Comparison of Object-oriented and Functional
Programming for Code Generation

Eric Allen
April 21st, 2010

Abstract

Creating software systems begins with creating abstractions that model the problem
and/or solution. The most popular paradigm for creating these abstractions is Object-
Oriented Programming (OOP), but Functional Programming (FP) is gaining traction.
Functional programs are reputedly easier to reason about, simpler to understand, and
friendlier to concurrency. Computer.Build is a code generation tool for designing sim-
ple microprocessors in Ruby and Clojure (a Lisp derivative) that generates VHDL for
compilation. This tool was written in both Clojure and Ruby to compare the relative
merits of each language for the particular application of code generation. While the
two implementations have much in common, the functional implementation in Clojure
is clearer, simpler, and more consistent. However, the Ruby implementation is easier
to read, easier to modify, and easier to debug. These results suggest that functional
programming could be better than object-oriented programming for building software
systems in some situations, but when using domain-specific languages for code gener-
ation, object-orientation makes a software developer’s life much easier.

1 Introduction

Building software is about creating abstractions to model the problem and solution, then
applying those abstractions to the task at hand. Programming languages have developed
out of the common need for a basic set of abstractions, such as subroutines and data types.
Most languages are designed for serial execution on a standard von Neumann computer and
share many abstractions for developing solutions targeted at these systems. In the same way,
VHDL and Verilog have developed as languages targeting Field Programmable Gate Arrays
(FPGAs) and other hardware synthesis applications. While VHDL and Verilog may look
like conventional programming languages at the surface, their fundamental abstractions are
quite different from mainstream toolchains such as C or Java. They compile to a different
set of primitive operations, such as look-up tables and combinational digital logic, and
parallelism is inherent in the hardware synthesis process.

All computer languages have limitations on their expressiveness, many of which can be
overcome with design patterns. In some cases, however, the languages are simply not pow-
erful enough to clearly express the abstractions a software developer uses to build software.
When this is the case, the best response is to switch to a more expressive language, but
this is not always possible for a myriad of reasons, including legacy code or a specialized
platform. When it is necessary to express concepts at a higher level than the target language
can support, one option is source code generation, (also known as automatic programming):
using a higher-level language to generate source code in a target language. Source code
generation is quite common. For example, the Ruby on Rails web framework provides a
“generate” utility to automatically generate default scaffolding for common class types.

Most modern software is built on object-oriented design, but it is not always the best tool.
Functional, data-oriented programming fits some tasks more naturally. Ruby, with roots in
Smalltalk, is one of the purest object-oriented languages in use. Clojure is a recent addition
to the Lisp family that includes more basic data types and complete Java integration. VHDL,
a popular hardware description language, lacks facilities for metaprogramming and higher-
level abstraction. Computer.Build is an attempt to build a domain-specific language (DSL)
for creating simple computer architectures, implemented in both Ruby and Clojure. In the
process of developing Computer.Build, I have analyzed the differences between implementing
source code generation and abstract syntax tree (AST) manipulation in a functional style
in Clojure and an object-oriented style in Ruby. In the remainder of this paper, I will make
qualitative comparisons between these two implementations of VHDL code generation.

2 Background

Source code generation has become ubiquitous in the software world, despite significant
controversy about its efficacy. Some software developers argue that source code generation
is a poor workaround for bad programming or limited languages. Others use it on a daily
basis to accelerate their development process. Regardless, both Clojure and Ruby are used
for source code generation in popular applications.

CodeWorker [2] is a general-purpose framework for both source code generation and
parsing of arbitrary grammars. Provided with an “extended-BNF” grammar description,
CodeWorker can parse a piece of code, then generate different code based on the abstract
syntax tree. Unfortunately, CodeWorker is not designed for AST transformations, sacrificing
flexibility for simplicity. As such, it would be difficult to apply CodeWorker to the problem
of transforming an instruction set into a working VHDL description of a computer that
implements the instruction set.

The Ruby on Rails framework for web application development has sparked significant
controversy over its system of generating default code for basic database manipulation.
While this is by far the most common use of source code generation in Ruby, other Ruby
tools also make use of source code generation. The RGen framework [3] provides a rich
framework for generating code based on a domain model, including automatic creation of
a Ruby-based DSL. CGen [4] is a more pragmatic tool for generating C source code from
Ruby, designed for writing C extensions to the Ruby language in Ruby itself, letting the
tool generate C source code from Ruby source code. Given the wealth of Ruby tools for
source code generation, Ruby is clearly a popular language for implementing source code
generation.

Due to its homoiconic nature, Lisp is well-suited to generating Lisp code. It is a popular
choice for metaprogramming, and its macro facility is essentially very powerful source code
generation. Clojure, being a Lisp derivative, has similar attractive properties for code
generation. However, generating non-Lisp code from Lisp is not as common. Tools such
as CLiCC [5] exist for transforming Lisp code to other languages, such as C, but the aim
is generally to run real Lisp code. Computer.Build, on the other hand, is a DSL on top of
Lisp (or Ruby), and as such bears little resemblance to Lisp. It does, however, conform to
Lisp syntax, allowing for the use of the built-in Lisp reader to parse the code.

For VHDL, source code generation is commonplace. Major FPGA design tools, such as
Altera Quartus, generate source code in VHDL and Verilog for various components based
on a “wizard” dialog that allows the user to set parameters. While software developers
are often uncomfortable with source code generation, hardware developers depend on it
constantly. The ubiquity of VHDL source code generation makes it a good target for the
high-level to low-level transformation provided by Computer.Build.

3 Implementation

In order to compare OOP and FP, two implementations of the same program were devel-
oped. The primary implementation of Computer.Build was developed in Clojure, using
simple, composable data structures to represent the Abstract Syntax Tree (AST) and lever-
age the general-purpose functions available in Clojure’s standard library. The secondary
implementation of Computer.Build was developed in Ruby using object-oriented principles,
including inheritance and polymorphism. The two implementations leveraged their respec-
tive languages’ strengths.

3.1 Functional (Clojure)

Due to Clojure’s functional nature, the Computer.Build implementation (Appendix B) in
Clojure was designed in a functional style, with simple, immutable data structures not
bound to specific functionality. Generic functions, like the make-states-for-instructions
(Listing 1) then transform these data structures into others, eventually producing VHDL
source code.

Listing 1: make-states-for-instructions function
(defn make—states—for—instruction [[- instruction—name & RTLs]]
(let [microcode (flatten—1 (map rtl—to—microcode RTLs))
last—index (— (count microcode) 1)]
(apply merge (map (partial link—state instruction—name last—index)
microcode (iterate inc 0)))))

Some modularity is achieved by dividing up functions into separate namespaces, but the
vast majority of the code is in a single file. Approximately half of that code is static VHDL-
in-Clojure code that wraps around the dynamically generated segments, so effectively the
entire interesting part of the program is 100 lines. Another 180 lines are dedicated to taking
VHDL-in-Clojure code and transforming it into real VHDL, but the entire codebase clocks
in at only a few hundred lines of code. Almost all functions are under twenty lines, making
for clear separation of different pieces.

Computer architectures are defined using a simple DSL (Listing 2) that is transformed
into a literal Clojure data structure by a macro. This overall architectural specification
is then transformed into another stucture representing the states of the state machine to
be generated. A separate state machine generator is then invoked, which creates VHDL-
in-Clojure code that is fed through a simple recursive-descent compiler that generates the
final VHDL for the control subsystem. The top-level design is literal VHDL-in-Clojure code
with a small amount of dynamic code for interfacing with the dynamically-generated control
subsystem.

VHDL-in-Clojure is compiled to Clojure using a single multimethod, called to-vhdl,
that dynamically dispatches based on the first symbol of the passed-in data structure. The
to-vhdl method calls itself recursively to generate sub-nodes, allowing for almost complete
orthogonality of statements. The output of to-vhdl is a tree of strings, which is then
concatenated with appropriate linebreaks. Indentation is handled automatically by the
natural nesting of this tree.

3.2 Object-Oriented (Ruby)

Ruby, being a Smalltalk descendant, is a deeply object-oriented language. Therefore, Com-
puter.Build’s Ruby implementation (Appendix A) is object-oriented, using Ruby’s block
syntax to create a DSL for VHDL-in-Ruby (Listing4)). The Ruby code is roughly broken up

into modules along the same lines as the Clojure modules, but the actual process by which
Computer.Build in Ruby generates VHDL is quite different. While the Clojure implemen-
tation simply uses a literal data structure to represent the instruction set, the Ruby version
creates a DSL for writing instructions.

The Ruby implementation defines a DSL using Ruby blocks that allows for specification
of a computer’s microcode, much like the Clojure version. The user-defined architecture
written in the Computer.Build DSL and evaluted at runtime to create an object representing
the computer’s definition. The generate method is then called on this object, which in turn
creates a state machine object (using the state machine DSL), generates it, then creates a
top-level entity. The process of transforming VHDL-in-Ruby behaves somewhat like the
Clojure process, but instead of a simple data structure, each node is represented by a
particular class that implements the generate method, which may call the generate method
of children to compile a complete VHDL design.

3.3 Results

Both implementations turned out to take approximately the same amount of code. While the
Clojure implementation contains fewer absolute lines of code, the discrepancy is mostly due
to due to the language’s syntax and tendency to chain function calls on one line. The Clojure
implementation was able to use macros (Listing [2)) to simplify the VHDL compiler, while
the Ruby implementation achieved a similar simplification using inheritance. The Ruby
compiler, however, is still approximately 3x the size of the Clojure compiler as measured by
the number of lines of code.

Listing 2: Macros to help define VHDL generation
; Multi—line statement that causes an ezxtraneous level of mnesting in AST
(defmacro def—vhdl—multiline [kword bindings & body]
‘(defmethod to—vhdl “kword [(vec (concat ’[_] bindings))]
(not—indented (list “@body))))

; Inline or single—line statements that don’t produce a list of lines
(defmacro def—vhdl—inline [kword bindings & body]
‘(defmethod to—vhdl “kword [“(vec (concat ’[_-] bindings))]
(str "@body)))

After the initial writing of both versions, many modifications were made to improve
the output and increase functionality. Modifying the Ruby implementation was quite easy,
while modifying the Clojure turned out to be considerably more challenging. The time
required just to understand code written several weeks prior in Clojure was on the order of
30 minutes to an hour, with productive development happening only after the existing code
was understood. Due to its simpler, more imperative style, the Ruby code was much easier
to understand. While the Clojure architecture was cleaner, and arguably more pure, it was
restrictive to the point of significantly impeding progress. Adding conditional branching, for
example, required a re-think of the Clojure architecture, whereas the Ruby implementation
was flexible enough to be bent to the new approach. Long-term, the purity of the Clojure
architecture could be an advantage, but in the early stages of this project, it was a hindrance.

3.4 Example processor definitions

Listing 3: Clojure example input

(require ’computer—build)

; RTL—level description
(computer—build/build "meccalla2”
; optiomns
{:address—width 4}
(instruction ”cla”
(A <= 0))
(instruction ”cmp”
(A <— (complement A)))
(instruction ”inc”
(A<= (+A1)))
(instruction ”neg”
(A <— (complement A))
(A<= (+A1)))
(instruction ”adddir”
(MA <— (and IR 0xOF))
(A<— (+ AMD)))
(instruction ”subdir”
(MA <— (and IR 0xO0F))
(A <= (= AMD)))
(instruction ”addind”
(MA <— (and IR 0xO0F))
(MA <— (+ MD 0))
A<— (+ AMD)))
(instruction ”subind”
MA <— (and IR 0xOF))

(A<= (- AMD)))
(instruction ”1da”
(MA <— (and IR 0xOF))

(A <= MD))
(instruction ”sta”

(MA <— (and IR 0xOF))

(MD <= A))

(instruction ”jmp”

(PC <— (and IR 0xO0F)))
(instruction ”bra0”
(if (= A 0)
(PC <— (and IR 0x0F)))))

Listing 4: Ruby example input

require ’'Computer. Build’

RTL-level description
Computer. Build ”"mccalla” do |computer |
computer.address_width = 4

computer.instruction ”cla” do |i]
i.move :A, 0

end

computer.instruction ”inc” do |i]
i.move :A, add(:A, 1)

end

computer.instruction ”"neg” do |i]
i.move :A, complement (:A)
i.move :A, add(:A, 1)

end

computer.instruction "add” do |i|
i.move :MA, bitwise_and (:IR, 0xOF)
i.move :A, add(:A, :MD)

end

computer.instruction ”lda” do |i|
i.move :MA, bitwise_and (:IR, 0xOF)
i.move :A, :MD

end

computer.instruction ”"sta” do |i|
i.move :MA, bitwise_and (:IR, 0xOF)
i.move :MD, :A

end

computer.instruction ”jmp” do |i|
i.move :pc, bitwise_and (:IR, 0xO0F)

end

computer.instruction ”bra0” do |i|
i.if equal(:A, 0) do |thn|

thn.move :pc, bitwise_and (:IR, 0x0F)

end

end

end

4 Conclusions

Implementing code generation in a functional style using Clojure yields a smaller, more
consistent, but harder to understand program compared to an object-oriented design using
Ruby. Both languages are powerful and have their place, but for this particular task, Ruby
appears to be a better choice.

4.1 Syntactic

Members of the Lisp family tend to have extremely minimal syntax. This pushes much more
of the meaning of the program up to the lexical level, which can vary between developers, and
even between programs written by the same developer. While this is considered an advantage
by many Lisp advocates, it can also be a hindrance: every Lisp (or Clojure) program must
be understood on its own, without many commonalities with other programs. Ruby, on
the other hand, has a much richer syntax. While it is still flexible enough to support easy
creation of Domain-Specific Languages, it gives software developers much more common
structure between programs. Common structure and concepts make switching between
projects easier for developers, improving efficiency and reducing overhead. For example, the
custom code injection for the store_instruction state is easier to read in Ruby (Listing [5))
than in Clojure (Listing@. Multiple developers working on the same project face the same
commonality dilemma with a language like Clojure: without considerable documentation,
developers may not have consistent mental models of the program, leading to very different
implementations in their respective components.

Listing 5: Ruby state machine generation

if name — ’store_instruction’

s.if event (:clock), VHDL:: Equal.new (:clock ,”0”) do |thn|
thn.assign :opcode, "#{opcode_length —1} downto 07,
:system_bus, 7”7 downto #{7—opcode_length+1}”
end
end

Listing 6: Clojure state machine generation
:store_instruction
{:next :decode,
:control—signals ’(:rd-MD, :wr.IR, :inc_pc),
:code
[‘(if (and (event :clock) (= :clock 0))
(<= :opcode “(— opcode—width 1) 0
:system_bus 7 “(— 8 opcode—width)))]}

4.2 Architectural

The dichotomy between functional and object-oriented programming becomes most relevant
during the architectural design phase of a software project. Even using a “general-purpose”
tool, such as the Unified Modeling Language, can nudge a software developer into the OOP
paradigm, so care must be taken to avoid deciding prematurely on an architectural paradigm.
when first designing a system. When the problem at hand involves manipulating virtual
doppelgangers of real objects, an OOP design is likely the best choice. However, when the
design focuses on operations on data, rather than the representation of the data, a functional
approach can be more appropriate. When operating on homogeneous data structures, like
trees or arrays, functional languages have a wealth of tools built-in, and more can be created
easily. Functional designs also support parallelism better, because they emphasize pure
functions, which always return the same result given the same inputs. Clojure especially
takes advantage of this aspect of functional programming to create powerful abstractions
for concurrency and parallelism at the language level. Fundamentally, the optimal language
choice for architectural fit depends on the developer’s mindset. A software developer who
is comfortable with object-oriented architecture will be better off building OO software,
whereas a developer more experienced in functional design will likely be more productive
using FP.

5 Recommendations

Software development is as much about reading code as it is about writing code. Donald
Knuth’s literate programming [1] is an extreme example, but almost every program written
must be read at some point in its lifetime. In a team environment, readability becomes
even more crucial, as other members of the team must read code that each member writes.
Therefore, an important language criterion is readability, and Ruby is a clear winner here
over Clojure. While Clojure is considerably more terse, the simple concepts of OOP make
understanding the Ruby code easier, and Lisp’s extremely simple syntax can be challenging
for a human to parse. Ruby’s executable class bodies and block syntax allow for quite ex-
tensive metaprogramming in a much easier way than Clojure’s macro system, again favoring
Ruby for readability.

In addition to poor readability, Clojure code is considerably harder to debug. Simple,
straightforward code will yield useful stack traces, but complicated code paths with macros
and first-class functions can often generate cryptic stack traces. Clojure’s lazy evaluation
also causes trouble, as errors can surface in places where they were not expected. Debugging
also takes up a significant portion of software development time, so debuggability is a cru-
cial attribute on which to evaluate languages. Ruby’s metaprogramming facilities can also
produce confusing stack traces (as often occurs in Ruby on Rails), but an object-oriented
design tends to produce simpler stack traces than a functional design, and Ruby is generally
used for object-oriented programming.

Ruby can be used to some degree for functional programming, and it supports object-
oriented programming very well. Its syntax is one of the most readable of any popular
language, yet it is flexible enough to support some metaprogramming. For programs of the
scale and scope of Computer.Build, Clojure’s advantages are barely relevant. When building
a small, or medium-sized piece of software, Ruby is a great choice, and generally preferable
to Clojure. However, when building complex systems that include significant concurrency,
Clojure may be the better choice.

6 Future Work

6.1 Computer generation

Computer.Build is capable of generating working computers, but they are slow and ineffi-
cient. Now that the basic framework is in place, potential exists for many optimizations
and increased flexibility.

The data path generated by the current Computer.Build is completely bus-oriented,
forcing instructions to take many clock cycles to complete their microcode as data is trans-
ferred across the single bus. The compiler knows all possible transfers from the microcode
specification, so it is quite possible to generate a directed graph of register transfers, and
from that generate an optimized data path using multiplexers. This would make the system
faster and allow microcoded states to be collapsed in some situations.

Computer.Build was originally intended to be completely architecture-agnostic, but it
has developed a number of assumptions about the target architecture that need to be elimi-
nated. Currently the bus width is fixed at 8 bits instead of being read from the architecture
definition. The set of possible ALU operations is fixed by the ALU definition, but this
could potentially be generated (or at least optimized) based on the user’s definitions. In
addition, conditionals are not currently particularly flexible, and the possibility exists for a
dynamically generated, dedicated design entity for handling conditional logic.

6.2 Language comparison

To better compare Ruby and Clojure, it would be useful to implement Computer.Build in
a functional style in Ruby and in an object-oriented style in Clojure. Both languages are
flexible enough to support both paradigms, and comparing the two languages’ implementa-
tions of the exact same constructs would yield a more direct comparison. However, using
a language designed for one paradigm in a way that runs counter to its design is counter-
productive, and a developer is likely better off switching to a language more suited to the
particular application.

Ruby and Clojure are both dynamically-typed languages, allowing for great flexibility
and minimal boilerplate code. Many software developers prefer statically-typed languages,
and Computer.Build could certainly be implemented in one. The project is intended as a
non-trivial codebase for comparing higher-level language constructs, and it could be used for
comparing statically-typed and dynamically-typed languages. Haskell, for example, would
make an interesting target language for a third Computer.Build port.

7 Appendix A: Ruby implementation source code
The source code to Computer.Build is presented here for easy access, but the most recent

version can always be found at http://github.com/epall/Computer.Build and is licensed
under the MIT License.

http://github.com/epall/Computer.Build

Listing 7: Computer.Build main module

require ’computer_build/vhdl’
require ’computer_build/state_machine’

class Computer
include VHDL:: Helpers

def self.Build (name)
instance = Computer.new (name)
yield (instance)
instance . generate

end

attr_writer :address_width

def initialize (name)
@name = name
@instructions = []
end

DSL method

def instruction (name)
inst = Instruction .new(name)
yield (inst)
@instructions << inst

end

def generate

states = make_states (@instructions). merge(static_states)

opcodes = make_opcodes(@instructions)

opcode_length = opcodes.values. first.length

control_signals = states.values.map(&:control_signals). flatten .uniq
control = state_machine (” control_unit”) do |m]|

m.input :reset , VHDL::STD_LOGIC
m. input :condition , VHDL::STD_LOGIC
m. inout :system_bus, VHDL::STDLOGIC_VECTOR (7..0)
m.output :alu_operation , VHDL::STD_LOGIC.VECTOR(2..0)
control_signals.each do |sig|

m. output sig, VHDL::STD_LOGIC
end

m. signal :opcode,
VHDL: : STD_LOGIC_VECTOR ((opcode_length —1)..0)

m.reset do |r|
r.goto :fetch
control_signals.each do |sig|
r.low sig.to_sym

end

r.assign :alu_operation, ”000”

r.assign :system_bus, ”ZZZZ7777
end

states.each do |name, state|

m. state (name) do |s|
control_signals.each do |sig|
s.assign sig, state.control_signals.include?(sig) ? 1’
end
if state.alu_op
s.assign :alu_operation, state.alu_op.opcode
else
s.assign :alu_operation, ”000”

if state.constant_value
s.assign :system_bus, state.constant_value.to_logic (8)

else

s.assign :system_bus, ”ZZZZ77777”
end
if name — ’store_instruction’

s.if event (:clock), VHDL:: Equal.new (:clock ,”0”) do |thn|
thn.assign :opcode, "#{opcode_length —1} downto 07,
:system_bus, 7?7 downto #{7—opcode_length+1}”
end
end
end

if state.condition
m. transition :from => name, :to => state.next,
:on => VHDL:: Equal.new (: condition , ”70”)
m. transition :from => name, :to => name+” 0”7,
:on => VHDL:: Equal .new (: condition , 717)
else
m. transition :from => name, :to => state.next if state.next
end
end

instruction decode
opcodes.each do |instruction , opcode |
m. transition :from => :decode, :to => instruction .namet” 07,
:on => equal (:opcode, opcode)
end
end

main = entity ("main”) do |e|
e.port :clock ,:in, VHDL::STD_LOGIC
e.port :reset, :in, VHDL::STD_LOGIC
e.port :bus_inspection, :out, VHDL::STDLOGIC.VECTOR (7..0)

e.signal :system_bus, VHDL::STD LOGIC_.VECTOR(7..0)
e.signal :alu_operation, VHDL::STDLOGIC.-VECTOR(2..0)
e.signal :alu_condition , VHDL::STD_LOGIC

control_signals.each do |sig|
e.signal sig, VHDL::STD_LOGIC

end

e.component :reg do |c|
c.in :clock, VHDL::STD_LOGIC

10

.in :data_in , VHDL::STD_LOGIC_VECTOR (7..0)
.out :data_out, VHDL::STD_LOGIC.VECTOR(7..0)
.in :wr, VHDL::STD_LOGIC

.in :rd, VHDL::STD_LOGIC

[e BN eI elNe]

end

e.component :program_counter do |c|

c.in :clock, VHDL::STD_LOGIC
c.in :data_in, VHDL::STD LOGIC_.VECTOR(7..0)
c.out :data_out, VHDL::STD LOGIC_.VECTOR (7..0)
c.in :wr, VHDL::STD_LOGIC
c.in :rd, VHDL::STD_LOGIC
c.in :inc, VHDL::STD_LOGIC

end

e.component :ram do |c|

c.in :clock, VHDL::STD_LOGIC
.in :data_in, VHDL::STD_LOGIC_VECTOR (7..0)
.out :data_out, VHDL::STD LOGIC_.VECTOR(7..0)
.in :address, VHDL::STD_LOGIC.VECTOR (4..0)
.in :wr_data, VHDL::STD_LOGIC
.in :wr_addr, VHDL::STD_LOGIC
.in :rd, VHDL::STD_LOGIC

o o0 o0 o6 00

end

e.component :alu do |c|
c.in :clock, VHDL::STD_LOGIC

c.in :data_in, VHDL::STD LOGIC_.VECTOR(7..0)
c.out :data_out, VHDL::STDLOGIC_.VECTOR(7..0)
c.in :op, VHDL::STD_LOGIC.VECTOR(2..0)
c.in :wr_a, VHDL::STD_LOGIC
c.in :wr_b, VHDL::STD_LOGIC
c.in :rd, VHDL::STD_LOGIC
c.out :condition, VHDL::STD_LOGIC
end

e.component :control_unit do |c|

c.in :clock, VHDL::STD_LOGIC

c.in :reset , VHDL::STD_LOGIC

c.in :condition, VHDL::STD_LOGIC

c.out :alu_operation , VHDL::STD LOGIC_.VECTOR(2..0)

control_signals.each do |sig]

c.out sig, VHDL::STD_LOGIC

end

c.inout :system_bus, VHDL::STD LOGIC_.VECTOR(7..0)
end

e.behavior do |b|

b.instance :program_counter, ”"pc”, :clock, :system_bus, :system_bus,
:wr_pc, :rd_pc, :inc_pc

b.instance :reg, ”ir”, :clock, :system_bus, :system_bus, :wr IR, :rd_IR

b.instance :reg, "A”, :clock, :system_bus, :system_bus, :wr A, :rd_A

b.instance :ram, ”main_memory” , :clock, :system_bus, :system_bus,
subbits (:system_bus, 4..0), :wrMD, :wrMA, :rd.MD

b.instance :alu, ”alu0”, :clock, :system_bus, :system_bus,

11

:alu_operation, :wr_alu_a, :wr_alu_b, :rd_alu, :alu_condition

b.instance :control_unit, ”control0”, [:clock, :reset, :alu_condition,
:alu_operation] 4+ control_signals + [:system_bus]
b.assign :bus_inspection, :system_bus
end

end

Dir . mkdir @name rescue nil # ignore error if dir already ezists

File.open(File.join (@name, ’control.vhdl’), ’w’) do |f|
generate_vhdl(control, f)

end

File .open(File.join (@name, ’main.vhdl’), ’w’) do |f|
generate_vhdl (main, f)
end
end

inner classes

class Instruction
attr_reader :name, :steps

def initialize (name)
@name = name
@steps = |[]

end

def move(target , source)
@steps << RTL.new(target , source)
end

def microcode
steps .map(&:to_microcode). flatten
end

def if (condition , &body)
@steps << Conditional.new(condition , &body)
end
end

class ALUOperation
attr_reader :op, :operands

def initialize (op, *operands)

@op = op
@Qoperands = operands
end
def opcode
return {
:and => 7001”,
:or = 7010”7,
:complement => 7011”7,
radd => 7100",
:subtract => 7101”7

12

:equal = 71107,
:lessthan => 71117 } [Qop]
end
end

private

class Conditional
def initialize (condition)
@condition = condition # instance of ALUOperation
@steps = |[]
@true_body = []
yield self
end

DSL method
def move(target , source)

@steps << RTL.new(target , source)
end

def to_microcode

steps = []
steps << MicrocodeState.new do |state|
state.control_signals = [?rd_#{@condition.operands. first}”, "wr_alu_a”|]
state.alu_op = @condition
end
conditional = MicrocodeState.new do |state]
op = @condition.operands. last
state.control_signals = ["wr_alu_-b”]

if op.is_a? Fixnum

state.constant_value = op
else

state.control_signals += "rd_#{op}”
end
state.alu_op = @condition
state.condition = @condition

end
steps << conditional

body = @steps.map(&:to_microcode). flatten
conditional . body_size = body.length

body.each {|state| state.conditional = conditional}

return steps + body
end
end

class RTL
def initialize (target, source)
Qtarget = target
@source = source
end

13

def to_microcode
if @source.is_a? Fixnum
return MicrocodeState.new do |state |

state.control_signals = "wr_#{Qtarget}”
state.constant_value = @source
end

elsif @source.is_a? Symbol
return MicrocodeState .new do |state |

state.control_signals = ["wr_#{Q@target}”, 7rd_#{@source}”]
end
elsif @source.is_a? ALUOperation
steps = []
steps << MicrocodeState.new do |state|
state.control_signals = [?rd_#{@source.operands. first}”, "wr_alu_a”]
state.alu_op = @source
end
if @source.operands.length =— 2
steps << MicrocodeState.new do |state|
state.control_signals = [?wr_alu_b”]
if @source.operands.last.is_a? Fixnum
state.constant_value = @source.operands.last
else
state.control_signals << 7rd_#{@source.operands.last}”
end
end
end

steps << MicrocodeState.new do |state]

state.control_signals = ["rd_alu”, ?wr_#{Qtarget}”]
state.alu_op = @source
end
return steps
end
end

end

class MicrocodeState
attr_accessor :control_signals, :alu_op, :constant_value, :next,
:condition , :conditional, :body_size, :index

def initialize (&blk)
yield (self) if blk
end
end

def make_states(instructions)
states = {}
instructions.each do |instr |
steps = instr.microcode
indexes = {nil => 0}
steps.each do |step|
indexes [step.conditional] ||= 0
index = indexes[step.conditional]

14

if step.conditional
if index < step.conditional.body_size — 1

step .next = instr.namet” " +(step.conditional.index.to_s)+” _"+(index+1).to_s

else
step .next = step.conditional .next
end
states[instr .namet” " +(step.conditional.index.to-s)+” _"+index.to_s| = step
else

if index < steps.reject(&:conditional).length — 1
step .next = instr.namet” _”+(index+1).to_s

else
step .next = :fetch
end
states [instr .namet” _”+index.to_s] = step
end
step.index = index
indexes [step.conditional] += 1
end
end

return states
end

def make_opcodes(instructions)
bits = (Math.log(instructions.length)/Math.log(2)). ceil
opcodes = {}
instructions.each_with_index do |instruction , idx|
bin_string = idx.to-s(2)
bin_string = (70”7 * (bits — bin_string.length)) 4+ bin_string
opcodes[instruction] = bin_string
end
return opcodes
end

def static_states
states = {}

states [’ fetch ’] = MicrocodeState.new do |s|
s.control_signals = [’rd_pc’, ’'wr-MA’]
s.next = ’'store_instruction’

end

states [’ store_instruction ’] = MicrocodeState.new do |s|
s.control_signals = ['rd-MD’, ’wr_IR’, ’inc-pc’]
s.next = ’'decode’

end

states [’ decode’] = MicrocodeState.new do |s]|
s.control_signals = []

end

return states
end
end

15

def complement (value)
Computer : : ALUOperation .new (: complement , value)
end

def add(operandl, operand2)
Computer : : ALUOperation.new (:add, operandl, operand2)
end

def bitwise_and (operandl, operand2)
Computer : : ALUOperation.new (:and, operandl, operand2)
end

def subtract (operandl, operand?2)
Computer : : ALUOperation.new (: subtract , operandl, operand?2)
end

def equal(operandl, operand2)
Computer : : ALUOperation.new (: equal , operandl, operand?2)
end

Listing 8: State machine generator
require ’computer_build/vhdl’

module ComputerBuild
class State
include VHDL:: StatementBlock

attr_reader :name

def initialize (name, body)
@name = name
@statements = []
body [self]

end

def self.full_name (shortname)
(”state_"+shortname. to_s).to_sym
end
end

class Transition
attr_reader :from, :to, :condition
def initialize (options)
@from = options [:from
@to = options [:to]
@condition = options [: condition] || options[:on]
end
end

class StateMachine
include VHDL:: Helpers
def initialize (name, body)
@name = name
@inputs = []
@outputs = []

16

@inouts = []
@signals = []
@states = []
@transitions = []
body [self]

end

def inputs(xrest)
@inputs = rest
end

def input(name, type)
@inputs << [name, type]
end

def outputs(xrest)
Qoutputs = rest
end

def output(name, type)
@outputs << [name, type]
end

def inout (name, type)
@inouts << [name, type]
end

def signal (xrest)
@signals << rest
end

def state (name, &body)
@states << State.new(name, body)
end

def reset(&body)
@Qreset = body
end

def transition (options)
@transitions << Transition.new(options)
end

def generate (out)
representation = entity (@name) do |e|

e.port ”clock”, :in, VHDL::STD_LOGIC

@inputs.each do |pair |

name, type = pair
e.port name, :in, type
end

@outputs.each do |pair |
name, type = pair
e.port name, :out, type

17

end

@inouts.each do |pair|

name, type = pair
e.port name, :inout, type
end

e.type "STATETYPE” , @states.map {|s| ”state_”+s.name.to_s}
e.signal "state”, "STATE.TYPE”
@signals.each do |args|
e.signal (xargs)
end

e.behavior do |b]|
b.process [:clock, :reset, :state] do |p]|
if Qreset

ifelse = p.if(equal(:reset, ’1’)) do |Db]|

def b.goto(state)
self.assign (:state, (”state_”"+state.to_s).to_sym)

end
@reset . call (b)

end

ifelse.else do |b]
b.case :state do |c|
@states.each do |state|
c[”state.” + state.name.to_s| = state
end
end

b.if event (:clock), equal(:clock, 71”) do |b]|
@transitions.each do |transition |
conditions = [equal (:state, State.full_.name(transition.from))]
conditions << transition.condition unless transition.condition.nil?
b.if (xconditions) do |c|
c.assign (:state, State.full_name(transition.to))
end
end
end
end
else
p.case :state do |c|
@states.each do |state|
c[”state.” + state.name.to_s| = state
end
end

p.if event (:clock), equal(:clock, 717) do |b]|

@transitions.each do |transition |
conditions = [equal (:state, State.full_.name(transition.from))]
conditions << transition.condition unless transition.condition.nil?
b.if (xconditions) do |c|

c.assign (:state, State.full_.name(transition.to))

end

end

18

end
end
end # process
end
end

representation . generate (out)
end
end
end

def state_machine (name, &body)
ComputerBuild :: StateMachine . new (name, body)
end

Listing 9: VHDL-in-Ruby to VHDL compiler

module VHDL
STD_LOGIC = ”STD_LOGIC”

def self.STDLOGICVECTOR(range)
if range.first > range.last
return "STD LOGIC_.VECTOR(#{range. first} downto #{range.last})”
else
return "STD_LOGIC_.VECTOR(#{range. first} upto #{range.last })”
end
end

module StatementBlock
def case(input, &body)
@statements << Case.new(input, body)
end

def if(xconditions , &body)
ifthenelse = If.new(conditions, body)
@statements << ifthenelse
return ifthenelse

end

def assign (xargs)
@statements << Assignment.new(xargs)
end

def high(target)
assign (target, ’17)
end

def low (target)
assign (target , ’07)
end

Default gemerate, generally overridden
def generate(out, indent)
@statements.each {|s| s.generate(out, indent + 1)}
end
end

19

class Statement
protected

def quoted(expression)
if expression.is_a? String

if expression.length =— 1
return ”’'#{expression }’”
else
return "\"#{expression }\"”
end

elsif expression.is_a? Fixnum
return "std_logic_vector(#{expression})”
else
return expression
end
end
end

class SingleLineStatement < Statement
def generate(out, indent)
out.print ” 7 x indent
out.print self.line ()
out.print ”\n”
end
end

class MultiLineStatement < Statement
end

class InlineStatement < Statement
end

class Entity

attr_reader :name

def initialize (name, body)
@name = name
@ports = |[]
@signals = []
@types = []
@components = []
body [self]

end

def port(xargs)
@ports << Port.new(xargs)
end

def signal (xargs)

@signals << Signal .new(xargs)
end

def behavior(&body)
@behavior = Behavior.new(body)

20

end

def type(xargs)
Q@types << Type.new(xargs)
end

def component(xargs, &body)
@components << Component.new (xargs , &body)
end

def generate (out=3%stdout)
out.puts "ENTITY #{@name} IS”
out.puts "PORT(”
@ports.each_with_index do |port, index|

port.generate(out, 1, (index = @ports.length —1))

end
out.puts 7);”
out.puts "END #{@name};”
out.puts "ARCHITECTURE arch_#{@name} OF #{@name} IS”
@types.each {|t| t.generate(out, 1)}
@signals.each {|t| t.generate(out, 1)}
@components.each {|c| c.generate(out, 1)}
out . puts ”"BEGIN”
@behavior. generate (out, 1)
out.puts "END arch_#{@name};”

end

end

class Component < MultiLineStatement
def initialize (name)
@name = name
@ports = |[]
yield (self)
end

def in(name, type)
@ports << Port.new(name, :in, type)
end

def out(name, type)
@ports << Port.new(name, :out, type)
end

def inout (name, type)
@ports << Port.new(name, :inout, type)
end

def generate(out, indent)
prefix =7 7 % indent
out.puts prefix + "COMPONENT #{@name}”
out.puts prefix + "PORT(”
@ports.each_with_index do |port, index|
port.generate (out, indent+1, (index = @ports.length —1))
end
out.puts prefix + 7);”

21

out.puts prefix + "END COMPONENT;”
end

end

class Type < SingleLineStatement
def initialize (name, values)
@name = name

@values = values
end
def line

"TYPE #{@name} IS (#{@values.join(”, 7)});”
end

end

class Port < SingleLineStatement
def initialize (id, direction, description)

@id = id

@Qdirection = direction

@description = description
end

def generate(out, indent, last)
out.print 7 ” % indent
out.print "#{Qid}: #{@Qdirection} #{@description}”
out.puts last 7 77 : 7’
end

end

class Signal < SingleLineStatement
def initialize (id, type)
@id = id
Qtype = type
end

def line

?SIGNAL #{@id} : #{Qtype};”
end
end

class Behavior
include StatementBlock

def initialize (body)

@statements = []
body . call (self)
end

def process(inputs, &body)

@statements << VHDL:: Process.new(inputs, body)
end

def instance (kargs)

@statements << Instance.new(xargs)
end

22

end

class Instance < SingleLineStatement
def initialize (component, name, *ports)

@component = component
@name = name
@ports = ports

end

def line

’#{@name}: #{Qcomponent} PORT MAP(#{@ports. join (7,
end
end

class Process
include StatementBlock
def initialize (inputs, body)
@inputs = inputs
@statements = []
body [self]
end

def generate(out, indent)
prefix =7 7 x indent
args = @inputs.map(&:to_s).join(’,”)
out.puts prefix + "PROCESS(#{args})”
out.puts prefix + "BEGIN”
@statements.each {|s| s.generate(out, indent + 1)}
out.puts prefix + "END PROCESS;”

end

end

class Case
def initialize (input, body)
@input = input
@conditions = {}
body . call (@Qconditions)
end

def generate(out, indent)
prefix =7 7 x indent
out.puts prefix+’CASE #{@input} IS”
@conditions.each do |pair|
condition , expression = pair
out.print prefix4+” WHEN ”
if condition =~ /"\d$/
out.print "’#{condition}’”
elsif condition =~ /"\d+$/
out.print 7\”#{condition }\””

else

out.print condition
end
out.print 7 ="

if expression.is_a? InlineStatement
out.puts expression.generate

23

else

out . puts
expression . generate (out, indent+1)
end
end
out .puts prefix+”’END CASE;”
end

end

class If < MultiLineStatement
include StatementBlock

def initialize (conditions, body)

@conditions = conditions
@compound = false
@statements = []
body [self]

end

def elsif(xconditions, &body)
unless @compound
@clauses = [@statements]
@conditions = [@conditions|
end
@compound = true

@statements = []

body . call (self)

@clauses << @statements

@conditions << conditions
end

def else(xconditions , &body)

@Qwhentrue = Q@statements
@statements = []
body. call (self)

end

def generate (out, indent)

prefix =7 7 % indent
if @Qcompound
conditions = @conditions. first .map(&:generate).join(’ and)

out.puts(prefix+’IF #{conditions} THEN”)

@clauses. first .each {|s| s.generate(out, indent+1)}

@clauses [1..100]. zip (@Qconditions[1..100]).each do |statements, conditions |
conditions = conditions .map(&:generate).join(’ and ')
out.puts(prefix+’ELSIF #{conditions} THEN”)

statements.each {|s| s.generate(out, indent+1)}
end

out.puts(prefix+"END IF;”)

elsif @whentrue
conditions = @conditions.map(&:generate).join(’ and)
out.puts(prefix+’IF #{conditions} THEN")
@whentrue.each {|s| s.generate(out, indent+1)}
out.puts(prefix+’ELSE”)

24

@statements.each {|s| s.generate(out, indent+1)}
out.puts(prefix+"END IF;”)
else

conditions = @conditions.map(&:generate).join(’ and)
out.puts(prefix+’IF #{conditions} THEN”)
@statements.each {|s| s.generate(out, indent+1)}
out.puts(prefix+"END IF;”)
end
end
end

class Assignment < SingleLineStatement
def initialize (xargs)

@assign = Assign.new(xargs)
end
def line

@assign . generate + 7;”
end

end

class Assign < InlineStatement
def initialize (xargs)

if args.length — 2
@target = args[0]
@expression = args[1]

else

@target = args [0].to_s + 7 (#{args[1]})”
@expression = args [2].to_s + 7(#{args[3]})”
@expression = @expression.to_sym
end
end

def generate
"#{Qtarget} <= #{quoted (@expression)}”
end
end

class Equal < InlineStatement
def initialize (target, expression)
Qtarget = target
@expression = expression
end

def generate
"#{Qtarget} = #{quoted (@expression)}”
end
end

class Event < InlineStatement
def initialize (target)
Q@target = target

end

def generate

25

?#{Q@target . to_s } 'EVENT”
end
end

class Invert < InlineStatement
def initialize (body)
@body = body
end

def generate
"NOT (#{@body})”
end
end

class Block < MultiLineStatement
include StatementBlock

def initialize (body)
@statements = []
body. call (self)
end
end

Global scope methods for creating stuff

module Helpers
def entity (name, &body)
VHDL: : Entity .new (name, body)
end

def assign (target, expression)
VHDL: : Assign .new(target , expression)
end

def high(target)
assign (target , ’17)
end

def low (target)
assign (target, ’07)
end

def equal(target, expression)
VHDL: : Equal .new (target , expression)
end

def event(target)
VHDL: : Event .new (target)

end

def block(&body)
VHDL: : Block . new (body)
end

def subbits(sym, range)

26

#{sym}(#{range. first } downto #{range

end

def invert (body)
VHDL: : Invert .new (body)
end
end
end

Monkeypatching
class Symbol
def <=(other)
return assign (self, other)
end
end

class Fixnum
def to_logic (width)
str = self.to_s(2)
return 707 x(width—str.length) + str
end
end

def generate_vhdl(entity , out=3stdout)
out.puts ”"LIBRARY ieee;”

out .puts "USE ieee.std_logic_1164.all;”

out.puts "USE ieee.numeric_std. all;”
out.puts
entity . generate (out)

end

8 Appendix B: Clojure implementation source code

The source code to Computer.Build is presented here for easy access, but the most recent
version can always be found at http://github.com/epall/Computer.Build and is licensed

under the MIT License.

Listing 10: Computer.Build main module

(ns computer—build
(:use computer—build. vhdl
computer—build . state—machine
clojure .set
clojure.contrib.pprint))

.last })” .to_sym

(defmacro build [cpuname options & instructions]
‘(build* “cpuname ~options (quote “instructions)))

defn rd [port
(
(keyword (str ”"rd-” (name port))))

(defn wr [port]
(keyword (str ”wr.” (name port))))

27

http://github.com/epall/Computer.Build

(defn binary* [accumulator num]
(let [last—bit (if (even? num) 70”7 ”71”)]
(cond
(= 0 num) (str 70” accumulator)
(= 1 num) (str 717 accumulator)
true (recur (str last—bit accumulator) (int (/ num 2))))))

(defn binary [width num]
”Convert number to binary literal format expected in VHDL”
(let [value (binarys ”” num)
length (count value)]
(str (apply str (repeat (— width length) 707)) value)))

(defn alu—op—to—opcode [op]

(if op

(cond
(= (name op) ”and”) ”7001”
(= (name op) ”complement”) ”011”
(= (name op) 7+”) 7100”7
(= (name op) ”-") 7101”
(: (name Op) 77:77) ” 11077)

” 00077))

(defn flatten—1 [things]
(if (empty? things)
()
(if (list? (first things))
(concat (first things) (flatten—1 (rest things)))
(cons (first things) (flatten—1 (rest things))))))

(defn mapmap [{ m)]
”Replace all values in map m with the result of calling
f with the value”
(zipmap (keys m) (map f (vals m))))

(defn rtl—to—microcode [[target _ source & conditional—body]]
(cond
(number? source) ; constant—to—register
{:control—signals (list (wr target)),
:constant—value source}

(symbol? source) ; register—to—register
{:control—signals (list (rd source) (wr target))}

(= 7if” (name target)) ; conditional
(let [[condition target expectation] _
body (flatten—1 (map rtl—to—microcode (cons source conditional—body)))]
(list

; load target
{:control—signals (list (rd target) (wr :alu.a)) }
; load expectation and compare
(if (number? expectation)
{:control—signals (list (wr :alu.-b))
:constant—value expectation
:alu_op condition

28

:conditional true

:body body}
{:control—signals (list (rd expectation) (wr :alu_b))
:alu_op condition

:conditional true

:body body})

)

(and (seq? source) (symbol? (first source))) ; ALU—to—register
(let [[alu_op operand.a operand_-b] source]
(list
{:control—signals (list (rd operand.a) (wr :alu.a)) :alu_op alu_op}
(if (= 3 (count source))
(if (number? operand_b)
{:control—signals (list (wr :alu_-b)) :alu_op alu.op
:constant—value operand_b}
{:control—signals (list (rd operand-b) (wr :alu_b)) :alu_op alu_op}))

{:control—signals (list :rd_-alu (wr target)) :alu_op alu_op}))))

(defn name—for—state [instruction—name index|]
(keyword (str instruction—name ”_” index)))

(defn link—state [instruction—name last—index body index]
(let [next—state
(if (= index last—index)
:fetch
(name—for—state instruction—name (+ index 1)))
connected—body
{(name—for—state instruction—name index)
(assoc body :next next—state)}]
(if—let [conditional—body (:body body)]
; conditional
(let [instruction—name (str instruction—name ”_” index)
last—index (dec (count conditional—body))]

(merge connected—body
(apply merge (map (partial link—state instruction—name last—index)

conditional—body (iterate inc 0)))))
; not conditional
connected—body)))

(defn make—states—for—instruction [[- instruction—name & RTLs]]|
(let [microcode (flatten—1 (map rtl—to—microcode RTLs))
last—index (— (count microcode) 1)]
(apply merge (map (partial link—state instruction—name last—index)
microcode (iterate inc 0)))))

(defn make—states [instructions]
”Given a set of instructions , create the set of states

necessary to execute their microcode”
(apply merge (map make—states—for—instruction instructions)))

(defn make—opcodes [instructions]
”?Given a set of instructions, assign opcodes to each one in

a map with keys being instruction names”
(let [names (map #(nth % 1) instructions)

29

width (Math/ceil (/ (Math/log (count names)) (Math/log 2)))
to—binary (fn [n] (let [raw (Integer/toString n 2)
padlength (— width (count raw))]
(str (apply str (repeat padlength 70”7)) raw)))
op—values (map to—binary (range (count names)))]
(zipmap names op—values)))

(defn realize—state [control—signals state]
(let [highs (:control—signals state)
assertions (map #(list ’high %) highs)
clears (map #(list ’low %) (difference control—signals highs))]
(vec (concat
(:code state)
assertions
clears
(if—let [const (:constant—value state)]
‘((<= :system_bus ~(binary 8 const)))
‘((<= :system_bus “(apply str (repeat 8 7Z7)))))
‘((<= :alu_operation ~(alu—op—to—opcode (:alu_op state))))))))

(defn control—unit [instructions]
”Given a set of states, make a control unit that will
execute them”
(let [opcodes (make—opcodes instructions)
opcode—width (count (second (first opcodes)))
static—states {:fetch

{:control—signals ’(:rd_pc, :wr-MA), :next :store_instruction}

:store_instruction
{:next :decode,
:control—signals ’(:rd-MD, :wr_.IR, :inc_pc),
:code
[‘(if (and (event :clock) (= :clock 0))
(<= :opcode “(— opcode—width 1) 0
:system_bus 7 “(— 8 opcode—width)))]}
:decode {:control—signals ’()}}
states (merge (make—states instructions) static—states)
conditional—states
(select—keys states (for [[k v] states :when (:conditional v)] k))
unconditional—states
(select—keys states (for [[k v] states :when (not (:conditional v))] k))
control—signals (set (apply concat (map
(fn [[- body]] (:control—signals body))
states)))
inputs {:reset std—logic, :condition std—logic}
outputs (assoc
(zipmap control—signals (repeat (count control—signals) std—logic))
:alu_operation (std—logic—vector 2 0))]

(list (state—machine ”"control_unit”
; inputs
inputs
; outputs
outputs
; input/outputs
{:system_bus (std—logic—vector 7 0)}

30

; signals
{ :opcode (std—logic—vector (— opcode—width 1) 0) }
; reset
(list* (<= :alu_operation ”7000”)
"(goto :fetch)
(<= :system_bus 7ZZZZZ7Z77”)
(map #(list ’low %) control—signals))
states
mapmap (partial realize—state control—signals) states)

concat

; states

(map
(fn [[k v]] (list k (:next v)))
(dissoc unconditional—states :decode))

; conditional false

(map
(fn [[k v]] (list k (= :condition 0) (:next v)))
conditional —states)

; conditional true

(map
(fn [[k v]] (list k ’(= :condition 1) (name—for—state (name k) 0)))
conditional —states)

(
; transitions
(

; decode

(map #(list
; from
:decode

; condition
‘(= :opcode " (second %))
; to
(keyword (str (first %) 7-07)))
; for each opcode
opcodes)))
(assoc inputs :clock std—logic) outputs)))

(defn build* [cpuname options instructions]
(. mkdir (java.io.File. cpuname))

(let [[control—unit control—in control—out] (control—unit instructions)
control—signals (concat (dissoc control—in :clock :reset) control—out)
dynamic—signals (map (fn [[k v]] (list ’signal k v)) control—signals)]

(with—open [main—vhdl (java.io.FileWriter. (str cpuname ”/main.vhdl”))
control—vhdl (java.io.FileWriter. (str cpuname ”/control.vhdl”))]
(pprint dynamic—signals)
(binding [*outx control—vhdl]
(generate—vhdl control—unit))
(binding [*out* main—vhdl]
(generate—vhdl ‘(entity ”main”
; ports
[(:clock :in “std—logic)
(:reset :in “std—logic)
(:bus_inspection :out ~(std—logic—vector 7 0))]
; defs
[T @dynamic—signals
(signal :system_bus ~(std—logic—vector 7 0))

31

(component :reg
(:clock :in “std—logic)
(:data_-in :in “(std—logic—vector 7 0))
(:data_out :out “(std—logic—vector 7 0))
(:wr :in “std—logic)
(:rd :in “std—logic))

(component :program_counter
(:clock :in “std-—logic)
(:data_-in :in “(std—logic—vector 7 0))
(:data_out :out “(std—logic—vector 7 0))
(:wr :in “std—logic)
(:rd :in “std—logic)
(:inc :in “std—logic))

(component :ram
(:clock :in “std—logic)
(:data_in :in “(std—logic—vector 7 0))
(:data_out :out “(std—logic—vector 7 0))
(:address :in “(std—logic—vector 4 0))
(:wr_data :in “std—logic)
(:wr_addr :in “std—logic)
(:rd :in “std—logic))

(component :alu

:clock :in “std—logic)

:data_in :in “(std—logic—vector 7 0))
:data_out :out “(std—logic—vector 7 0))
:op :in " (std—logic—vector 2 0))

:wr_a :in “std—logic)

:wr_b :in “std—logic)

:rd :in “std—logic)

:condition :out “std—logic))

S s s s e e o

(component :control_unit
“"@(concat (map input control—in)
(map output control—out)
‘“((:system_bus :inout ~(std—logic—vector 7 0)))))]
; architecture

[

(instance :program_counter ”"pc” :clock :system_bus :system_bus
:wr_pc :rd_pc, :inc_pc)

; instruction register

(instance :reg ”ir” :clock :system_bus :system_bus :wr_IR :rd_IR)

; accumulator

(instance :reg "A” :clock :system_bus :system_bus :wr A :rd_A)

(instance :ram ”main_memory” :clock :system_bus :system_bus
“(subbits :system_bus 4 0) :wrMD :wrMA :rd-MD)

(instance :alu ”alu0” :clock :system_bus :system_bus :alu_operation
:wr_alu_a :wr_alu.b :rd_alu, :condition)

(instance :control_unit ”control0”

; same ports as the control signals we got

"@Q(map first (concat control—in control—out)) :system_bus)
(<= :bus_inspection :system_bus)

32

1)))))

Listing 11: State machine generator

(

ns computer—build.state—machine

(:use computer—build. vhdl)

(:require [clojure.zip :as zip])

(:refer—clojure :rename {:name :keyword—to—str}))

(defn reformat—ports [ports inout]
(if (map? ports)
(map #(list (first %) inout (second %)) ports)
(map #(list % inout ”std_logic”) ports)))

efn state—Ifrom—name |statename
def f
(keyword (str ”"state.” (keyword—to—str statename))))

(defn rewrite—gotos [state—variable block]
”?Given a set of statements, replace all gotos with assignments
to the appropriate state variable”
(vec (map #(if (= ’goto (first %))
(list '<= state—variable (state—from—name (second %)))
%)
block)))

(defn flatten—states [m)]
(if (empty? m) ()
(let [[state body] (first m)]
(list* (state—from—name state) body (flatten—states (dissoc m state))))))

(defn translate—transition [state—variable transition]
(if (= (count transition) 2)

‘(if (= “state—variable ~(state—from—name (first transition)))
[(<= "“state—variable ~(state—from—name (last transition)))])
‘(if (and (= "“state—variable ~(state—from—name (first transition)))

“(second transition))
[(<= "“state—variable ~(state—from—name (last transition)))])))

(defn state—machine [name inputs outputs inouts signals reset states transitions]
”Create a state machine that operates from the given inputs, triggering
the specified transitions to the listed states that generate outputs on
the signals in the outputs array”

(let [inports (reformat—ports inputs :in)
outports (reformat—ports outputs :out)
inoutports (reformat—ports inouts :inout)]
‘(entity “name
; Ports
“(concat [’(:clock :in ”std-logic”)] inports outports inoutports)
; Definitions
((deftype "STATE.TYPE”
“(map #(str "state_.” (keyword—to—str %)) (keys states)))
(signal :state ”"STATE.TYPE”)
"@Q(map #(cons ’signal %) signals))
; Behavior
(process (:clock :state :reset)
[(if—else (= :reset 717)

33

; true body
“(rewrite—gotos :state reset)

; false body

(

(case :state "Q(flatten—states states))

(if (and (event :clock) (= :clock 1))

“(vec (map (partial translate—transition :state) transitions)))
D))

Listing 12: VHDL-in-Clojure to VHDL compiler

(ns computer—build . vhdl
(:use clojure.contrib.str—utils))

(def std—logic ”STD_LOGIC”)

(defn std—logic—vector [start end]
(str "STD_LOGIC_.VECTOR(” start ” downto ” end 7)”))

(defn subbits [k start end]
(keyword (str (nmame k) 7 (7 start ” downto ” end 7)”)))

(defn input [[id kind]]
(list id :in kind))

(defn output [[id kind]]
(list id :out kind))

(defn indented—lines [strings]| (map (partial str 7 7) strings))

(defn indent—lines [[line & lines]]
(if (empty? line) ’()
(if (string? line)
(cons line (indent—lines lines))
(concat
(if (:noindent (meta line))
(indent—lines line)
(indented—lines (indent—lines line)))
(indent—1lines lines)))))

(defn flat—1list [head & tail]
(let [tail (if (empty? tail) ’() (apply flat—list tail))]
(if (seq? head)
(concat head tail)
(cons head tail))))

(defn spaces [& strings] (str—join 7 7 strings))
(defn commaify [lines |
(mep #(apply str %)
(partition 2 (concat (interpose 7;” lines) [77]))))

(defn keyword—to—str [sym]
(cond
(keyword? sym) (name sym)
(number? sym) (str \’ sym \’)

34

(string? sym) (
(str \’ sym s

(str \” sym

(= (count sym) 1)

(defmulti to—vhdl (fn [block]
(if (symbol? block) (throw (Error. (str ”Invalid VHDL: ” block))))
(if (vector? block) :block
(—> block first name keyword))))

(defn not—indented [body]
(with—meta body {:noindent true}))

; Multi—line statement that causes an extraneous level of nesting in AST
(defmacro def—vhdl—multiline [kword bindings & body]
‘(defmethod to—vhdl “kword [“(vec (concat ’[_-] bindings))]
(not—indented (list “@body))))

; Inline or single—line statements that don’t produce a list of lines
(defmacro def—vhdl—inline [kword bindings & body]
‘(defmethod to—vhdl “kword [~ (vec (concat ’[-] bindings))]
(str "@body)))

(defmethod to—vhdl :default [arg] (str "##AUNMPLEMENTED: ” (first arg) "###))

(defmethod to—vhdl :block [block]
(map to—vhdl block))

(defmethod to—vhdl :entity [[type name ports defs & architecture]]
(apply str (interpose ”"\n” (indent—lines
(list
(spaces "ENTITY” name ”is”)
"PORT(”
(commaify (map to—vhdl (map (partial cons :port) ports)))

77) L
7
(str ”END ” name 7;”)

(str "ARCHITECTURE arch_” name ” OF 7 name 7 1IS”)
(map to—vhdl defs)

”BEGIN”

(map to—vhdl architecture)

(str ”END arch_” name ”;”7))))))

(def—vhdl—multiline :process [ports definition]
(str "PROCESS(” (str—join ”,” (map keyword—to—str ports)) ”7)”)
”BEGIN”
(to—vhdl definition)
"END PROCESS; ")

(def—vhdl—multiline :case [target & cases]
(spaces "CASE” (keyword—to—str target) 7IS”)
(map #(not—indented (list
(spaces "WHEN’ (keyword—to—str (first %)) "=>")
(to—vhdl (second %)))) (partition 2 cases))
"END CASE;”)

35

(def—vhdl—multiline :if [condition body]
(spaces "IF” (to—vhdl condition) ”THEN”)
(to—vhdl body)

"END IF ;")

(def—vhdl—multiline :if—else [condition truebody falsebody]
(spaces "IF” (to—vhdl condition) "THEN”)
(to—vhdl truebody)

77ELSE”
(to—vhdl falsebody)
"END IF;”)

(def—vhdl—multiline :if—elsif [condition body & clauses]
(spaces "IF” (to—vhdl condition) ”THEN”)
(to—vhdl body)
(not—indented
(map #(not—indented (list
(spaces "ELSIF” (to—vhdl (first %)) ”"THEN”)
(to—vhdl (second %)))) (partition 2 clauses)))
"END IF;”)

(def—vhdl—multiline :component [name & ports]
(str "COMPONENT ” (keyword—to—str name))
»PORT(”
(commaify (map to—vhdl (map (partial cons :port) ports)))

”);7)
(str "END COMPONENT;”))

; inline / single—line statements

(defmethod to—vhdl : <= [[type & args]]
(let [target—str (keyword—to—str (first args))]
(cond
(= (count args) 2)
(let [[target expression]| args]
(str target—str 7 <=7 (keyword—to—str expression) \;))
(= (count args) 4)
(let [[target target—index source source—index] args]
(str target—str 7 (” target—index 7) <=7
(keyword—to—str source) 7 (” source—index 7);”))
(= (count args) 6)
(let [[target target—start target—end source source—start source—end] args]
(str target—str 7 (” target—start 7 downto ” target—end 7) <=7

(keyword—to—str source) ”(” source—start ” downto ” source—end ”);”)))))
(def—vhdl—inline :port [id direction kind]
(keyword—to—str id) ”: 7 (keyword—to—str direction) ” ” kind)
(def—vhdl—inline :instance [component name & mappings]
name ”: 7 (keyword—to—str component) ” PORT MAP(”
(str—join 7, 7 (map keyword—to—str mappings)) 7);”)

(def—vhdl—inline :low [target]
(to—vhdl ‘(<= “target 707)))

36

(def—vhdl—inline :high [target]
(to—vhdl ‘(<= "target ”17)))

(def—vhdl—inline :signal [sig kind]
?SIGNAL 7 (name sig) 7 : 7 kind 7;”)

(def—vhdl—inline :deftype [name values]
"TYPE 7 name ” IS (” (str—join 7, ” values) 7);”)

(def—vhdl—inline :and [& conditions]
(str—join 7 AND 7 (map to—vhdl conditions)))

(def—vhdl—inline :event [target]
(keyword—to—str target) ” EVENT”)

(def—vhdl—inline := [condA condB]

2 ”

(name condA) = (keyword—to—str condB))
; }' 7.7.; ’. ; }. }' 7. ; }' ’. ; }. anal OUtPUt generation ; }. ; ; 7. }' 7. ’. }. ; ; ; }' 7.

(defn generate—vhdl [& entities]
(do
(println ”"LIBRARY ieee;”)
(println "USE ieee.std_logic_-1164.all;”)
(println (to—vhdl (first entities)))))

9 Appendix C: Program output

While the goal of this paper and project was to compare Ruby and Clojure for a non-trivial
programming task, the actual Computer.Build program successfully generates complex mi-
croprocessors from instruction set definitions. The generated designs were compiled for an
Altera FPGA using Altera Quartus, and their behavior was simulated. The generated hard-
ware design and test waveforms for one of the test processors are included in this Appendix
to demonstrate the successful operation of Computer.Build.

9.1 Synthesized RTL

Computer.Build produces VHDL source code as its output. Being an intermediate step,
this source code is excessively verbose and not fit for inclusion in this paper. However, the
source code is compiled into a schematic design by Quartus, and the relevant schematics are
presented in this section.

37

Figure 1: Top-level CPU design

38

Figure 2: Control unit

9.2 Simulation waveforms

After compilation, the processor was tested using a simple program that exercised the critical
instructions. The program loads the value 0xFB into the A register, then increments it until
it reaches 0. When it reaches 0, the program branches back to the initialization and re-loads
0xFB. This demonstrates the arithmetic and conditional branching capabilities of one of the
synthesized processors.

39

Figure 3: High-level waveform

pi 57w 1024us 1536us 204Bus 25fus 3072, BBdus 408w 4608 512us 563w El4dus B6BGus 7IEBus 7eus 81924
Name 1705 ns
clock
reset 1
bus_inspsction
[reg:Aregval 00 ¥FB ¥ FC FD b4 FE i3 ¥ 00 7B ¥ FC O b4 FE FF
[regirregval 0 [] 0

in_memoryaddr_cache
alu:ahulioperand_a
aluauoperand_b
ram_counterpcregval
«.|_unit controlliopcode

Figure 4: Focus on conditional branch

l1220s 251us 43790 45070 4635us 4783us 4831us 5019 us 51.47us 527508 |
Name
[dlock
w1 reset
o2 bus_inspection
L=l reg:Aregval
D20 regirragval]
=) in_memoryiaddr_cache T 2 0 ¥ F ¥ T 7
Lea alualulioperand_a FF 00 50 &F FB
e aluzalulioperand b o o0 oF =
(=2 ram_counterporegval (7] 03 00 [02 03
=) 1 untt:contralllopcode) ¥ 5 z
References

Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, 1984.

Cedric Lemaire. Codeworker: A universal parsing tool & a source code generator, 2008.
http://codeworker.free.fr/index.html.

Martin Thiede. Rgen: Ruby modelling and code generation framework. Info@, February
2009. http://www.infoq.com/articles/thiede-ruby-modelling.

Joel VanderWerf. Cgenerator: A framework for generating c extensions from ruby, 2001.
http://cgen.rubyforge.org/.

Heinz Knutze Wolfgang Goerigk, Ulrich Hoffmann. Clicc - the common lisp to ¢ compiler,
1996. http://www.informatik.uni-kiel.de/ wg/clicc.html.

40

	Introduction
	Background
	Implementation
	Functional (Clojure)
	Object-Oriented (Ruby)
	Results
	Example processor definitions

	Conclusions
	Syntactic
	Architectural

	Recommendations
	Future Work
	Computer generation
	Language comparison

	Appendix A: Ruby implementation source code
	Appendix B: Clojure implementation source code
	Appendix C: Program output
	Synthesized RTL
	Simulation waveforms

