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ABSTRACT is no accepted definition of what a cluster in a social network is,

Clustering social networks is vital to understanding online interac- the typical approach has been to “define” a cluster by construct-
tions and influence. This task becomes more difficult when com- ing an intuitive algorithm the result of which is a cluster. We take
munities overlap, and when the social networks become extremely this approach, in that we present an intuitive algorithm with a fo-
large. We present an efficient algorithm for constructing overlap- cus on efficiency. The result of the algorithm is “our definition of
ping clusters, roughly linear in the size of the network. The algo- a cluster” and the validation is whether, in real social networks, the
rithm first embeds the graph and then performs a metric clustering algorithm can produce good results.

using a Gaussian Mixture Model (GMM). We evaluate the algo-

rithm on the DBLP paper-paper network which consists of about 1 Overview of SSDE-Cluster The input is a (typically sparse) so-
million nodes and over 30 million edges; we can cluster this net- cial network graphG = (V, E) onn nodes (eg. books as nodes

work in under 20 minutes on a modest single CPU machine. and (positive) edge similarities between books being the proba-
bility that a user would purchase both books conditioned on pur-
Keywords chasing one). Typically, the definition of the node-similarities is
Social Networks, Clustering, GMM application-specific, and is a determining factor for the quality of
' ' the results.
1. INTRODUCTION Our approach has two phases. The graph distances define a finite

Social, collaboration and interaction networks (Twitter, Facebook, metric onn points. The first phase efficiently embeds this met-

DBLP, Citeseer, Amazon, etc.) are a source of vast, multimodal ric in R¢, so that Euclidean distances reasonably approximate the
information. Many communities have taken advantage of such net- graph metric. According to the Johnson-Lindenstrauss theorem,
works in order to communicate ideas broadly and quickly. The 4 — O(logn) dimensions essentially suffices for this (practically,
same technology has also allowed researchers to observe the dyz constant number of dimensions (shy= 100)). In our experi-
namic nature of communities and how individuals work within them. ments, we find that 5-10 dimensions suffices. The challenge is to
One of the fundamental tasks is to identify theerlappingcom- construct this embedding without visiting every entry in the dis-
munities in a network, represented by its interactions — nodes ab-tance matrix (that would make the algorithm quadratic); we do this

stractly represent the entities of interest (books, people, etc) andpy carefully samplingl rows of the distance matrix, which can be
edges represent the interactions between nodes (e.g. an edge beone inO(nd), because the graph is sparse.

tween two people if they purchased the same book). Clusters rep-

resent the collections of nodes which are “similar” and the same The advantage of first creating an approximate embedding is that

node may be in more than one cluster (a person may have interestsow techniques can be used for clustering in metric spaces, for

in science fiction and philosophy). examplek-means. We choose to use a Gaussian Mixture Model
(GMM) because it can readily be adapted to give overlapping clus-

As networks increase in size, clustering algorithms need to be scal-ters §-means delivers a partitioning). We choose the number of

able. Even quadratic time algorithms will soon be unacceptable. ¢clusters by comparing to a random data set, and we determine the

For our experiments, we use the DBLP paper-paper network, with extent to which the clusters overlap by selecting a threshold to max-
about 1 million papers, with over 30 million edges. Since there jmize the quality of the clusters.

*www.cs.rpi.edu/~purnej/

1.1 Related Work

For text, a common approach is Latent Dirichlet Allocation (LDA)[4];
though DBLP is text data on which LDA could be applied, our
method is generally applicable to any weighted graph. We use the
DBLP because the relations between authors and papers have many
of the properties found in social networks. Nevertheless, we use
text-based metrics to concretely validate our results.

Finding communities in social networks has been rapidly researched
during the past decade [13, 15, 14, 21]. Early on researchekedor



with the 'small world’, power-law, and network transitivity proper-  Suppose we position vertex atx; € R%. We are seeking a po-
ties. These properties characterized communities of isolated groupssitioning that approximates the graph theoretical distances with the
where a small number of objects in a community were connected Euclidean distances, i.e.,

to objects in other communities. A more recently proposed prop-
erty is the connectedness of communities, where objects within the
community have shorter path lengths than to objects outside the After squaring and some manipulation (see [5]), one obtains the
community [11]; building on such definitions, one should expect MDS equation:

communities to be densely connected subgroups of the graph [19,

20]. YY! ~ —%WLV =M 2

HXi_XJ'H%Dijvia.j:LQv'“vn (1)

A drawback of the aforementioned approaches is that they are graphwhere the embeddinY is ann x d matrix containing the coor-
partitioning methods — the communities cannot overlap. In real- dinates of the pointsL;; = D7, (the squares of the distances)
ity, communities often overlap and sometimes in non-trivial ways. and the centering projection matrix= I,, — 11,17. The spec-

To address efficiency and memory footprint issues, work has pro- tra| decomposition oM then givesY = [vXiuy,. .., vAqud),
gressed by extending algorithms to work within subspaces[25], idenwhereAl, ..., \q are the topd eigenvalues oM anduy, . . ., uq

tifying overlapping groups using local optimality [2, 3], and remov-  5re the associated eigenvectors. One useful property of MDS is that
ing the constraints on the number of communities[1]. Methods for \yhen the distance matrix is nearly embedablé dimensions, then
finding overlapping communities by searching for clique-like struc-  Mps recovers such an approximate embedding (see [6, Theorem
tures also exist [23, 30, 29]. 3]). The drawback of MDS is that it is slow(n2d). The next two

] ) lemmas give the insight for speeding up MDS.
In this paper we propose an algorithm that can handle large datasets,

particularly those with a high number of objects; we also allow

overlap. The work in [22, 28] is similar to ours in that the first step LEmMMA 1 ([16]). Anyn-point finite metric can be embedded
in our algorithm is spectral, similar to multi-dimensional scaling (to withine) in R* for d = O(Inn/é?).

(MDS); their algorithm is based on spectral properties of the Lapla-
cian of a graph which they construct from a metric embedding; in _ . . . .

some sense, they do the reverse of what we do. However, construc NiS lemma says that from the point of view of distances, we can
tion of the Laplacian i€2(n2). While we use GMMs as our tool approximately treat the graphagoints |n§(small)i-d|men5|onal

for “soft” metric clustering, any method for metric clustering which ~ SPace. For practical purposess 100 suffices.

readily gives overlapping clusters could be applied. GMMs happen

to be an area of very activ_e re_search (see for example [8, 9,_24, LEMMA 2. Foranyn points ind-dimensions, leL;; = | x; — x; ”2_
27)). We use a fast approxllmatlon to MDS [7] based__on an onllng Then rankL) < d + 2.

sampling of the squared distance matrix. The Nystrém method is

similar to MDS, and has been used for spectral segmentation (eg.

[?]). Sparse approximations to matrices in machine learning, typi- Note that the rank does not depend+@n Combining these two
cally to approximate the Gram matrix in kernel methods have been lemmas: any n-point finite metric is approximately embedable in
considered ([26, 10]); in all cases, the methods sample the wholed = O(Inn/e?) dimensions, which means that the “numerical”
matrix (2(n?)). When it comes to graph partitioning, there is much rank of L is roughlyd + 2 = O(Inn/€?). Practically, this means
work, and we suggest [17] for a good overview; a comprehensive that a small number (say 100) suitably chosen rowk achptures
review is given in [13], focusing mostly on partitioning, but also all the information inL.. SSDE works in three steps (see [5]).
considering overlapping clusters.

1. Sample a subset~ 100 columns to represerit, we denote this

2. _THE SSDE'CL USTER ALGORI TH M by C. These columns correspond to the nodgs. . ., v;.. We
The input is a weighted grapli = (V, E). The algorithm can be use the standard greedy 2-approximation tatbenter problem
broken down as follows. to select the nodes. This serves to “spread” out the nodes and

give them large “numerical” rank. The first node is selected
arbitrarily to compute the first column (SSSP); each subsequent

1. Run SSDE (spectral embedding) to approximately embed the node selected is farthest from the current set of selected nodes.

graph ind < n dimensions.

2. Construct a low rank approximationloﬁ = Co¢TC"., where
¢ is thec x ¢ matrix of the intersection of andC". Some care
may be needed in computirg” in a stable way (see [5]).

2. Run a GMM algorithm to compute “soft clusters”; determine
K, the number of clusters, by comparing the marginal value of
adding a cluster on the real data with random data.

. ) 3. Construct the embeddirg from the spectral decomposition of
3. Use the GMM probabilities to construct overlapping clusters; _%712%

determine the degree of cluster overlap by locally optimizing a
cluster density.
We briefly comment of the running time of the SSDE phase. The

21 Sampled Spectral Distance Emberiding 1St el SO% compuions e can be permes
>ampled Spectral Distance Embedding ( ! )is an approxima- . pe computed i0(nc) time. LetQ = ~C, and construct the
tion to classical multidimensional scaling which was introduced in singular value decompositions

the context of fast graph drawing [5]. The distance maixs

the symmetrio» x n matrix containing all the pair-wise distances. Q=UqZqVg, ¢ =UyS4Vy,



whereUq isn X ¢, and all the other matrices atex c; this takes
O(nd? + d*) time. Then,

1 . 1
—5Lby = —5UQ2QV5U¢2;VLVQEQUIQ.

The matrix producEqVq Uy X Vi VqXq and its eigen-decomposil
UXU" can be computed i®(c®) time; hence, the spectral de-
composition—1yLy = —1UqUXU'UY can be computed in
O(nc® + ¢*). The embedding i¥ = UqU(—1%)"/2. In prac-

tice, we may only need (say) the top 5 dimensions, and so a power
iteration could be used in lieu of SVD (as was done in [5]).

2.2 Soft Clustering with a Gaussian Mixture

Log-Prob change by Adding Cluster

Model (GMM) 0° 3 . 5 s 7 s s 10
After embedding the graph, our next task is to cluster the nodes. Number of Clusters
Many metric clustering methods exist, and we choose a standard
GMM trained using the E-M algorithm. One advantage of the Figure 1: Setting # clusters

GMM over (say) straighfl-means is that the cluster probabilities
will be useful in constructing overlapping clusters. A GMM is a
weighted sum of\/ component densitigs; (x), . .., pa (x); each
component density is @ variate Gaussian function with mean,
and covariance matriX:

_ 1
Pr(x) = (27T)d/2‘2k|1/26

=5 Gempp) TS o)

25 b

The GMM isp(x) = SN, mepi(x), where the mixture weights
satisfy3"»" | 7, = 1. The model parameters are

0 = {mk, i, Xk b o=1,... .M (3

We use a simple E-M procedure for training. We initialize the
GMM by selectingu, randomly without replacement, and setting
m, = 1/M andX; = I;. One might also consider a better ini- L ‘ ‘ ‘ ‘ ‘ ‘
tialization of theux (eg. using the greedy 2-approximation to the 0 005 01 ‘“50( 02 025 03 03
M-center problem, or more sophisticated methods as mentioned in

the related work). In the expectation step, the probabilities for node

1 to belong to clustek are calculated: Figure2: a vs. overlap.

15F il

Avg. Number of Clusters Assigned to Paper

Dki = TPk (Xi)

We then update the parameters using these probabilities during the'Ve develop a random data set uniformly over the same space as the
maximization step: embedded data. Since there are no clusters in the random data, the

increase in log-likelihood by adding an additional cluster is purely

Wk — 2 PriXi from over-fitting. When the benefit from adding a cluster to the

> i Pki real data is not significantly more than that of adding a cluster to
> pri(xi — pw) (%0 — p)” random data, we argue that it is time to stop adding clusters. The
S S pei figure to the right shows the successive gains of adding a cluster
! 1 to the DBLP data versus to the random data; from Figure 1, we
T — — Zpki- discern that about 7-11 clusters is appropriate (we used 7 in our

ne experiments).

One iteration of E-M isO(nMd?); for small M andd this is ac- 2.4 Determining the Extent of the Overlap

ceptable. [18] discusses methods for reducing thi®{a M d) Every node: is assigned to its most likely cluster, argma;.

using low rank perturbations to the covariance matrix. The output This constructs a partition of the nodes into clusters. We now ex-

of the GMM phase is the set of probabiliti€ss; }, which will be tend this so that clusters may overlap. For neddefineay; =

used in computing the discretwerlappingclustering. For some  pr:/ maxy prq; cu; measures how diffuse nodis membership is

applications, the probabilities themselves would suffice. in its most likely cluster. Assume we have a cluster metric which
measures the quality of a cluster. We use

2.3 Determining the Number of Clusters Win(C) Wi ()

We describe a simple heuristic for determining the number of clus- ~ E(C) = + (1 =N = A
e o Win(C) + Wout(C) ClacT=1)
ters by comparing the real data clusters to random data. Too many
clusters results in over-fitting the data and breaking the true com- W, (resp.Wgyt) is the sum of similarities within the cluster (resp.
munities into several smaller communities. from within to outside);E(C) combines similarity internally and



to the outside with the average internal similarity. We used % the overlapping clusters (a paper is in approximately 1.2 clusters on
average). The process of embedding and clustering took under an

We useqy; to define an ordering over node-cluster pairs, starting 20 min on a modest single CPU machine.

with high «. We propose two approaches to to constructing the

overlaps. The first is to process the nodes according to the order-

ing, each time adding the node to its corresponding cluster if the

metric for that cluster increases. This is similar in spirit to the local

optimizations performed in [2, 3]. An alternative is to track how

the average cluster metric varies as we progress along this order-

ing. When the average cluster metric starts to decrease noticeably,

it defines an alpha threshote. For all ax; > «*, we add the

corresponding nodeé to clusterCy. In our experiments, we set

™ = 0.3 which gives about 1.2 clusters per paper — this average

number of clusters per paper could also be a user input to compute

*

a .

3. THE DBL_P NETWORK L Cluster and Overlap Quality. After clustering into 7 clusters, a

In general, the social network is constructed by defining the “agents”yy pical pair of clusters is illustrated to the right. With respect to
(nodes) and the interactions or relationships between them (com-ip paper-paper similarity, we can measure the average inside a set
munications, similarities, etc.). We apply our algorithm to the Dig- (A and B) as compared with the average between a set and the
ital Bibliography and Library Project (DBLP) da}ta][ we choose intersectiondl, C' and B, C) and the average between sefs B).
papers as nodes, and two papers are related if they have commoRye expect the within set similarity to be larger than that between a
authors. The underlying assumption is that papers having similar et ang an intersection in which the set participates, which in turn
authors are more likely to have similar content, which is reasonable, ghou1d be larger than the between set similarity. This is indeed

since most authors tend to have a focus area. We use the Jaccargynd to be true for our overlapping clusters (see Table 1), which

index of the aythor set; to define similarity; for two papers let lends credence to their validity.
A;, A; be their respective author sets. Then
|A; N A 1 Since the clustering was done with paper-paper similarities based
Sij = m7 dij = o on authorship overlap, we may validate the clusters by looking at
7 J ¥

the text-based and conference based topics they represent (as dis-
Most clustering algorithms for social networks work with the sim-  cussed earlier). The 7 word clouds representing the clusters and
ilarities {s;;} and try to optimize some measure of intra-cluster the 3 largest intersections are shown in Figure 3. Our algorithm
similarity versus inter-cluster similarity. Since our algorithms are roughly breaks down the papers into 7 intuitive topics, with corre-
metric based, we need a measure of difference, so we simply usesponding representative conferences shown in Figure 5.
the inverse-similarity; this allows us to construct our finite metric.
Qualitatively, we see that the results are similar. One main differ-

3.1 VaIidating Clusters ence between LDA and SSDE-cluster is that SSDE-cluster seems

to have merged Web and DB into one cluster and produced a new

The recurring problem with applying a clustering algorithm to real ! i | 4 = c
topic which combines robotics and bioinformatics.

data (where the “definition” of the cluster is the “result of the algo-
rithm”) is to validate these clusters as good. We use human judge- . . .
ment based on the title and venue information of the papers. We e illustrate the word clouds for the intersections for the three
preprocess title texts by removing stop words and stemnfhg [ largest |r_1tersect|ons in Figure 6 'I_'I_1e rot_)otlcs an_d bioinformatics
For a cluster of paper€), (remember, clusters can overlap), we cluster did not really have any significant intersections.

construct a word probability distributioly, (w). Similarly, we can

construct a background distributidn(w) for the entire data set 5, CONCLUSION

of titles. The wordsw for which hx(w) > h(w) are descrip- e present an algorithm to quickly find overlapping communities
tive of the cluster; we can also identify the wordsfor which in very large social networks. Our algorithm involves two fast
hi(w) < h(w), which are indicative of not being in the clus-  anq inear-time phases (hiding a log factor in the SSSP task for
ter. This breaks down the papers into “topics” based on title texts. yejghted graphs). Further exploration of what distance matrices
Visually, we depict the descriptive words using word clouds, and gre captured well by the greedy node selection algorithm in SSDE,
compare with an LDA analysis of the title data. Note that in gen- 4nq further study on how to convert soft cluster probabilities into a
eral networks, such an LDA analysis is not possible. We perform a giscrete overlapping clustering woud be warranted. Also, our cur-
similar analysis for the paper venues, which should hopefully iden- yent algorithm puts every node into at least one cluster, and methods

tify the conferences corresponding to the various topics. for outlier detection (i.e. allowing isolated nodes) could consider-
ably help. In general, for efficient clustering on huge graphs, one
4. EXPERIMENTAL RESULTS cannot explore all the similarities between nod&@*), and so

For our study, we constructed the DBLP network as described abovesuch sampling based approximation approaches are likely to be the
and clstered the giant componend, which consisted of about 900K only feasible means of tackling such problems.

papers (nodes) and over 30 million (weighted) edges. We chose

c = 25 for the SSDE phase and then took an the top 5 eigenvectors

for the embedding. We clustered using the GMM into 7 clusters ACKNOWLEDGEMENT SResearch was sponsored by the
(as discussed earlier) and used a threshdld= 0.3 to construct Army Research Laboratory and was accomplished under Coopera-
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SysParSim| ImageTh | SysArch Learn CombTh WebDB RoboBio

SysPS 25 24,1.7,13| 24,1.7,1.3| 24,1.7,1.3| 2.4,1.6,1.3| 25,1.4,1.0| 24,1.7,1.2
ITh 23 24,18,15( 24,1.7,1.3| 24,1.7,15| 2.4,1.6,1.3| 2.3,1.7,1.5
SysA 24 24,1.7,15| 24,1.8,1.5( 24,1.8,1.4| 24,1.8,15
L 2.4 2.4,16,1.4| 24,151.2| 24,1.7,1.4
CTh 24 24,1.7,1.2| 24,1.8,1.5
WbDB 25 24,1914

RBio 24

Table 1: Cluster Quality
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Figure 4: Conference Cloudsfor the 7 clusters
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Figure5: LDA Keyword Cloudsfor 7 clusters
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