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ABSTRACT
Clustering social networks is vital to understanding online interac-
tions and influence. This task becomes more difficult when com-
munities overlap, and when the social networks become extremely
large. We present an efficient algorithm for constructing overlap-
ping clusters, roughly linear in the size of the network. The algo-
rithm first embeds the graph and then performs a metric clustering
using a Gaussian Mixture Model (GMM). We evaluate the algo-
rithm on the DBLP paper-paper network which consists of about 1
million nodes and over 30 million edges; we can cluster this net-
work in under 20 minutes on a modest single CPU machine.
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1. INTRODUCTION
Social, collaboration and interaction networks (Twitter, Facebook,
DBLP, Citeseer, Amazon, etc.) are a source of vast, multimodal
information. Many communities have taken advantage of such net-
works in order to communicate ideas broadly and quickly. The
same technology has also allowed researchers to observe the dy-
namic nature of communities and how individuals work within them.
One of the fundamental tasks is to identify theoverlappingcom-
munities in a network, represented by its interactions – nodes ab-
stractly represent the entities of interest (books, people, etc) and
edges represent the interactions between nodes (e.g. an edge be-
tween two people if they purchased the same book). Clusters rep-
resent the collections of nodes which are “similar” and the same
node may be in more than one cluster (a person may have interests
in science fiction and philosophy).

As networks increase in size, clustering algorithms need to be scal-
able. Even quadratic time algorithms will soon be unacceptable.
For our experiments, we use the DBLP paper-paper network, with
about 1 million papers, with over 30 million edges. Since there
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is no accepted definition of what a cluster in a social network is,
the typical approach has been to “define” a cluster by construct-
ing an intuitive algorithm the result of which is a cluster. We take
this approach, in that we present an intuitive algorithm with a fo-
cus on efficiency. The result of the algorithm is “our definition of
a cluster” and the validation is whether, in real social networks, the
algorithm can produce good results.

Overview of SSDE-Cluster The input is a (typically sparse) so-
cial network graphG = (V, E) on n nodes (eg. books as nodes
and (positive) edge similarities between books being the proba-
bility that a user would purchase both books conditioned on pur-
chasing one). Typically, the definition of the node-similarities is
application-specific, and is a determining factor for the quality of
the results.

Our approach has two phases. The graph distances define a finite
metric onn points. The first phase efficiently embeds this met-
ric in R

d, so that Euclidean distances reasonably approximate the
graph metric. According to the Johnson-Lindenstrauss theorem,
d = O(log n) dimensions essentially suffices for this (practically,
a constant number of dimensions (sayd = 100)). In our experi-
ments, we find that 5-10 dimensions suffices. The challenge is to
construct this embedding without visiting every entry in the dis-
tance matrix (that would make the algorithm quadratic); we do this
by carefully samplingd rows of the distance matrix, which can be
done inO(nd), because the graph is sparse.

The advantage of first creating an approximate embedding is that
now techniques can be used for clustering in metric spaces, for
examplek-means. We choose to use a Gaussian Mixture Model
(GMM) because it can readily be adapted to give overlapping clus-
ters (k-means delivers a partitioning). We choose the number of
clusters by comparing to a random data set, and we determine the
extent to which the clusters overlap by selecting a threshold to max-
imize the quality of the clusters.

1.1 Related Work
For text, a common approach is Latent Dirichlet Allocation (LDA)[4];
though DBLP is text data on which LDA could be applied, our
method is generally applicable to any weighted graph. We use the
DBLP because the relations between authors and papers have many
of the properties found in social networks. Nevertheless, we use
text-based metrics to concretely validate our results.

Finding communities in social networks has been rapidly researched
during the past decade [13, 15, 14, 21]. Early on researchers worked



with the ’small world’, power-law, and network transitivity proper-
ties. These properties characterized communities of isolated groups
where a small number of objects in a community were connected
to objects in other communities. A more recently proposed prop-
erty is the connectedness of communities, where objects within the
community have shorter path lengths than to objects outside the
community [11]; building on such definitions, one should expect
communities to be densely connected subgroups of the graph [19,
20].

A drawback of the aforementioned approaches is that they are graph
partitioning methods – the communities cannot overlap. In real-
ity, communities often overlap and sometimes in non-trivial ways.
To address efficiency and memory footprint issues, work has pro-
gressed by extending algorithms to work within subspaces[25], iden-
tifying overlapping groups using local optimality [2, 3], and remov-
ing the constraints on the number of communities[1]. Methods for
finding overlapping communities by searching for clique-like struc-
tures also exist [23, 30, 29].

In this paper we propose an algorithm that can handle large datasets,
particularly those with a high number of objects; we also allow
overlap. The work in [22, 28] is similar to ours in that the first step
in our algorithm is spectral, similar to multi-dimensional scaling
(MDS); their algorithm is based on spectral properties of the Lapla-
cian of a graph which they construct from a metric embedding; in
some sense, they do the reverse of what we do. However, construc-
tion of the Laplacian isΩ(n2). While we use GMMs as our tool
for “soft” metric clustering, any method for metric clustering which
readily gives overlapping clusters could be applied. GMMs happen
to be an area of very active research (see for example [8, 9, 24,
27]). We use a fast approximation to MDS [7] based on an online
sampling of the squared distance matrix. The Nyström method is
similar to MDS, and has been used for spectral segmentation (eg.
[?]). Sparse approximations to matrices in machine learning, typi-
cally to approximate the Gram matrix in kernel methods have been
considered ([26, 10]); in all cases, the methods sample the whole
matrix (Ω(n2)). When it comes to graph partitioning, there is much
work, and we suggest [17] for a good overview; a comprehensive
review is given in [13], focusing mostly on partitioning, but also
considering overlapping clusters.

2. THE SSDE-CLUSTER ALGORITHM
The input is a weighted graph,G = (V, E). The algorithm can be
broken down as follows.

1. Run SSDE (spectral embedding) to approximately embed the
graph ind≪ n dimensions.

2. Run a GMM algorithm to compute “soft clusters”; determine
K, the number of clusters, by comparing the marginal value of
adding a cluster on the real data with random data.

3. Use the GMM probabilities to construct overlapping clusters;
determine the degree of cluster overlap by locally optimizing a
cluster density.

2.1 Sampled Spectral Distance Embedding
Sampled Spectral Distance Embedding (SSDE) is an approxima-
tion to classical multidimensional scaling which was introduced in
the context of fast graph drawing [5]. The distance matrixD is
the symmetricn× n matrix containing all the pair-wise distances.

Suppose we position vertexvi at xi ∈ R
d. We are seeking a po-

sitioning that approximates the graph theoretical distances with the
Euclidean distances, i.e.,

||xi − xj || ≈ Dij , i, j = 1, 2, . . . , n (1)

After squaring and some manipulation (see [5]), one obtains the
MDS equation:

YY
T ≈ −1

2
γLγ = M (2)

where the embeddingY is ann × d matrix containing the coor-
dinates of the points,Lij = D2

ij (the squares of the distances)
and the centering projection matrixγ = In − 1

n
1n1T

n . The spec-
tral decomposition ofM then givesY = [

√
λ1u1, . . . ,

√
λdud],

whereλ1, . . . , λd are the topd eigenvalues ofM andu1, . . . ,ud

are the associated eigenvectors. One useful property of MDS is that
when the distance matrix is nearly embedable ind dimensions, then
MDS recovers such an approximate embedding (see [6, Theorem
3]). The drawback of MDS is that it is slow,Ω(n2d). The next two
lemmas give the insight for speeding up MDS.

LEMMA 1 ([16]). Anyn-point finite metric can be embedded
(to within ǫ) in R

d for d = O(ln n/ǫ2).

This lemma says that from the point of view of distances, we can
approximately treat the graph asn points in a (small)d-dimensional
space. For practical purposes,d ≤ 100 suffices.

LEMMA 2. For anyn points ind-dimensions, letLij = ||xi − xj ||2.
Then rank(L) ≤ d + 2.

Note that the rank does not depend onn. Combining these two
lemmas: any n-point finite metric is approximately embedable in
d = O(ln n/ǫ2) dimensions, which means that the “numerical”
rank ofL is roughlyd + 2 = O(ln n/ǫ2). Practically, this means
that a small number (say 100) suitably chosen rows ofL captures
all the information inL. SSDE works in three steps (see [5]).

1. Sample a subsetc ≈ 100 columns to representL, we denote this
by C. These columns correspond to the nodesvi1 , . . . , vic

. We
use the standard greedy 2-approximation to thec-center problem
to select the nodes. This serves to “spread” out the nodes and
give them large “numerical” rank. The first node is selected
arbitrarily to compute the first column (SSSP); each subsequent
node selected is farthest from the current set of selected nodes.

2. Construct a low rank approximation toL, L̂ = Cφ+CT., where
φ is thec× c matrix of the intersection ofC andCT. Some care
may be needed in computingφ+ in a stable way (see [5]).

3. Construct the embeddingY from the spectral decomposition of
− 1

2
γL̂γ.

We briefly comment of the running time of the SSDE phase. The
first step involvesc SSSP computations which can be performed
in O(c|E| log |V |) = O(cn log n). Sinceγ = In − 1

n
1n1T

n, γC

can be computed inO(nc) time. LetQ = γC, and construct the
singular value decompositions

Q = UQΣQV
T
Q, φ = UφΣφV

T
φ,



whereUQ is n× c, and all the other matrices arec× c; this takes
O(nd2 + d3) time. Then,

−1

2
γL̂γ = −1

2
UQΣQV

T
QUφΣ+

φ V
T
φVQΣQU

T
Q.

The matrix productΣQVT
QUφΣ+

φ VT
φVQΣQ and its eigen-decomposition

UΣUT can be computed inO(c3) time; hence, the spectral de-
composition− 1

2
γL̂γ = − 1

2
UQUΣUTUT

Q can be computed in
O(nc2 + c3). The embedding isY = UQU(− 1

2
Σ)1/2. In prac-

tice, we may only need (say) the top 5 dimensions, and so a power
iteration could be used in lieu of SVD (as was done in [5]).

2.2 Soft Clustering with a Gaussian Mixture
Model (GMM)

After embedding the graph, our next task is to cluster the nodes.
Many metric clustering methods exist, and we choose a standard
GMM trained using the E-M algorithm. One advantage of the
GMM over (say) straightK-means is that the cluster probabilities
will be useful in constructing overlapping clusters. A GMM is a
weighted sum ofM component densitiesp1(x), . . . , pM (x); each
component density is ad variate Gaussian function with meanµk

and covariance matrixΣk:

pk(x) =
1

(2π)d/2|Σk|1/2
e−

1

2
(x−µk)TΣ−1

k
(x−µk).

The GMM isp(x) =
PM

k=1 πkpk(x), where the mixture weights
satisfy

PM
k=1 πk = 1. The model parameters are

θ = {πk, µk, Σk}k=1,...,M . (3)

We use a simple E-M procedure for training. We initialize the
GMM by selectingµk randomly without replacement, and setting
πk = 1/M andΣk = Id. One might also consider a better ini-
tialization of theµk (eg. using the greedy 2-approximation to the
M -center problem, or more sophisticated methods as mentioned in
the related work). In the expectation step, the probabilities for node
i to belong to clusterk are calculated:

pki = πkpk(xi)

We then update the parameters using these probabilities during the
maximization step:

µk ←
P

i pkixi
P

i pki

Σk ←
P

i pki(xi − µk)(xi − µk)T

P

i pki

πk ←
1

n

X

i

pki.

One iteration of E-M isO(nMd2); for smallM andd this is ac-
ceptable. [18] discusses methods for reducing this toO(nMd)
using low rank perturbations to the covariance matrix. The output
of the GMM phase is the set of probabilities{pki}, which will be
used in computing the discreteoverlappingclustering. For some
applications, the probabilities themselves would suffice.

2.3 Determining the Number of Clusters
We describe a simple heuristic for determining the number of clus-
ters by comparing the real data clusters to random data. Too many
clusters results in over-fitting the data and breaking the true com-
munities into several smaller communities.

Figure 1: Setting # clusters
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Figure 2: α vs. overlap.

We develop a random data set uniformly over the same space as the
embedded data. Since there are no clusters in the random data, the
increase in log-likelihood by adding an additional cluster is purely
from over-fitting. When the benefit from adding a cluster to the
real data is not significantly more than that of adding a cluster to
random data, we argue that it is time to stop adding clusters. The
figure to the right shows the successive gains of adding a cluster
to the DBLP data versus to the random data; from Figure 1, we
discern that about 7-11 clusters is appropriate (we used 7 in our
experiments).

2.4 Determining the Extent of the Overlap
Every nodei is assigned to its most likely cluster, argmaxk pki.
This constructs a partition of the nodes into clusters. We now ex-
tend this so that clusters may overlap. For nodei, defineαki =
pki/ maxk pki; αki measures how diffuse nodei’s membership is
in its most likely cluster. Assume we have a cluster metric which
measures the quality of a cluster. We use

E(C) = λ
Win(C)

Win(C) + Wout(C)
+ (1− λ)

Win(C)

|C|(|C| − 1)
;

Win (resp.Wout) is the sum of similarities within the cluster (resp.
from within to outside);E(C) combines similarity internally and



to the outside with the average internal similarity. We usedλ = 1
2
.

We useαki to define an ordering over node-cluster pairs, starting
with high α. We propose two approaches to to constructing the
overlaps. The first is to process the nodes according to the order-
ing, each time adding the node to its corresponding cluster if the
metric for that cluster increases. This is similar in spirit to the local
optimizations performed in [2, 3]. An alternative is to track how
the average cluster metric varies as we progress along this order-
ing. When the average cluster metric starts to decrease noticeably,
it defines an alpha thresholdα∗. For all αki ≥ α∗, we add the
corresponding nodei to clusterCk. In our experiments, we set
α∗ = 0.3 which gives about 1.2 clusters per paper – this average
number of clusters per paper could also be a user input to compute
α∗.

3. THE DBLP NETWORK
In general, the social network is constructed by defining the “agents”
(nodes) and the interactions or relationships between them (com-
munications, similarities, etc.). We apply our algorithm to the Dig-
ital Bibliography and Library Project (DBLP) data [?]; we choose
papers as nodes, and two papers are related if they have common
authors. The underlying assumption is that papers having similar
authors are more likely to have similar content, which is reasonable,
since most authors tend to have a focus area. We use the Jaccard
index of the author sets to define similarity; for two papersi, j, let
Ai, Aj be their respective author sets. Then

sij =
|Ai ∩Aj |
|Ai ∪Aj |

; dij =
1

sij

Most clustering algorithms for social networks work with the sim-
ilarities {sij} and try to optimize some measure of intra-cluster
similarity versus inter-cluster similarity. Since our algorithms are
metric based, we need a measure of difference, so we simply use
the inverse-similarity; this allows us to construct our finite metric.

3.1 Validating Clusters
The recurring problem with applying a clustering algorithm to real
data (where the “definition” of the cluster is the “result of the algo-
rithm”) is to validate these clusters as good. We use human judge-
ment based on the title and venue information of the papers. We
preprocess title texts by removing stop words and stemming [?].
For a cluster of papersCk (remember, clusters can overlap), we
construct a word probability distributionhk(w). Similarly, we can
construct a background distributionh(w) for the entire data set
of titles. The wordsw for which hk(w) ≫ h(w) are descrip-
tive of the cluster; we can also identify the wordsw for which
hk(w) ≪ h(w), which are indicative of not being in the clus-
ter. This breaks down the papers into “topics” based on title texts.
Visually, we depict the descriptive words using word clouds, and
compare with an LDA analysis of the title data. Note that in gen-
eral networks, such an LDA analysis is not possible. We perform a
similar analysis for the paper venues, which should hopefully iden-
tify the conferences corresponding to the various topics.

4. EXPERIMENTAL RESULTS
For our study, we constructed the DBLP network as described above
and clstered the giant componend, which consisted of about 900K
papers (nodes) and over 30 million (weighted) edges. We chose
c = 25 for the SSDE phase and then took an the top 5 eigenvectors
for the embedding. We clustered using the GMM into 7 clusters
(as discussed earlier) and used a thresholdα∗ = 0.3 to construct

the overlapping clusters (a paper is in approximately 1.2 clusters on
average). The process of embedding and clustering took under an
20 min on a modest single CPU machine.

A C B

Cluster and Overlap Quality. After clustering into 7 clusters, a
typical pair of clusters is illustrated to the right. With respect to
the paper-paper similarity, we can measure the average inside a set
(A and B) as compared with the average between a set and the
intersection(A, C andB, C) and the average between sets (A, B).
We expect the within set similarity to be larger than that between a
set and an intersection in which the set participates, which in turn
should be larger than the between set similarity. This is indeed
found to be true for our overlapping clusters (see Table 1), which
lends credence to their validity.

Since the clustering was done with paper-paper similarities based
on authorship overlap, we may validate the clusters by looking at
the text-based and conference based topics they represent (as dis-
cussed earlier). The 7 word clouds representing the clusters and
the 3 largest intersections are shown in Figure 3. Our algorithm
roughly breaks down the papers into 7 intuitive topics, with corre-
sponding representative conferences shown in Figure 5.

Qualitatively, we see that the results are similar. One main differ-
ence between LDA and SSDE-cluster is that SSDE-cluster seems
to have merged Web and DB into one cluster and produced a new
topic which combines robotics and bioinformatics.

We illustrate the word clouds for the intersections for the three
largest intersections in Figure 6. The robotics and bioinformatics
cluster did not really have any significant intersections.

5. CONCLUSION
We present an algorithm to quickly find overlapping communities
in very large social networks. Our algorithm involves two fast
and linear-time phases (hiding a log factor in the SSSP task for
weighted graphs). Further exploration of what distance matrices
are captured well by the greedy node selection algorithm in SSDE,
and further study on how to convert soft cluster probabilities into a
discrete overlapping clustering woud be warranted. Also, our cur-
rent algorithm puts every node into at least one cluster, and methods
for outlier detection (i.e. allowing isolated nodes) could consider-
ably help. In general, for efficient clustering on huge graphs, one
cannot explore all the similarities between nodesΩ(n2), and so
such sampling based approximation approaches are likely to be the
only feasible means of tackling such problems.
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SysParSim ImageTh SysArch Learn CombTh WebDB RoboBio
SysPS 2.5 2.4,1.7,1.3 2.4,1.7,1.3 2.4,1.7,1.3 2.4,1.6,1.3 2.5,1.4,1.0 2.4,1.7,1.2

ITh 2.3 2.4,1.8,1.5 2.4,1.7,1.3 2.4,1.7,1.5 2.4,1.6,1.3 2.3,1.7,1.5
SysA 2.4 2.4,1.7,1.5 2.4,1.8,1.5 2.4,1.8,1.4 2.4,1.8,1.5
Lrn 2.4 2.4,1.6,1.4 2.4,1.5,1.2 2.4,1.7,1.4
CTh 2.4 2.4,1.7,1.2 2.4,1.8,1.5

WbDB 2.5 2.4,1.9,1.4
RBio 2.4

Table 1: Cluster Quality
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