈ Pt(thism) ∧ oj ∈ Pt(l)
[3] mj = dispatch(l.mj(), oj)
[4] add oi.mi()→ oj .mj to Og+

Fig. 9. Method sequence analysis.

Oa

Odemo

Ob Oc Od

root

Oa.A.A()

Odemo.Demo.testA()

Ob.B.B() Oc.C.C()

root.main()

Oa.A.off()

Od.D.D()

Fig. 10. Og and Og+ for Example 1.

The analysis uses Og and outputs the augmented object graph Og+. The
nodes in Og+ are the tuples o.m(), and the edges represent method sequences.
If there is an execution that exhibits method sequence or

i .mi()→ or
j .mj(), then

there is a representative method sequence oi.mi()→ oj .mj() ∈ Og+.
Figure 10 presents the method sequence analysis. Line 1 identifies call state-

ments l.mj(); these statements trigger method sequences. Line 2 identifies edges
oi → oj ∈ Og affected by l.mj()—these are the edges where oi is a receiver of
the enclosing method m, and oj is a receiver at the call l.mj(). Line 3 identifies
method mj — the run-time target dispatched at call site l.mj() with receiver
oj . Line 4 adds oi.mi()→ oj .mj() to the augmented object graph Og+.

Example Consider the code in Figure 1. The object graph and the aug-
mented object graph for this example are shown in Figure 10. Call d.textA(...)
at line 2 causes method sequence root.main() → oDemo.Demo.testA(). Con-
structor call a = new A() at line 3 causes oDemo.Demo.testA() → oA.A.A()
(we have oDemo ∈ Pt(thisDemo.testA) and oA ∈ Pt(a)). Call a.off() at line
10 causes oC.C.C()→ oA.A.off() (we have oC ∈ Pt(thisC.C) and oA ∈ Pt(a)).

5.3 Minimal Boundary Analysis

The minimal boundary analysis takes as input an edge oi → oj and computes the
set of ”closest dominators” ok, of oi → oj . These ok’s are such that Boundary(ok)
are the minimal boundaries enclosing oi → oj — roughly, that means that
every other Boundary(o′k) enclosing oi → oj is larger than some Boundary(ok)
(i.e., Boundary(o′k) ⊃ Boundary(ok)). This information is needed to confine

updates as deep in the dominance hierarchy as possible, and compute as deep
an ownership tree as possible.

The minimal boundary analysis is given in Figure 11. It uses Og and bound-
ary information, takes as input edge oi → oj , and computes set minBoundaries(oi →
oj). The correctness result for this computation is given by the following lemma.

Lemma 2. Let or
i → or

j , represented by oi → oj, be an edge in some Ogr
Pe

. Let
minBoundaries(oi → oj) be the set computed by the analysis in Figure 11. There
exists or

k ∈ Ogr
Pe

, or
k 6= or

i and or
k 6= or

j , represented by ok, such that (1) ok ∈
minBoundaries(oi → oj) and (2) the representative of every path or

k →∗ or
i → or

j

is in Boundary(ok).

Informally, the lemma states that set minBoundaries(oi → oj) ”covers” all
run-time edges or

i → or
j . The proof of this lemma is presented in Appendix A.

procedure computeMinBoundaries
uses Og , Boundary
input oi → oj ∈ Og , createPath ⊆ O, o ∈ O
outputminBoundaries(oi → oj)

[1] if oi → oj ∈ Boundary(o) ∧ createPath ⊆ Boundary(o) ∧ o 6= oi ∧ o 6= oj

[2] add o to minBoundaries(oi → oj);
[3] else
[4] foreach create edge o′ → o ∈ Og
[5] computeMinBoundaries(oi → oj , createPath ∪ {o′}, o′)

Fig. 11. Minimal boundaries analysis.

computeMinBoundaries is a recursive procedure; at the top level, it is called
with computeMinBoundaries(oi → oj , {oi}, oi). It starts at oi and follows create
edges backwards, keeping the create edge path to oi in createPath. When it
reaches an o such that the boundary of o contains oi → oj and the create path
createPath, and o 6= oi and o 6= oj , the analysis adds o to minBoundaries(oi →
oj) and the search stops.7

Example Consider the object graph in Figure 2(i), and consider the minimal
boundary computation for edge oC → oA. At the top level, computeMinBoundaries
is called with arguments oC → oA, {oC}, oC. The search proceeds along the
create path until computeMinBoundaries is called with arguments oC → oA,
{oC, oB, oA, oDemo}, oDemo. The analysis adds oDemo to minBoundaries(oC →
oA); in fact oDemo is the only object in minBoundaries(oC → oA).

7 For simplicity, we assume that the create paths do not contain cycles; it may happen
(since this is an analysis path) that a create path contains a cycle; our implementa-
tion handles this case correctly.

procedure computeMod procedure propagateMod
uses Og , Og+, Boundary , minBoundaries uses -
input - input oi.mi(), ok, propUp, W1
output Mod output -

[1] foreach update oj .mj() add oj .mj() to W1 [1] W2 = {oi.mi()}
[2] while W1 not empty [2] mark oi.mi() as visited in W2
[3] remove oj .mj() from W1 [3] while W2 is not empty
[4] mark oj .mj() as visited [4] take oi.mi() from W2
[5] foreach oi.mi()→ oj .mj() ∈ Og+ [5] foreach o.m()→ oi.mi() ∈ Og+,
[6] add oi → oj to Mod s.t., o→ oi ∈ Boundary(ok)
[7] if oi → oj ∈ Boundary(oi) [6] add o→ oi to Mod

[8] if oi

f

→∗ oj ∧ oi.mi() not visited in W1 [7] if o == ok ∧ propUp ∧
[9] add oi.mi() to W1 o.m() not visited in W1
[10] else [8] add o.m() to W1
[11] foreach ok ∈ minBoundaries(oi → oj) [9] if o.m() not visited in W2
[12] propUp=false [10] add o.m() to W2

[13] if ok

f

→∗ oj propUp=true
[14] propagateMod(oi.mi(), ok, propUp, W1)

Fig. 12. Object modification analysis.

5.4 Object Modification Analysis

This object modification analysis computes set Mod which approximates run-
time object modification: if there is a run-time edge or

i → or
j such that or

i modifies
or

j according to the definition in Section 5.1, then the representative of this edge,
oi → oj , is in Mod .

The following lemma formalizes this property.

Lemma 3. Let Ogr
Pe

be any run-time object graph. Let or
i → or

j ∈ Ogr
Pe

, rep-
resented by oi → oj, be an edge such that or

i modifies or
j . Then oi → oj is in

Mod.

The proof of the lemma is presented in Appendix A.
The analysis is presented in Figure 12. It uses Og , Og+, boundary informa-

tion and minimal boundary information, and computes set Mod . Informally, it
considers each update oj .mj() (i.e., mj contains a statement this.f = q or mj

is a wr), and propagates this update up Og until all object modifications are
discovered; the analysis keeps an update as deep in the dominance hierarchy as
possible.

The analysis considers each method sequence oi.mi()→ oj .mj() (line 5), and
adds the corresponding edge oi → oj to Mod (line 6); clearly, if oj .mj() is an
update, then oi → oj represents an object modification. The correctness for the
computation is given by the following lemma.

Subsequently, the analysis considers two cases. If oj is in the boundary of
oi (lines 7-9), the update may be hidden behind oi (i.e., oj is not a transitive

field of oi) or it may not be hidden behind oi (i.e., oj is a transitive field of oi).
If hidden, propagation stops; if not hidden oi.mi is added to the worklist W1
for further propagation up the graph. If oj is not in the boundary of oi (lines
10-14), the analysis considers each minimal boundary ok. Again, the update may
be hidden behind ok (i.e., if oj is not a transitive field of ok), or it may not be
hidden behind ok (i.e., oj is a transitive field of ok). In both cases, the update is
propagated within the boundary of ok by propagateMod . If the update is hidden,
propUp is set to false, and propagateMod does not update W1 (i.e., propagation
stops at ok); otherwise, propUp is set to true, and propagateMod adds new tuples
to W1 (i.e., propagation proceeds accordingly).

Auxiliary procedure propagateMod propagates an update oi.mi() in the bound-
ary of ok; it traverses backwards each method sequence path ok.mk()→∗ oi.mi()
(a path that leads to the update oi.mi()), and adds each edge o→ oi along this
path to Mod (line 5 in propagateMod).

Example Consider the object graph in Figure 2(i), and the propagation
of update oA.A.off(). The analysis discovers oC.C.C() → oA.A.off() (line 6),
adds edge oC → oA to Mod (line 7), and continues the examination of the edge.
Since oC → oA /∈ Boundary(oC), the analysis proceeds to lines 10-14. As we
saw earlier, the only object in minBoundaries(oC → oA) is oDemo; oA is not a
transitive field of oDemo and therefore propagateMod is called with arguments
oC.C.C(), oDemo, false and W1. propagateMod visits oB.B.B(), oA.A.A() and
oDemo.testA(), and adds edges oB → oC, oA → oB and oDemo → oA to Mod .

It is important to note that since propUp is false, oDemo.testA() is not added
to W1 (i.e., the update is not propagated beyond the boundary of oDemo); This is
correct and precise because the updates caused by testA are not visible after the
execution of testA; as a result, edge root→ oDemo is typed any. In contrast,
an approach based on method purity annotations would determine that testA is
not pure because it causes many updates (even though all these updates are to
invisible objects!); as a result, the approach would determine that root modifies
oDemo and the edge is typed peer or owned.

The Mod set equals {oC → oA, ob → oD, oB → oC, oA → oB, oDemo →
oA}.

5.5 Unique Modification Analysis

Another analysis needed by the inference of modifier annotations is the unique
modification analysis. This analysis helps filter out some observational exposure,
and allows us to assign modifier annotation owned to edges that have dominator
annotation any.

Let oi → oj ∈ Boundary(ok) be a modification edge, i.e., oi → oj ∈ Mod .
We define a predicate uniqueMod(oi → oj , ok); it denotes whether edge oi →
oj is a unique modification in the boundary of ok. Predicate uniqueMod(oi →
oj , ok) returns true if the following conditions are true: (1) oi → oj is a create
edge, and not an in or an out edge, and (2) there is no other edge o → oj ∈
Boundary(ok), such that o → oj ∈ Mod ; the predicate returns false otherwise.

Unique modification is when oi creates and modifies oj , and oi ”lends” oj to
other objects o, but the access of o to oj is only observational (i.e., read-only). 8

Next, we define a predicate uniqueMod(oi → oj). It returns true if for every
ok ∈ minBoundaries(oi → oj) we have uniqueMod(oi → oj , ok); it returns false
otherwise. In other words, an edge oi → oj is a unique modification if it is a
unique modification within each of its enclosing minimal boundaries.

Example Consider the example in Figure 3 and its corresponding object
graph in Figure 2(ii). Consider edge oCx → od[]. There is only one minimal
boundary enclosing this edge, Boundary(oX). One can see that the conditions
for uniqueMod(oCx → od[], oX) hold: (i) edge oCx → od[] is a create edge, but
not an in or out edge, and (ii) the only other edge, oi → od[] is not a modification
edge (in fact, there is no method sequence associated with this edge at all). The
concept of unique modification allows us to assign modifier annotation owned
to edge oCx → od[], even though this edge has dominator annotation any.

6 Inference of Modifier Annotations

In general, there are many possible assignments of modifier annotations to object
graph edges that meet the correctness requirements stated in Section 2. For
example, one such assignment assigns annotations owned to object graph edges
that originate at root, and annotations peer to all other edges. This assignment
states that all objects in the program are peers owned by root. It creates a flat
ownership tree — there is a single owner, root, and all other objects are children
of root. This assignment is hardly useful. The goal of the inference of modifier
annotations is to create as deep an ownership hierarchy as possible.

Function mod : E(Og)→ {any, owned, peer} gives the assignment of mod-
ifier annotations to the edges of Og . It is defined by the analysis in Figure 13.

First, the analysis assigns annotation any to each edge (line 1). Next, it
examines each object modification edge oi → oj ∈ Mod . If oi → oj is in the
boundary of oi (i.e., the modification is confined in the boundary of the triggering
object), the analysis assigns annotation owned to it (line 3). If the edge is
exposed outside of the boundary of oi, but the exposure remains observational,
the analysis assigns annotation owned as well (line 4). Otherwise, the analysis
assigns annotation peer (line 5). This part of the analysis (lines 2-5) ensures
that if or

i modifies or
j , then the edge or

i → or
j receives annotation owned or

peer, and therefore, either or
i is the owner of or

j , or or
i and or

j are peers in the
ownership tree, as required by owner-as-modifier.

Subsequently, the analysis calls procedure checkConflict on each edge oi → oj

that has received annotation owned. This part of the analysis (lines 6-8) ensures
that the owned and peer annotations induce well-defined ownership trees (i.e.,
no object has more than one owner).

8 The condition that oi → oj is not an in or an out edge is needed for correctness: it
ensures that an edge oi → oj cannot represent two distinct run-time edges that end
at or

j (e.g., or
i1 → or

j , and or
i2 → or

j).

procedure inferModifierAnnotations
uses Og , Boundary , Mod , uniqueMod
input -
output mod
[1] foreach oi → oj ∈ Og mod(oi → oj) = any

[2] foreach oi → oj ∈ Mod
[3] if oi → oj ∈ Boundary(oi) mod(oi → oj) = owned
[4] else if uniqueMod(oi → oj) mod(oi → oj) = owned
[5] else mod(oi → oj) = peer

[6] while mod changes
[7] foreach oi → oj ∈ Og s.t. mod(oi → oj) is owned
[8] checkConflict(oi → oj)

procedure checkConflict
uses -

input oi
owned→ oj

output -

[1] if ∃p: oi
owned→ oj

peer
→∗ o′

peer→ o s.t. p /∈ Boundary(oi)
[2] mod(oi → oj) = peer

[3] else if ∃p1: oi

peer
→∗ o ∧ ∃p2: oi

owned→ oj

peer
→∗ o

[4] mod(oi → oj) = peer

Note: oi
owned→ oj denotes that mod(oi → oj) is owned.

oj

peer
→∗ o′ denotes the empty path oj , and any path of one

or more peer edges from oj to o′.

Fig. 13. Inference of modifier annotations.

Procedure checkConflict performs two checks. First, it checks if there is a path

oj

peer
→∗ o′

peer→ o that is not in the boundary of oi (lines 1-2 in checkConflict).
Without loss of generality we may assume that oj →∗ o′ ∈ Boundary(oi), and
o′ → o /∈ Boundary(oi). This means that some object in the boundary of oi,
namely o′ modifies an object o from an enclosing boundary; this modification
forces o′ and o to be peers, and the owner of these peers is an object from an
enclosing boundary, not oi. The annotation of oi → oj must be changed to peer.
Second, the procedure checks if there are two paths from oi to o, one that forces
oi to be the owner of o, and another that forces oi to be a peer of o (lines 3-4
in checkConflict). Again, the annotation of oi → oj must be changed to peer.
This essentially ”flattens” the dominance boundary of oi, making (some) of the
objects in this boundary peers to the objects from an enclosing boundary.

Example. Consider our running example in Figures 1 and Figure 2(i). Mod
equals {oC → oA, oB → oD, oB → oC, oA → oB, oDemo → oA}. Edge oC →
oA receives annotation peer (oC → oA /∈ Boundary(oC), and uniqueMod(oC →
oA) is false). All other edges in Mod receive annotation owned (due to line 3).
Edges root→ oDemo and oB → oA remain any.

However, this initial assignment does not induce an ownership tree. Edge

oDemo
owned→ oA forces oDemo to be the owner of oA, and edges oB

owned→
oC

peer→ oA force oB to be the owner of peers oC and oA.

Procedure checkConflict is called on edge oB
owned→ oC. It detects a conflict

at lines 1-2 in checkConflict : namely, there is a path p: oB
owned→ oC

peer→ oA

which is not in the boundary of oB. checkConflict changes the annotation of
oB → oC to peer.

Next, checkConflict is called on edge oA
owned→ oB. It detects a conflict at

lines 3-4: namely, there is a path p1: oA

peer
→∗ oA (the trivial empty path) which

states that oA is a peer of itself, and there is a path p2: oA
owned→ oB

peer→
oC

peer→ oA which forces oA to be the owner of itself. checkConflict changes the
annotation of oA → oB to peer. The final set of modifier annotations is shown
in Figure 2(i).

Again, let Ogr
Pe

be any run-time object graph. Function, modPe
: E(Ogr

Pe
)→

{any, owned, peer} gives the assignment of modifier annotations to the edges
of Ogr

Pe
. It is defined in the obvious way:

modPe
(or

i → or
j) = mod(oi → oj).

modPe
induces an ownership tree as follows:

(Modifier ownership tree MPe
for program execution Pe). Let Ogr

Pe
be the run-

time object graph for Pe and let modPe
be the assignment of modifier annotations

to the edges of Ogr
Pe

. MPe is construted as follows:

foreach or
i

owned→ or
j

peer
→∗ or

k ∈ Ogr
Pe

add or
i → or

k to MPe

foreach or
k ∈ Ogr

Pe
without parent in MPe ,

add root→ or
k to MPe

Theorem 2. (Correctness of owner-as-modifier inference). Let Ogr
Pe

be the run-
time object graph for execution Pe, and letMPe

be the dominator ownership tree
for Pe as defined above. The following holds:

(1) MPe
is a tree.

(2) For every or
i → or

j ∈ Ogr
Pe

, such that or
i modifies or

j , either or
i is the owner

of or
i (i.e, or

i → or
j ∈MPe

), or or
i and or

j are peers (i.e, siblings in MPe
).

7 Empirical Results

The ownership inference analysis is implemented in Java using the Soot 2.2.3 [36]
and Spark [18] frameworks; specifically, it is implemented as a client of the
Andersen-style points-to analysis provided by Spark. We performed whole-program
analysis with the Sun JDK 1.4.1 libraries. All experiments were done on a
900MHz Sun Fire 380R machine with 4GB of RAM. The implementation which
includes Soot and Spark, was run with a max heap size of 1.4GB; however, all
benchmarks ran within a memory footprint of 800MB.

Native methods are handed by utilizing the models provided by Soot. Reflec-
tion is handled by specifying the dynamically loaded classes, which Spark uses
to appropriately resolve reflection calls. This approach is used in other whole-
program analyses based on Soot and Spark [35].

Our benchmark suite is presented in Table 1. It includes 6 software compo-
nents (from gzip through number) which we have used in previous work [22,
20] and are familiar with. Each component is transformed into a whole program
by attaching an artificial main method to it; the artificial main ”completes”
the component and allows whole-program analysis [34]. In addition, the suite
includes 12 whole programs: javad, jdepend, JATLite and undo, benchmarks
soot-c and sablecc-j from the Ashes suite [1], polyglot, and antlr, bloat,
jython, pmd and ps from the DaCapo benchmark suite version beta051009 [2].
Column ”Methods” in Table 1 shows the size of the benchmarks in terms of the
number of methods (user and library) found to be reachable by Spark.

One goal of the empirical study is to contrast the owner-as-dominator and the
owner-as-modifier protocols by addressing the following questions: (1) to what
extent do owned annotations overlap and (2) to what extent do they differ?
Another goal of the study is to show that the analysis scales to relatively large
programs. Yet another goal of the study is to show that the analysis is adequately
precise.

7.1 Results

We report results on instance fields of reference type.
We define the following ordering between dominator annotations: owned

≤ any. Clearly, any is less precise than owned because any ”flattens” the
ownership tree; if an edge or

i → or
j is any, this forces or

j to have an owner which
is an antecedent of or

i in the ownership tree.
To assign a dominator annotation on field f we join the dominator annota-

tions over all edges oi → oj ∈ Og that may represent field edges labeled with
f :

dom(f) =
∨

oi→oj∈Og ∧ oj∈Pt(oi.f)

dom(oi → oj)

Thus, a field is reported as owned only if all its instances in Og are owned; a
field is reported as any otherwise.

We define the following ordering between modifier annotations: any≤ owned
≤ peer. Annotation any is the ”most precise” (i.e., best) because it does not

o-as-d o-as-m owned any Analysis Time
Program Methods Fields owned owned owned peer any owned peer any Points-to Ownership

gzip 3819 7 4 3 3 1 0 0 1 2 91s 20s

zip 3844 10 5 5 5 0 0 0 2 3 91s 19s

checked 3766 2 0 0 0 0 0 0 2 0 91s 18s

collator 3868 17 9 9 9 0 0 0 2 6 92s 22s

breaks 3822 7 0 0 0 0 0 0 1 6 92s 27s

number 3880 3 1 2 1 0 0 1 0 1 93s 31s

javad 3838 36 19(53%) 14(39%) 12(33%) 7 0 2 0 15 92s 18s

jdepend 3962 29 19(66%) 12(41%) 11(38%) 8 0 1 6 3 93s 22s

JATLite 6279 142 35(25%) 36(25%) 32(23%) 3 0 4 95 8 152s 225s

undo 5644 289 56(19%) 35(12%) 25(9%) 18 13 8 81 144 183s 174s

soot 6046 283 64(23%) 58(20%) 44(16%) 20 0 14 117 88 143s 623s

sablecc 7970 284 26(9%) 18(6%) 14(5%) 12 0 4 219 35 184s 165s

polyglot 7449 431 56(13%) 60(14%) 39(9%) 15 2 21 257 97 573s 1474s

antlr 5102 152 39(26%) 37(24%) 28(18%) 9 2 9 63 41 142s 71s

bloat 6402 449 80(18%) 72(16%) 53(12%) 26 1 19 234 116 155s 429s

jython 5606 206 60(29%) 69(33%) 52(25%) 5 3 17 92 37 137s 165s

pmd 8653 114 48(42%) 40(35%) 36(32%) 10 2 4 31 31 275s 382s

ps 5396 19 7(37%) 8(42%) 6(32%) 1 0 2 9 1 137s 582s

Average 30% 26% 21%

Table 1. Ownership inference results.

impose constraints on the ownership tree; peer is the ”least precise” (i.e., worst)
because it ”flattens” the ownership tree — if an edge or

i → or
j is peer, this not

only forces or
j to go up the tree, but it may force a number of other objects to

go up the tree (recall Example 1 in Figures 1 and 2).
To assign a modifier annotation on field f we join the modifier annotations

over all field edges labeled with f :

mod(f) =
∨

oi→oj∈Og ∧ oj∈Pt(oi.f)

mod(oi → oj)

Thus, a field is reported as any if all of its instances are any, it is reported
as owned if all its instances are onwed or any, and it is reported as peer
otherwise. Somewhat surprisingly, conflicts were rare (i.e., in the vast majority
of cases, different instances of field edges received the same annotation). For
example, only 10 fields in bloat (out of 449) had an owned instance and a
peer instance. Less than 6 fields had an owned instance and a peer instance
in every other benchmark. Clearly, those fields were counted as peer.

Note that the mapping from object graph edges to fields is done only for
the purposes of meaningful reporting. It is not the goal of this paper to map the
inferred annotations to ownership types [7] or Universe types [10]. We conjecture
that such a mapping can be established and we plan to address this problem in
the future.

Column ”Fields” in Table 1 shows the number of fields (we examined all
instance fields in user classes).9 Column ”o-as-d owned” shows how many fields
were inferred as owned according to the owner-as-modifier protocol, and column
”o-as-m owned” shows how many fields were inferred as owned according to
the owner-as-modifier protocol.

The next six columns show the results in greater detail. The first column (un-
der headings owned and owned) shows the number of fields that were inferred
as owned according to the owner-as-dominator protocol, and as owned accord-
ing to the owner-as-modifier protocol — i.e., the owned/owned fields. The
next column (under headings owned above, and peer below) shows the number
of fields that were inferred as owned according to the owner-as-dominator, and
were inferred as peer according to the owner-as-modifier — i.e., the owned/peer
fields; this column highlights the ”strictness” of the owner-as-modifier protocol
as it shows how often fields that are dominated by their this object become
peers to their this object due to modifications of objects from enclosing bound-
aries. The column under headings any and owned shows the number of fields
that were inferred as any according to the owner-as-dominator protocol, and
were inferred as owned according to the owner-as-modifier protocol; this col-
umn highlights the ”strictness” of the owner-as-dominator protocol as it shows
how often fields that are exposed outside of their this object, are exposed in a
read-olny, observational manner.

On average, for the 12 large benchmarks, 30% of all fields were reported as
owned according to the owner-as-dominator protocol, and 26% were reported as
owned according to the owner-as-modifier protocol. 21% of all fields overlapped
(i.e., were found to be owned by both protocols). Therefore, we conclude that
ownership occurs frequently in real-world object-oriented programs.

Furthermore, it is notable that almost one third of the o-as-d owned fields
were reported as non-owned according to the owner-as-modifier protocol (i.e.,
the ”strictness” of owner-as-modifier causes almost one third of all dominated
fields to become peer due to modification of objects from enclosing boundaries).
On the other hand, less than one fifth of the o-as-m owned fields were reported as
non-owned according to the owner-as-dominator protocol (i.e., the ”strictness”
of the owner-as-dominator causes only less than a fifth of the o-as-m owned
fields to become non-owned due to exposure outside of the this boundary).
However, our investigation (see Sections 7.2 and 7.3) indicates that while the
analysis captures o-as-d owned fields very precisely, it may underreport o-as-
m owned fields. We estimate that the actual percentage of any/owned fields
(i.e, the percentage of observationally exposed fields), is slightly higher than the
reported 4-5%. Therefore, we conclude, that the two ownership protocols give
rise to different run-time ownership structures.

9 This number of fields differs from the number we reported earlier [19, 23]. This is
because earlier we counted implicit references in inner classes to the outer class (these
references are not present in code, but are present in bytecode and our intermediate
representation Jimple). As in our previous work [19] and [22], which uses the same
benchmarks, we did not include fields of type String and StringBuffer.

Multicolumn ”Analysis Time” in Table 1 shows the running time (in seconds)
of the analysis. Column ”Points-to” shows the running time for Spark’s points-to
analysis, and column ”Ownership” shows the running time for the ownership in-
ference (it includes the inference of dominator and modifier annotations). Except
for polyglot (an outlier both for points-to and ownership), the ownership infer-
ence analysis typically completes in much less than 500 seconds and we note that
there are opportunities for performance improvement.10 Therefore, the analysis
scales well even on relatively large programs.

root

oclassFile

oclassMethodSec

omethodInfo[] omethodInfo

oattrInfo[] oexceptAttr oconstClass[]

oDataInputStream

oBufferedInputStream

oJVMDump

Fig. 14. Partial abstract object graph for javad. Thick edges denote field access and
thin edges denote stack access.

7.2 Precision

Addressing the issue of analysis precision is highly non-trivial. To the best of our
knowledge, there are no established large benchmark programs that have been
annotated with ownership types [7] or Universe types [10], and could be used to
objectively evaluate an ownership inference analysis.

In order to evaluate the precision of our ownership inference analysis, we
performed a study of absolute precision [34, 19] on a subset of the fields. Specifi-
cally, we considered all fields in components gzip through number and all fields

10 For example, running the analysis on newer hardware than the 900MHz Sun Fire
380R, would likely result in a significant improvement in reported wall-clock perfor-
mance.

in benchmark javad. This accounted for a set of 82 fields. Of these, 38 were re-
ported as owned and 44 were reported as any (i.e., non-owned) according to the
owner-as-dominator protocol. 33 were reported as owned, 16 were reported as
peer, and 33 were reported as any according to the owner-as-modifier protocol.

To evaluate the precision of the owner-as-dominator inference, we examined
every any (i.e., non-owned) field f and attempted to prove exposure. That is,
we attempted to show that there is an execution Pe, such that an object or

j

stored in field f of object or
i , is exposed outside of or

i , or more formally, that
or

i does not dominate or
j in the run-time object graph Ogr

Pe
. In every case, we

were able to prove exposure. In addition, we examined every owned field f .
Although the analysis is proven safe (and therefore, an owned field must be
indeed owned), we conducted the detailed examination in order to gain further
confidence in the functional correctness of the implementation. Again, in every
case, the owned field was indeed owned. Therefore, for this set of 82 fields, the
owner-as-dominator inference achieves perfect precision.

To evaluate the precision of the owner-as-modifier inference, we examined ev-
ery peer field f and attempted to assign a more precise modifier annotation to
it. That is, we attempted to assign one of any or owned to f , which would result
in a deeper (and better) ownership tree. In every case (16 in total), assigning any
was impossible because the field edge constituted a modification: that is, there
existed an execution Pe, such that or

i modifies the or
j object stored in field f of

or
i . In 14 out of 16 cases, assigning owned was impossible: it lead to an invalid,

ownership tree. For only 2 of 16 fields assigning owned instead of peer was
possible. Specifically, fields saveEntry and lastEntry in class MergeCollation
in component collator were reported as peer. These fields were exposed out-
side of their this object; however, they could have been annotated as owned,
because the exposure was only observational. Therefore, we conclude that for
this set of 82 fields, the owner-as-modifier inference achieves very good (but not
perfect) precision.

To further evaluate the precision of the owner-as-modifier inference, we ran
the analysis on all annotated code examples from [10, 11, 9]. This included Producer-Consumer
and Modifying Iterator from [10], the example in Figure 1 from [11], and
Stack from [9]. This accounted for a set of 18 fields. For 15 fields, our analysis
inferred the same annotation as specified by the manually annotated code ex-
ample. For 2 fields, our analysis inferred a more precise annotation than the one
specified by the manually annotated example.11 For 1 field, our analysis inferred
annotation peer instead of owned. In this one case of imprecision, the cause of
imprecision was exactly the same as the cause of the imprecision for saveEntry
and lastEntry. Section 7.3 elaborates on the cause of imprecision.

Overall, we view these results as very promising. We claim that the analysis
exhibits adequate precision on two grounds. First, the analysis reports a large
percentage of owned fields: 30% for owner-as-dominator and 26% for owner-as-
modifier. Second, our study of absolute precision, revealed very few instances of

11 For 2 fields that were never referenced by the enclosing class, our analysis inferred
annotation any, while the manually annotated code example had annotation peer.

class Main {

 public static void main() {

 Object o = new Object(); //oObject1

 LinkedList l =

 new LinkedList(); //oLinkedList

 Iter i = new Iter(l); // oIter

 i.setValue(new Object()); //oObject2

 }

}

class LinkedList {

 /*@ owned @*/ Node first;

 LinkedList(Object e) {

 first = new Node(); //oNode

 first.elem = e;

 }

 void set(Node np, Object e) {

 Node n = np;

 n.elem = e;

 }

}

class Iter {

 /*@ peer @*/ LinkedList list;

 /*@ any @*/ Node pos;

 Iter(LinkedList l) {

 list = l;

 pos = l.first;

 }

 void setValue(Object o) {

 list.set(pos,o);

 }

}

class Node {

 /*@ peer @*/ Node next;

 /*@ any @*/ Object elem;

}

root

oNode

oLinkedList oIter

oObject1 oObject2

Fig. 15. Modifying Interator example.

imprecision: 0 out of 100 examined fields for owner-as-dominator, and 3 out of
100 examined fields for owner-as-modifier.

7.3 Case Studies

We further illustrate our results with two case studies.

Case Study: javad We conducted a case study on benchmark javad. javad
is a Java class file disassembler [15]. It has approximately 40 user classes and
4,000 lines of code. javad is a relatively small program, and yet it exhibits
interesting ownership that highlights the difference between owner-as-dominator
and owner-as-modifier.

Figure 14 shows a partial abstract object graph for javad. The thick edges
denote field access: for example, oclassFile has a field classMethods that refers to
oclassMethodSec. The thin edges denote stack access: for example, the constructor
classFile.classFile() executes with receiver oclassFile, and a local variable
in it refers to oDataInputStream.

The disassembler uses a FileInputStream object to read a .class file. The
FileInputStream object (not shown in the graph) is decorated by object oBufferedInputStream

and subsequently by oDataInputStream; the disassembler first accesses oDataInputStream

which redirects access to oBufferedInputStream which in turn redirects access
to the FileInputStream object. Object oclassFile represents the class file and
oclassMethodSec represents the method section in the class file. oclassMethodSec

has an array omethodInfo[] that stores the representations of the methods, and
omethodInfo represents an individual method. In turn, omethodInfo has an ar-
ray oattrInfo that stores the representations of the attributes of the method and

oexceptAttr represents one attribute, the exceptions thrown by the method. In
turn, oexceptAttr has a field exceptTable and this field refers to array oconstClass[]

which stores information about each exception.
Consider edge oclassFile → oclassMethodSec (as mentioned earlier, this is an

instance of field classMethods in class classFile); the edge is shown in red.
All accesses to objects oclassMethodSec go through object oclassFile. Thus, the
dominator annotation on this edge, and consequently, on field classMethods is
owned. However, the modifier annotation on this edge is not owned but peer.
This is because oclassMethodSec calls a method on oDataInputStream which leads
to an update of a field of oBufferedInputStream; therefore oclassMethodSec causes
a modification of oDataInputStream, and this modification forces the two ob-
jects to be peers. Intuitively, an object from the boundary of oclassFile, namely
oclassMethodSec modifies an object from the enclosing boundary of oJVMDump,
namely oDataInputStream; this flattens the dominance boundary of oclassFile

causing its children to become its peers. Thus, oclassFile and oclassMethodSec be-
come peers (children of oJVMDump). Consequently, edge oclassFile → oclassMethodSec

and field classMethods receive modifier annotation peer. There are 5 other
fields in class classFile whose dominator annotation is owned but whose
modifier annotation is peer because of modification to the oDataInputStream

object.
Now, consider edge oexceptAttr → oconstClass[] (this is an instance of field

exceptTable in class exceptAttr); the edge is shown in red. oJVMDump calls a
method print on oclassFile. In turn oclassFile’s print calls a print on oclassMethodSec,
which in turn calls a print on omethodInfo. omethodInfo’s print obtains a ref-
erence to the table oconstClass[] and accesses the table to print the info about
each exception. Due to this reference, oconstClass[] is no longer dominated by
oexceptAttr, and therefore the dominator annotation on this edge, and on field
exceptTable is any. The modifier annotation is owned however. This is be-
cause the edge omethodInfo → oconstClass[] does not cause a modification, or in
other words, the exposure of oconstClass[] remains only observational.

Case study: Modifying Iterator As another example, consider the code for
the Modifying Iterator example, and the corresponding object graph in Fig-
ure 15. Classes LinkedList, Iter and Node and the modifier annotations on
their fields, are taken from [10].

Our owner-as-modifier inference is imprecise when reasoning about edge
oLinkedList → oNode; it determines that the annotation on this edge is peer
while it is in fact owned. Object oNode is exposed outside of oLinkedList, to
the iterator oIter. The exposure to oIter however is only observational; edge
oLinkedList → oNode represents unique modification because oLinkedList is the
only object that can modify oNode.

Our analysis is overly conservative when computing uniqueMod : it requires
that an edge oi → oj is a create edge, but not an in or an out edge, in order
to have uniqueMod(oi → oj) return true. In the above example, oLinkedList →
oNode is a create edge (oNode is created by oLinkedList), and also an in edge

(oNode is passed as an argument back to oLinkedList by the iterator by calling
list.set(pos,e)). Thus, uniqueMod(oLinkedList → oNode) returns false, and
the edge is assigned annotation peer (at line 5 in Figure 13). Essentially, the
analysis is unable to determine if the node is passed to the same linked list, or
it is passed to a different linked list, represented by the same abstract object.

8 Related Work

While there are too many variants of ownership types to enumerate (for some ex-
amples [27, 7, 4, 6, 5, 17, 10]), they all share common characterstics. They restrict
the valid patterns of references in the heap to guarantee some abstract property.
The restrictions are usually specified by the programmer as annotations in the
source code.

Static Ownership Inference. Somewhat surprisingly, ownership inference has re-
ceived less attention. Work on static inference of ownership-like properties in-
cludes [13, 4, 8, 14, 28, 21, 26]. Aldrich et al. [4] present an ownership type system
and briefly discuss an analysis that infers annotations. At a high-level, this anal-
ysis has similar goals to ours. However, the analysis is conceptually different
from ours. Furthermore, the analysis has not been developed and evaluated. Ma
and Foster [21] infer uniqueness-like and ownership-like properties in Java pro-
grams. They report that field ownership is infrequent. Our results suggest that
this is not case, but this is likely due to the differences in the inferred ownership.
They capture exclusive ownership rather than owner-as-dominator ownership.
That is, if the contents of a field are passed temporarily to an object, the field
is counted as non-owned even if it remains in the dominance boundary of the
enclosing object; in contrast, our analysis handles this case more precisely. The
papers on Universe types inference [26, 12] are likely more expensive than ours
as they are based on a SAT-solver while our analysis is low polynomial.

This paper significantly extends our previous work [19, 22]. The owner-as-
dominator inference computes the dominance boundary of oi, which is a substan-
tial extension of [19]. The owner-as-modifyer inference substantially improves
on [22]. Furthermore, this paper focuses on the comparative evaluation of the
two ownership protocols.

Shape analysis [32, 16], like our analysis, reasons statically about the struc-
ture of the heap. It is typically flow-sensitive and it reasons about more complex
properties than ownership; therefore, but is generally more expensive.

Dynamic Ownership Inference. There has been work on analyzing the run-
time behavior of object-oriented programs and use heap snapshots to observe
ownership-like properties at runtime [3, 24, 11, 31, 12, 29]. Potanin et al. [29] present
statistics such as average size of dynamic dominance boundaries, while Mitchell [24]
studies more complex connected heap structures. Most notably, the main con-
cern and contribution of these dynamic analyses is the handling of very large
run-time object graphs. In contrast, the main concern and contribution of our
work, is getting the best out of the relatively small and conservative abstract

object graphs. Dietl and Müller propose a dynamic analysis for inference of
Universe types [11] which is the basis of our owner-as-modifier inference. Our
analysis has roughly the same structure — it attempts to confine a modification
as deep in the dominance hierarchy as possible. However, our analysis is static
and therefore is safe and [11] relies on user-provided method purity annotations;
our analysis employs targeted and precise purity (i.e., side-effect) analysis.

9 Conclusions

We presented a novel static analysis that infers ownership according to the
owner-as-dominator and owner-as-modifier protocols. We implemented the anal-
ysis and performed experiements on a set of small-to-large Java programs. The
experiments indicate that the analysis is adequately precise and practical.

References

1. Ashes suite collection. http://www.sable.mcgill.ca/software.
2. Dacapo benchmark suite. http://www-ali.cs.umass.edu/ dacapo/gcbm.html.
3. R. Agarwal and S. Stoller. Type inference for parameterized race-free Java. In

VMCAI, pages 149–160, 2004.
4. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program un-

derstanding. In OOPSLA, pages 311–330, 2002.
5. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.

In POPL, pages 213–223, 2003.
6. C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe

region-based memory management in real-time Java. In PLDI, pages 324–337,
2003.

7. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In OOPSLA, pages 48–64, 1998.

8. D. Clarke, M. Richmond, and J. Noble. Saving the world from bad beans: Deploy-
ment time confinement checking. In OOPSLA, pages 374–387, 2003.

9. D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, P. Muller, and
A. Summers. Universe types for topology and encapsulation. In FMCO, 2008.

10. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

11. W. Dietl and P. Müller. Runtime Universe type inference. In IWACO, 2007.
12. A. Fuerer. Combining run-time and static Universe Type Inference. Master’s

thesis, ETH Zurich, 2007.
13. C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types.

In OOPSLA, pages 241–253, 2001.
14. D. Heine and M. Lam. A practical flow-sensitive and context-sensitive C and C++

memory leak detector. In PLDI, pages 168–181, 2003.
15. Javad. http://www.bearcave.com/software/java/javad/index.html. 2004.
16. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to inter-

procedural shape analysis. In SAS, 2004.
17. P. Lam and M. Rinard. A type system and analysis for the automatic extraction

and enforcement of design information. In ECOOP, pages 275–302, 2003.
18. O. Lhotak and L. Hendren. Scaling Java points-to analysis using Spark. In CC,

pages 153–169, 2003.

19. Y. Liu and A. Milanova. Ownership and immutability inference for UML-based
object access control. In ICSE, pages 323–332, 2007.

20. Y. Liu and A. Milanova. Practical static analysis for inference of security-related
program properties. In ICPC, 2009.

21. K. Ma and J. Foster. Inferring aliasing and encapsulation properties for Java. In
OOPSLA, pages 423–440, 2007.

22. A. Milanova. Static inference of Universe types. In IWACO, 2008.
23. A. Milanova and Y. Liu. Practical static ownership inference. Technical Report

RPI/DCS-09-04, Rensselaer Polytechnic Institute, Dec. 2009.
24. N. Mitchell. The runtime structure of object ownership. In ECOOP, pages 74–98,

2006.
25. P. Müller. Personal communication, Sept. 2008.
26. M. Niklaus. Static Universe Type Inference using a SAT-solver. Master’s thesis,

ETH Zurich, 2006.
27. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In ECOOP, pages

158–185, 1998.
28. A. Poetzsch-Heffter, K. Geilmann, and J. Schafer. Infering ownerhsip types for

encapsulated object-oriented program components. In T. Reps, M. Sagiv, and
J. Bauer, editors, Program Analysis and Compilation, Theory and Practice: Essays
dedicated to Reinhard Wilhelm on the occasion of His 60th Birthday, volume 4444
of LNCS, pages 120–144. Springer, 2007.

29. A. Potanin, J. Noble, and R. Biddle. Checking ownership and confinement. Con-
currency - Practice and Experience, 16(7):671–687, 2004.

30. J. Potter, J. Noble, and D. Clarke. The ins and outs of objects. In Australian
Software Engineering Conference, pages 80–89, 1998.

31. D. Rayside and L. Mendel. Object ownership profiling: a technique for finding and
fixing memory leaks. In ASE, pages 194–203, 2007.

32. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In SAS, 2005.

33. A. Rountev, A. Milanova, and B. Ryder. Points-to analysis for Java using anno-
tated constraints. In OOPSLA, pages 43–55, 2001.

34. A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of
polymorphism in Java software. IEEE TSE, 30(6):372–386, 2004.

35. M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis
for Java. In ACM Conference on Programming Language Design and Implemen-
tation, pages 387–400, 2006.

36. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? In CC, pages
18–34, 2000.

Appendix A

Proof of Lemma 1

We present the proof of Lemma 1. Although the analysis algorithm is simple to
state, proving its correctness was surprisingly difficult. Initially, we attempted a
proof by induction on the steps of the operational semantics that gives the con-
struction of Ogr

Pe. However, we found it difficult to reason about l = r.m(). For
example, let or

i be the object referred by r and let oj
r be the object referred by l

after the return. In this case, all objects previously in the dominance boundary of
or

i , and reachable by or
j would no longer be in the dominance boundary of or

i . We
could not easily show that the analysis would indeed remove all representatives
of objects reachable from oj from the abstract boundary.

As a result, we constructed a somewhat nonstandard proof by contradiction.
Consider a node oi ∈ O. Sets Out ⊆ O and In ⊆ O are computed by the

analysis in Figure 7 — set In contains the nodes in the dominance boundary of oi

and set Out is the subset of all nodes at the border of the dominance boundary,
that are seen by the analysis algorithm. Set InOut contains all edges oi → oj

that have been visited on the worklist W .
Let Pe be any execution of P and let the object graph of this execution be

Ogr
Pe

. Let or
i ∈ Ogr

Pe
be any run-time object represented by oi. For the rest

of this section we use the following notational convention: run-time objects are
denoted with superscript r and their analysis representatives are denoted using
exactly the same o notatation but without the superscript; for example, or

1’s
representative is o1, or

2’s representative is o2, ok’s representative is ok, etc.
We define set Out+ ⊆ O as follows:

Out+ = {o2 | o2 /∈ In ∧ ∃or
1 → or

2 ∈ Ogr
Pe
∧ or

1 ∈ createClosure(or
i) ∧ or

2 /∈ createClosure(or
i)}⋃

{o1 | o1 /∈ In ∧ ∃or
1 → or

2 ∈ Ogr
Pe
∧ or

2 6= or
i ∧ or

1 /∈ createClosure(or
i) ∧ or

2 ∈ createClosure(or
i)}

Informally, set Out+ contains the representatives of run-time objects that
border createClosure(or

i) — that is, the representatives of sources of edges that
begin outside of createClosure(or

i), and end inside createClosure(or
i), and the

representatives of targets of edges that begin inside of createClosure(or
i) and

end outside of createClosure(or
i). Set Out+ excludes objects that are in set In.

Another set, set Out is defined as follows:

Out = Out+ −Out

This set contains the objects that are in Out+, but are not in Out , i.e.,
objects that are at the border of createClosure(or

i) but are never seen by the
analysis.

Next, we define the notion of forbidden edge. An edge or
1 → or

2 ∈ Ogr
Pe

is
forbidden if it is of one of the following kinds:

(1) o1 ∈ In ∧ or
1 ∈ createClosure(or

i) ∧ o2 ∈ Out
(2) o1 ∈ Out ∪Out ∧ or

2 ∈ In ∧ or
2 ∈ createClosure(or

i)

(3) o1 ∈ In ∧ or
1 ∈ createClosure(or

i) ∧ o2 ∈ In ∧ or
2 /∈ createClosure(or

i)
(4) o1 ∈ In ∧ or

1 /∈ createClosure(or
i) ∧ o2 ∈ In ∧ or

2 ∈ createClosure(or
i)

(5) o1 ∈ In ∧ or
1 ∈ createClosure(or

i) ∧ o2 ∈ Out ∧ o1 → o2 /∈ InOut

We show that there is no forbidden edge in Ogr
Pe

. The proof assumes that
there exists a forbidden edge, and considers the first forbidden edge added to
Ogr

Pe
; it proceeds to show that if there is such a first forbidden edge, then there

must be an earlier forbidden edge, which is a contradiction.
Let or

1 → or
2 be the first forbidden edge added to Ogr

Pe
. There are five cases,

which we enumerate below.

(1) In case (1), or
1 → or

2 is of kind (1) — that is, we have that o1 ∈ In ∧ or
1 ∈

createClosure(or
i) ∧ o2 ∈ Out . Consider the creation of this edge. It can

be created due to arguments, due to object creation, or due to a return;
therefore it can be an in edge, a create edge, or an out edge. We consider
the three cases.
1.i In case 1.i edge or

1 → or
2 is an in edge. Therefore, there exists or

k such that
there is a valid edge triple or

k, or
1, o

r
2 where or

2 is passed as an argument
from or

k to or
1; edges or

k → or
1 and or

k → or
2 must exist before edge or

1 → or
2.

Since or
1 is in createClosure(or

i) by the definition of Out+ and Out , we
have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), there would be an earlier for-

bidden edge, namely edge or
k → or

2, of kind (1). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

ok → or
1, of kind (4).

If ok ∈ Out ∪ Out , then there would be an earlier forbidden edge, edge
or

k → or
1, of kind (2).

Therefore, edge or
1 → or

2 cannot be an in edge.
1.ii In case 1.ii edge or

1 → or
2 is a create edge. Then it is impossible to have

o2 ∈ Out due to the fact that o2 ∈ createClosure(oi) and o2 would be
added to the original In (line 2 of the analysis algorithm), and taken out
of the original In only if in Out (lines 3, 8-9, and 14 of the analysis in
Figure 7). Thus, o2 is in In or in Out , but not in Out .
Therefore, the edge cannot be a create edge.

1.iii In case 1.iii edge or
1 → or

2 is an out edge. Therefore, there exists or
k such

that there is an edge triple or
1, o

r
k, or

2 where or
2 is passed due to return

from or
k to or

1; edges or
1 → or

k and or
k → or

2 must exist before edge or
1 → or

2.
Since or

2 is in createClosure(or
i) by the definition of Out+ and Out , we

have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), there would be an earlier for-

bidden edge, namely edge or
k → or

2, of kind (1). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

or
1 → or

k, of kind (3). If ok is in Out , there are two cases: if o1 → ok

is in InOut then, o2 would have been visited by the analysis algorithm
(lines 13-15), and o2 would have been added to Out ; otherwise, that is,
if o1 → ok /∈ InOut we have an earlier forbidden edge, or

1 → or
k, of kind

(5).

If ok ∈ Out , then there would be an earlier forbidden edge, edge or
1 → or

k,
of kind (1).
Therefore, the edge cannot be an out edge.

(2) In case (2), or
1 → or

2 is of kind (2) — that is, we have that o1 ∈ Out ∪Out ∧
o2 ∈ In ∧ or

2 ∈ createClosure(or
i). Analogously to the previous case, consider

the creation of this edge. It can be created due to arguments, due to object
creation, or due to a return; therefore it can be an in edge, a create edge, or
an out edge. We consider the three cases.
2.i In case 2.i edge or

1 → or
2 is an in edge. Therefore, there exists or

k such that
there is a valid edge triple or

k, or
1, o

r
2 where or

2 is passed as an argument
from or

k to or
1; edges or

k → or
1 and or

k → or
2 must exist before edge or

1 → or
2.

Since or
1 is in createClosure(or

i) by the definition of Out+ and Out , we
have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i) and o1 ∈ Out there are two

cases: if ok → o1 is in InOut , then o2 would not be in In — it would
have been visited, removed from In and added to Out (lines 13-15);
otherwise, if ok → o1 is not in InOut , there would be an earlier forbidden
edge, namely edge or

k → or
1 of kind (5). Continuing with the case when

ok ∈ In and or
k ∈ createClosure(or

i), if o1 ∈ Out , then we would have an
earlier forbidden edge, namely edge or

k → or
1, of kind (1). If ok ∈ In and

or
k /∈ createClosure(or

i), there would be an earlier forbidden edge as well,
edge or

k → or
2, of kind (4).

If ok ∈ Out ∪ Out , then there would be an earlier forbidden edge, edge
or

k → or
2, of kind (2).

Therefore, the edge cannot be an in edge.
2.ii In case 2.ii edge or

1 → or
2 is a create edge. If or

k ∈ createClosure(or
i), then

o1 is in Out , and o2 cannot be in In (it would have been removed from
In at line 8). Otherwise, if or

k /∈ createClosure(or
i), or

2 cannot be in create
closure, because clearly, it has been created by the outside object or

1.
Therefore, the edge cannot be a create edge.

2.iii In case 2.iii edge or
1 → or

2 is an out edge. Therefore, there exists or
k such

that there is an edge triple or
1, o

r
k, or

2 where or
2 is passed due to return

from or
k to or

1; edges or
1 → or

k and or
k → or

2 must exist before edge or
1 → or

2.
Since or

2 is in createClosure(or
i) by the definition of Out+ and Out , we

have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), there would be an earlier for-

bidden edge, namely edge or
1 → or

k, of kind (2). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

or
k → or

2, of kind (4).
If ok ∈ Out∪Out , there would be an earlier forbidden edge, edge or

k → or
2,

of kind (2).
Therefore, the edge cannot be an out edge.

(3) In case (3), or
1 → or

2 is of kind (3) — that is, we have that o1 ∈ In ∧ or
1 ∈

createClosure(or
i) ∧ o2 ∈ In ∧ or

2 /∈ createClosure(or
i). Analogously to the

previous cases, consider the creation of this edge. It can be created due to

arguments, due to object creation, or due to a return; therefore it can be an
in edge, a create edge, or an out edge. We consider the three cases.
3.i In case 3.i edge or

1 → or
2 is an in edge. Therefore, there exists or

k such that
there is an edge triple or

k, or
1, o

r
2 where or

2 is passed as an argument from
or

k to or
1; edges or

k → or
1 and or

k → or
2 must exist before edge or

1 → or
2.

Since or
1 is in createClosure(or

i) by the definition of Out+ and Out , we
have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), then there would be an earlier

forbidden edge, namely edge or
k → or

2, of kind (3). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

ok → or
1, of kind (4).

If ok ∈ Out ∪ Out , then there would be an earlier forbidden edge, edge
or

k → or
1, of kind (2).

Therefore, the edge cannot be an in edge.
3.ii In case 3.ii edge or

1 → or
2 is a create edge. Since or

1 ∈ createClosure(or
i),

then or
2 must be in createClosure(or

i) as well by the definition of createClosure.
Therefore, the edge cannot be a create edge.

3.iii In case 3.iii edge or
1 → or

2 is an out edge. Therefore, there exists or
k such

that there is an edge triple or
1, o

r
k, or

2 where or
2 is passed due to return

from or
k to or

1; edges or
1 → or

k and or
k → or

2 must exist before edge or
1 → or

2.
Since or

1 is in createClosure(or
i) by the definition of Out+ and Out , we

have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), there would be an earlier for-

bidden edge, namely edge or
k → or

2, of kind (3). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

or
1 → or

k, of kind (3).
If ok ∈ Out , there would be an earlier forbidden edge, edge or

1 → or
k,

of kind (1). If ok ∈ Out there are two cases again: if o1 → ok ∈ InOut ,
then o2 would not be in In—it would have been visited and added to
Out (lines 13-15); otherwise, if or

1 → or
k is not in InOut , then we would

have an earlier forbidden edge, namely o1 → or
k, of kind (5).

Therefore, the edge cannot be an out edge.
(4) In case (4), or

1 → or
2 is of kind (4) — that is, we have that o1 ∈ In ∧ or

1 /∈
createClosure(or

i) ∧ o2 ∈ In ∧ or
2 ∈ createClosure(or

i). Analogously to the
previous cases, consider the creation of this edge. It can be created due to
arguments, due to object creation, or due to a return; therefore it can be an
in edge, a create edge, or an out edge. We consider the three cases.
4.i In case 4.i edge or

1 → or
2 is an in edge. Therefore, there exists or

k such that
there is an edge triple or

k, or
1, o

r
2 where or

2 is passed as an argument from
or

k to or
1; edges or

k → or
1 and or

k → or
2 must exist before edge or

1 → or
2.

Since or
1 is in createClosure(or

i) by the definition of Out+ and Out , we
have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), then there would be an earlier

forbidden edge, namely edge or
k → or

1, of kind (3). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

ok → or
2, of kind (4).

If ok ∈ Out ∪ Out , then there would be an earlier forbidden edge, edge
or

k → or
2, of kind (2).

Therefore, the edge cannot be an in edge.
4.ii In case 4.ii edge or

1 → or
2 is a create edge. Since or

1 /∈ createClosure(or
i),

then or
2 cannot be in createClosure(or

i). Therefore, the edge cannot be a
create edge.

4.iii In case 4.iii edge or
1 → or

2 is an out edge. Therefore, there exists or
k such

that there is an edge triple or
1, o

r
k, or

2 where or
2 is passed due to return

from or
k to or

1; edges or
1 → or

k and or
k → or

2 must exist before edge or
1 → or

2.
Since or

1 is in createClosure(or
i) by the definition of Out+ and Out , we

have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), there would be an earlier for-

bidden edge, namely edge or
1 → or

k, of kind (4). If ok ∈ In and or
k /∈

createClosure(or
i), there would be an earlier forbidden edge as well, edge

or
k → or

2, of kind (4).
If ok ∈ Out∪Out , there would be an earlier forbidden edge, edge or

k → or
2,

of kind (2).
Therefore, the edge cannot be an out edge.

(5) In case (5), or
1 → or

2 is of kind (5) — that is, we have that o1 ∈ In ∧ or
1 ∈

createClosure(or
i)∧o2 ∈ Out∧o1 → o2 /∈ InOut . Analogously to the previous

cases, consider the creation of this edge. It can be created due to arguments,
due to object creation, or due to a return; therefore it can be an in edge, a
create edge, or an out edge. We consider the three cases.

5.i In case 5.i edge or
1 → or

2 is an in edge. Therefore, there exists or
k such that

there is an edge triple or
k, or

1, o
r
2 where or

2 is passed as an argument from
or

k to or
1; edges or

k → or
1 and or

k → or
2 must exist before edge or

1 → or
2.

Since or
1 is in createClosure(or

i) by the definition of Out+ and Out , we
have that ok is in one of In, Out , or Out .
If ok ∈ In and or

k ∈ createClosure(or
i), then there are two cases. If edge

ok → o2 ∈ InOut , then edge o1 → o2 would have been visited at lines
16-17) and added to the worklist; otherwise, if ok → o2 /∈ (InOut) means
that edge or

k → or
2, of kind (5), is an earlier forbidden edge. If ok ∈ In

and or
k /∈ createClosure(or

i), there would be an earlier forbidden edge as
well, edge ok → or

2, of kind (4).
If ok ∈ Out ∪ Out , then there would be an earlier forbidden edge, edge
or

k → or
1, of kind (2).

Therefore, the edge cannot be an in edge.
5.ii In case 5.ii edge or

1 → or
2 is a create edge. This is impossible because the

analysis algorithm detects each such edge (lines 10-12), and adds each
such edge to the worklist. Therefore, the edge cannot be a create edge.

5.iii In case 5.iii edge or
1 → or

2 is an out edge. Therefore, there exists or
k such

that there is an edge triple or
1, o

r
k, or

2 where or
2 is passed due to return

from or
k to or

1; edges or
1 → or

k and or
k → or

2 must exist before edge or
1 → or

2.
Since or

1 is in createClosure(or
i) by the definition of Out+ and Out , we

have that ok is in one of In, Out , or Out .

If ok ∈ In and or
k ∈ createClosure(or

i), there are two cases. If o1 → ok ∈
InOut , edge o1 → o2 would have been visited (lines 18-19) and added to
the worklist; therefore, it would not be a forbidden edge. Otherwise, if
o1 → ok /∈ InOut , then that edge would be an earlier forbidden edge, of
kind (5).
If ok ∈ In and or

k /∈ createClosure(or
i), there would be an earlier forbid-

den edge as well, edge or
1 → or

k, of kind (3).
If ok ∈ Out , there would be an earlier forbidden edge, edge or

1 → or
k,

of kind (1). If ok ∈ Out , there are two cases again. If edge o1 → ok is
in InOut , then o1 → o2 would have been added to the worklist (lines
13-15). Otherwise, edge or

1 → or
k is an earlier forbidden edge, of kind (5).

Therefore, the edge cannot be an out edge.

We conclude the proof of the theorem. Suppose now that there exists a
path p: or

i → or
1 → ...or

k−1 → or
k such that the representative of p is in

In, and or
k is not dominated by or

i . By simple induction, we have that or
k ∈

createClosure(or
i). Clearly, or

i is in createClosure(or
i). Assume that all of or

1...o
r
k−1

are in crateClosure(or
i) as well. If or

k is not in createClosure, we would have that
edge or

k−1 → or
k is a forbidden edge, which is a contradiction since we showed

that there are no forbidden edges in Ogr
Pe

. Therefore, or
k is in createClosure(or

i).
Therefore, there must exist an object, or

k that has the following three prop-
erties: (1) or

k ∈ createClosure(or
i), (2) ok ∈ In and (3) or

k is not dominated by
or

i . Let or
k be the first object that acquires these properties. Therefore, there

must be a predecessor or
k′ of or

k (i.e., or
k′ → or

k ∈ Ogr
Pe

) such that or
i does not

dominate or
k′ (i.e., and or

k acquires the properties due to its flow to this prede-
cessor). Consider object or

k′ . If or
k′ ∈ createClosure(or

i) then or
k′ must be in In

(otherwise, if ok′ is in Out , edge or
k′ → or

k would be a forbidden edge of kind
(2)); however, this leads to a contradiction because then or

k′ would be the first
object to acquire the properties. On the other hand, or

k′ /∈ createClosure(or
i) is

impossible as well, because then or
k′ → or

k would be a forbidden edge as well.
An easier argument for the above statement may be stated as follows. Suppose

that there is or
k such that (1) or

k ∈ createClosure(or
i), (2) ok ∈ In, and (3) or

k is
not dominated by or

i . Then there must exist a path from some or
k′ that is not in

createClosure(or
i) to or

k (if no backwards path from or
k leads outside of the create

closure, we would have that all backwards paths pass through or
i and therefore

or
i dominates or

k). WLG we may assume that there is a path or
k′ → or

1 →∗ or
k

such that or
1...o

r
k are all in createClosure. But then there must exist a forbidden

edge somewhere along this path, which is impossible.

Proof of Lemma 2

This section presents the proof of Lemma 2. There exists a create path root→∗
or

kn
→∗ ... →∗ or

k1
→∗ or

i where or
k1

, ...,or
kn

dominate or
i → or

j (or
k1

dominates
or

i and or
j , or

k2
dominates or

k1
and or

i and or
j , etc.; root dominates all nodes).

The analysis algorithm in Figure 11 traverses the representative of this path
backwards, until it finds an ok such that Boundary(ok) contains all the nodes on

the create path from ok to oi (we have that createPath ⊆ Boundary(ok)). Clearly,
ok is added to minBoundaries and we have (1) that ok ∈ minBoundaries(oi →
oj).

We proceed to prove (2), namely that every path from or
k to or

i → or
j is

represented in Boundary(ok). We have that the representative of the create path
from or

k to or
i is in Boundary(ok) (because the representative of the create path

is acyclic, it is guaranteed that createPath will contain all the nodes on the
path from ok to oi; the case when the path is cyclic is a simple extension of
the current case). It follows that or

k dominates or
i (by Lemma 1). Next, we show

that every path from or
k to or

i is represented in Boundary(ok). Let us assume
that there exists a path whose representative is not in Boundary(ok). Since or

k

dominates or
i , it follows that the path must be in createClosure(or

k), and therefore
the nodes on this path would be in set In or in set Out . Since oi ∈ In, and the
representative of the path is not in Boundary(ok), there must be an edge o→ o′,
part of the representative of the path, such that o ∈ Out and o′ ∈ In. However,
this would be a a forbidden edge (see Lemma 1). Therefore, it is impossible to
have a path from or

k to or
i which is not represented in Boundary(ok); this proves

condition (2) of the theorem.

Proof of Lemma 3

We now prove Lemma 3. Let Pe be any execution of P and let the object graph
of this execution be Ogr

Pe
. Let or

i → or
j ∈ Ogr

Pe
be a run-time edge represented

by oi → oj such that or
i modifies or

j . We show that edge oi → oj is in Mod .
By the definition of or

i modifies or
j we have

(i) There is a method sequence path or
i .mi() → or

j .mj() →∗ or
k.mk() (i.e., a

sequence of stack frames or
i .mi, or

j .mj , etc. that leads to or
k.mk().

(ii) or
k.mk() is an update.

(iii) There is an object or such that there is a local variable l (including this)

on a stack frame before or
j .mj , which refers to or, and or

f

→∗ or
k (i.e., or

k is
part of visible state, and the update caused by oi.mi() → oj .mj() is visible
after the execution of or

j .mj()).

Consider object or
k. There are two cases.

In the first case or
k is not a transitive field of or

j . Therefore, path or
f

→∗ or
k

does not go through or
j (or otherwise, or

k would have been a transitive field of
or

j). Consider method sequence or
k.mk−1() → or

k.mk() (the last sequence in the
method sequence path). By Lemma 2, there exists or

x such that the represen-
tative of every path form or

x to or
k−1 → or

k is in Boundary(ox), and ox is in
minBoundaries(ok−1 → ok).Then or

x dominates or
k−1 and or

k, and the represen-
tative of the path p: or

x →∗ or
i → or

j →∗ or
k−1 → or

k is in the boundary of ox.
Since ox is in minBoundary , propagateMod will be invoked at line 14 of the
algorithm in Figure 12 with arguments ok.mk(), ox, and path p will be visited
in propagateMod resulting in edge oi → oj being added to Mod at line 6 in
propagateMod . Therefore, in this case, the Lemma 3 holds.

In the second case or
k is a transitive field of or

j . First we show the following:
If the following conditions hold:

(i) There is a method sequence path or
i .mi()→ or

j .mj()→∗ or
k.mk().

(ii) ok.mk() is added to W1 by the algorithm in Figure 12.

(iii) or
j

f

→∗ or
k.

Then oi → oj is added to Mod .
We prove the above by induction on the length of the field chain from or

j to
or

k. It trivially holds for a path of length 0: (i) we have or
i .mi() → or

j .mj(), (ii)

oj .mj() is added to W1, and (iii) or
j

f

→∗ or
j . The algorithm will take oj .mj() out

of W1, and at line 6, it will add oi → oj to Mod .
Now assume that if the following conditions hold:

(i) There is a method sequence path or
i .mi()→ or

j .mj()→∗ or
k.mk().

(ii) ok.mk() is added to W1 by the algorithm in Figure 12.

(iii) or
j

f

→∗ or
k, where the length of the field path is ≤ n.

Then we have that oi → oj is added to Mod .
We need to show that if the following conditions hold:

(i) There is a method sequence path or
i .mi()→ or

j .mj()→∗ or
k.mk().

(ii) ok.mk() is added to W1 by the algorithm in Figure 12.

(iii) or
j

f

→∗ or
k, where the length of the field path is n + 1.

Then we have that oi → oj is added to Mod .
Consider again the last edge in the method sequence path, or

k−1.mk−1() →
or

k.mk(). By Lemma 2 there exists or
x such that ox is in minBoundaries(ok−1 →

ok) and all paths from or
x to or

k−1 → or
k are in the boundary of ox. If or

x is
before or

i → or
j — that is, we have a path or

x →∗ or
i → or

j →∗ or
k−1 → or

k, then
oi → oj will be visited in propagateMod and will be added to Mod at line 6
in propagateMod . Otherwise, if or

x is after or
i → or

j — that is, we have a path
or

i → or
j →∗ or

x →∗ or
k−1 → or

k, the following happens. Since or
x dominates or

k

we have or
j

f

→∗ or
x

f

→∗ or
k; and therefore propUp is set to true. propagateMod is

called with arguments ok.mk(), ox, true and W1; propagateMod adds ox.mx()
to W1 (because the propUp flag is set to true), and therefore we have:

(i) There is a method sequence path or
i .mi()→ or

j .mj()→∗ or
x.mx().

(ii) ox.mx() is added to W1 by the algorithm in Figure 12.

(iii) or
j

f

→∗ or
x, where the length of the field path is ≤ n.

By the inductive hypothesis, oi → oj is added to Mod . This concludes the
proof of Lemma 3.

Proof of Theorem 2

Proof of Theorem 2(1) This part of the theorem states that the owned and
peer annotations are assigned in such a way that they induce an ownership tree.
There are two ways that the assignment can violate the tree properties: (1) it
allows an object to have two owners (two parents in the tree), and (2) it allows
a cycle.

We prove that neither (1) or (2) is possible.
For (1), suppose that there is an execution Pe of program P such that an

object or in this execution is forced to have more than one owners (i.e., more
than one parents in the ownership tree). By the construction of MPe this can

happen only if there is a path p1: or
x

owned→ or
1

peer
→∗ or ∈ Ogr

Pe
, and there

is another path, p2: or
y

owned→ or
2

peer
→∗ or ∈ Ogr

Pe
. Where or

x 6= or
y. The first

path, p1, forces or
x to be an owner (i.e. parent) of or (it results in adding an edge

or
x → or toMPe

), and the second path, p2, forces or
y to be an owner (i.e. parent)

of or (it results in adding an edge or
y → or to MPe).

We show that an assignment that permits p1 and p2 is impossible.
Suppose that p1 and p2 do exist, and consider path p1. We will show that

the representative of p1 must be in the boundary of its source ox. Consider edge
ox

r → or
1 whose representative has received annotation owned. There are two

cases when owned is assigned: (i) when ox → o1 ∈ Boundary(ox), and (ii) when
ox → o1 /∈ Boundary(ox) and uniqueMod(ox → o1) is true. In case (i), we have
that ox → o1 ∈ Boundary(ox). Therefore when the peer path following or

1 is of
length 0, we have that p1 ∈ Boundary(ox); when the peer path following or

1 in p1

is of length 1 or more, we have p1 ∈ Boundary as well (otherwise, checkConflict
would have changed the annotation of ox → o1 to peer at lines 1-2). Therefore,
we have that in case (i), the representative of p1 is in Boundary(ox).

In case (ii) the owned annotation is due to uniqueMod . In this case, we are
interested in the case when the peer path has length 0, that is, p1 is or

x → or

(the case when the peer path is of length 1 or more is impossible, because we
have that p1 is not in Boundary(ox) and the owned annotation would have been
changed to peer at lines 1-2 in checkConflict). Again, consider p1: or

x → or and
uniqueMod(ox → o) is true. However, because ox → o is a unique modification,
and we cannot have a p2 which leads into or as well (the fact that ox → o is not
an in or an out edge rules out the case when the object that modifies or in p2

would be represented by ox as well).
Therefore, we have that the representative of p1 is in the boundary of its

source ox. Analogously, the representative of p2 is in boundary of its source oy.
Therefore, we must have that or

y is on the path p1 (since or
y dominates or). But

then we would have that there is a peer path from or
y, namely or

y

peer
→∗ or and

a owned path from or
y, namely or

y
owned→ or

2

peer
→∗ or. But then, checkConflict

would have changed the annotation of oy → o2 to peer at lines 3-4, which leads
to a contradiction.

For (2), suppose that there is a cycle or
1

owned→ or
2

peer
→∗ or

3
owned→ or

4 ... or
k−1

owned→

or
k

peer
→∗ or

1 ∈ Ogr
Pe

. Here or
1 is the owner of peers or

2 and or
3, then or

3 is the owner
of or

4, etc. We have that or
1 is a transitive owner of or

k−1, which is the owner of
or

k and or
1, which creates a cycle in the ownership tree.

We show that a type assignment that would permit this cycle is impossible.
Let or be the first object on the cycle that has been created, and let its creating
object be or

x. Thus, there is a create edge or
x → or and or

x is not on the cycle (or
otherwise it would have been the first created object). Now, let edge or

1 → or
2 be

the first edge on the cycle annotated owned and reachable backwards from or

— that is, we have or
1

owned→ or
2

peer
→∗ or. Consider two cases. In case (i) the peer

path from or
2 to or is of length 1 or more. Then since or is accessible through

or
x, we have that or is not dominated by or

1, and therefore the representative
of path or

1 → or
2 →∗ or is not in Boundary(oi). In this case, the annotation

of o1 → o2 would have been turned to peer by lines 1-2 in checkConflict , and
therefore the cycle is impossible. In case (ii) the peer path is of length 0, that is

we have or
x → or and we have or

1
owned→ or, where the latter edge is on the cycle.

Consider the owned annotation of edge o1 → o. Clearly, the owned annotation
cannot be due to the fact that the edge is in the boundary of o1 because or is not
dominated by or

1. Therefore, it must be due to uniqueMod . However, uniqueMod
requires that o1 → o is not an in or an out edges, which is impossible. Clearly,
or
1 → or must be due to argument (i.e., an in edge), or due to a return (an out

edge) since or is created by or
x; therefore o1 → o will be an in or an out edge

and uniqueMod(o1 → o) would have been false! Therefore, a owned assignment
due to uniqueMod is impossible as well. This leads to a contradiction and proves
that such a cycle cannot exist.

We conclude that the owned and peer annotations induce a tree.

Sketch of Proof of Theorem 2(2) The above proof shows that every object
has exactly one owner in MPe . Now, we need to show, that for every edge
or

i → or
j such that or

i modifies or
j , then either or

i is the owner of or
j in MPe , or

or
i and or

j are peers.
By Lemma 3 we have that oi → oj is in Mod , and therefore, it will be anno-

tated as owned or peer. If it is annotated as owned, then by the construction
ofMPe

and uniqueness of the owner, we have that or
i is the owner of or

j (i.e., or
i

is the parent of or
j in MPe

).
If it is annotated as peer, then following case may arise. There exists a path

p1: or
x

owned→ ...
peer→ or

j , which forces or
x to be the parent (i.e., owner) of or

j .

And also, all incoming paths into or
i are of kind p2: root

any
→∗ or

z

peer
→∗ or

i ; this
would force or

i to be a child of root, and not of or
x which means that or

i and or
j

are not peers.
We show that the case described above is impossible. As in Theorem 2(1)

the representative of p1 must be in the boundary of ox. Therefore or
x dominates

or
i and or

j . Also, for simplicity, assume that or
x is the immediate dominator of or

i

and or
j . Therefore, we have a path or

x

any
→+ or

z

peer
→+ or

i . One can show however,
that since or

i → or
j is a modification edge, the representatives of all edges on the

path or
x →+ or

z →+ or
i would have been added to Mod and therefore could not

have been annotated any.

