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partitive clustering algorithm to classify MTBC strains into sublineages within their major lineage. We validate clusterings using
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1 INTRODUCTION

Tuberculosis (TB) is a bacterial disease caused by My-
cobacterium tuberculosis complex (MTBC), which is a

leading cause of death worldwide. In the United States,
isolates from all TB patients are routinely genotyped
by multiple biomarkers. The biomarkers include Spacer
Oligonucleotide Types (spoligotypes), Mycobacterial Inter-
spersed Repetitive Units - Variable Number Tandem Re-
peats (MIRU-VNTRs), IS6110 Restriction Fragment Length
Polymorphisms (RFLP), Long Sequence Polymorphisms
(LSPs) and Single Nucleotide Polymorphisms (SNPs).

Genotyping of MTBC is used to identify and distinguish
MTBC into distinct lineages and/or sublineages that are
quite useful for TB tracking and control and examining host-
pathogen relationships [1]. The major lineages of MTBC are
M. africanum, M. canettii, M. microti, M. bovis, M. tuberculo-
sis subgroup Indo-Oceanic, M. tuberculosis subgroup Euro-
American, M. tuberculosis subgroup East Asian (Beijing) and
M. tuberculosis subgroup East-African Indian (CAS). These
major lineages can be definitively characterized using LSPs
[2], but typically only MIRU and spoligotypes are collected
for the purpose of TB surveillance. Classification, similarity-
search, and expert-rule based methods have been developed
to correctly map isolates genotyped using MIRU and/or
spoligotypes to the major lineages [3]–[5].

While sublineages of MTBC are routinely used in the
TB literature, their exact definitions, names, and numbers
have not been clearly established. The SpolDB4 database
contains 39,295 strains and their spoligotypes with vast
majority of them labeled and classified into 62 sublin-
eages [6], but many of these are considered to be “po-
tentially phylogeographically-specific MTBC genotype fam-
ilies”. Therefore, further analysis is needed to confirm these

sublineages. The highly-curated MIRU-VNTRplus website,
which focuses primarily on MIRU, defines 22 sublineages.
New definitions of sublineages based on LSPs and SNPs
are being discovered; e.g. the RD724 polymorphism corre-
sponds to the previously defined SpolDB4 T2 sublineage,
also known as the Uganda strain in MIRU-VNTRplus [7].
Now large databases using both MIRU and spoligotypes
exist. The United States Centers for Disease Control and
Prevention (CDC) has gathered spoligotypes and MIRU iso-
lates for over 37,000 patients. Well-defined TB sublineages
based on MIRU and spoligotypes are critical for both TB
control and research.

This study uses unsupervised multiway analysis to ex-
amine the sublineage structure of MTBC on the basis of
spoligotype and MIRU patterns. The proposed method re-
veals structure not captured in SpolDB4 spoligotype fami-
lies. When MIRU patterns are considered, SpolDB4 families
that may be well supported by spoligotype signatures,
become ambiguous, or may allow further subdivision. A
key issue is how to combine spoligotype and MIRU into
a single unsupervised learning model. A spoligotype-only
tool, SPOTCLUST, was used to find MTBC sublineages
using an unsupervised probabilistic model reflecting spolig-
otype evolution [8]. Existing phylogenetic methods can be
readily applied to MIRU patterns, but specialized methods
are needed to accurately capture how spoligotypes evolve.
It is not known how to best combine spoligotype and MIRU
to infer a phylogeny. The online tool www.MIRUVNTRplus.
org determines lineages by using similarity search to a
labeled database. The user must select the distance measure
which is defined using spoligotypes and/or MIRU, possibly
yielding different results.

In this study, we develop a tensor clustering framework
for sublineage classification of MTBC strains labeled by
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major lineages. We generate multiple-biomarker tensors of
MTBC strains and apply multiway models for dimension-
ality reduction. The model accurately captures spoligotype
evolutionary dynamics by using contiguous deletions of
spacers. The tensor transforms spoligotypes and MIRU into
a new representation where traditional clustering methods
apply (we use modified k-means clustering) without the
users having to decide a priori how to combine spoligo-
type and MIRU patterns. Strains are clustered based on
the transformed data without using any information from
SpolDB4 families. Clustering results lead to the subdivision
of major lineages of MTBC into groups with clear and dis-
tinguishable spoligotype and MIRU signatures. Comparison
of the clusters with SpolDB4 families suggests dividing and
merging some SpolDB4 families, while strongly validating
others.

2 BACKGROUND

In this study, we used two genotyping methods, spoligo-
typing and MIRU-VNTR typing, to cluster MTBC strains.
We generated high-dimensional arrays to represent geno-
type information of MTBC strains. We mapped these high-
dimensional arrays to two-dimensional space using multi-
way models and used score matrices of these models as
input to k-means clustering of MTBC strains. We validated
the clustering results using cluster stability and accuracy
measures. In this section, we give a brief background on
genotyping, multiway modeling and clustering of MTBC
strains.

2.1 Spoligotyping

Spoligotyping is a DNA fingerprinting method that exploits
the polymorphisms in the direct repeat (DR) region of
the MTBC genome to distinguish between strains. The DR
region is a polymorphic locus in the genome of MTBC which
comprises of direct repeats (36 bp), separated by unique
spacer sequences of 36 to 41 bp [9]. The method uses 43
spacers, thus a spoligotype is typically represented by a 43-
bit binary sequence. Zeros and ones in the sequence corre-
spond to the absence and presence of spacers respectively.
Mutations in the DR region involve deletion of contiguous
spacers. To capture this evolution, we find informative
contiguous spacer deletions and represent spoligotype dele-
tions as a binary vector, where one indicates that a specific
contiguous deletion occurs (i.e. a specified contiguous set of
spacers are all absent) and zero means at least one spacer
is present in that contiguous set of spacers.

2.2 MIRU-VNTR typing

MIRU is a homologous 46-100 bp DNA sequence dispersed
within intergenic regions of MTBC, often as tandem repeats.
Among the 41 identified mini-satellite regions on the MTBC
genome, different subsets of size 12, 15 and 24 are proposed
for standardization of MIRU genotyping [3]. In this study,
we used 12-loci MIRU for genotyping MTBC. Thus, the
MIRU pattern is represented as a vector of length 12, each
entry representing the number of repeats in each MIRU loci.

2.3 Multiway analysis of biomarker tensor
The multiple-biomarker tensor captures three key properties
of MTBC strains: spoligotype deletions, number of repeats
in MIRU loci, and coexistence of spoligotype deletions
with MIRU loci. This information is captured in a multi-
dimensional array or tensor with three modes representing
spoligotype deletions, MIRU patterns and strains. Mathe-
matically, each strain is represented as the outer product of
the binary spoligotype deletion vector and the MIRU loci,
which results in a biomarker kernel matrix. Kernel matrices
of the same size for each strain form the multiple-biomarker
tensor. Multiway models analyze tensors by decomposing
multiway arrays into two-way arrays. In this study, we use
two common multiway models, PARAFAC and Tucker3.
Dimensionality reduction on the tensor data using multiway
models returns a score vector for each MTBC strain, which
is used to measure similarities and corresponding distances
between strains in a clustering algorithm. This is a key
property of the algorithm since we don’t know a priori
how to measure evolutionary distance between isolates
genotyped by MIRU typing and spoligotyping.

3 METHODS

Clustering MTBC strains using multiple biomarkers consists
of a sequence of steps. First, we generate a tensor with one
mode representing the strains to be clustered, and two other
modes representing the two biomarkers. Second, we apply
multiway models on the strain mode of the tensor to get a
score matrix of strains. Third, we use this score matrix to
decide similarity between strains, and cluster them using
a stable version of k-means. In the final step, we evaluate
the clustering results using cluster validity indices. This
stepwise clustering framework is outlined in Figure 1. We
describe the steps of clustering framework in this section.

Fig. 1: Clustering framework of MTBC strains. High-
dimensional genotype data is decomposed into two-
dimensional arrays using multiway models, which are
then used as input to kmeans_mtimes_seeded algorithm.
Clusterings are validated using best-match stability. In case
of a tie, DD-weighted gap statistic or F-measure is used to
pick the number of clusters.
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3.1 Datasets

The dataset comprises of 6848 distinct MTBC strains as
determined by spoligotype and 12-loci MIRU, labeled with
major lineages and SpolDB4 families. The strains are mainly
from the CDC dataset - a database collected by the CDC
from 2004-2008 labeled with the major lineages [4]. We also
used the MIRU-VNTRplus dataset which is labeled with
SpolDB4 lineages. The original SpolDB4 labeled dataset con-
tains only spoligotypes. We found all occurrences of these
spoligotypes in the CDC dataset. In this way we constructed
a database with spoligotype and MIRU patterns, with major
lineages as determined by CDC, and sublineages as given
in SpolDB4. The numbers of strains for each major lineage
are included in Table 1. We created 6 datasets from the
CDC+MIRU-VNTRplus dataset, one for each major lineage,
and divided them into sublineages.

Major lineage # Strains # Spoligo deletions
M. africanum 64 22

M. bovis 102 34
East Asian (Beijing) 571 5

East-African Indian(CAS) 508 18
Indo-Oceanic 1023 28

Euro-American 4580 109

TABLE 1: Number of strains in each major lineage of
CDC+MIRU-VNTRplus dataset and number of spoligotype
deletions identified by feature selection algorithm.

3.2 Feature Selection and Tensor Generation

3.2.1 Feature Selection

The spoligotype pattern captures the variability of the
MTBC genome. Spoligotype is a 43-bit binary sequence,
and according to hidden parent assumption, one or more
contiguous spacers can be lost in a deletion event, but

not gained [8]. Therefore, there are
43∑
i=1

i = 946 possible

deletions in a spoligotype. Among these deletions, different
spoligotype deletions were found effective in discrimination
of MTBC strains. A set of 12 deletion sequences of spolig-
otypes found by Shabbeer et al. are proven to be good dis-
criminator spacer deletions for major lineage classification
[10]. Another set of 81 deletion sequences of spoligotypes
found by Brudey et al. are proven to be good discriminator
spacer deletions for SpolDB4 lineage classification [6].

We built a feature selection algorithm to find spacer
deletions that are informative. Given a dataset, we first
calculate the frequency fi, i = 1, .., 946, of each deletion
among the strains of the dataset. If fi = 1, the deletion is
a common deletion. If 0 ≤ fi < threshold, the deletion is
a nonexistent deletion, where threshold is data dependent
and threshold = 0.05 is used by default. The deletions in
the middle with frequency fi such that threshold ≤ fi < 1
are uncommon deletions. In the second step, we iterate
through the set of uncommon deletions U , and remove
an uncommon deletion u ∈ U , if there exists a common
deletion c ∈ C which is a subsequence of u. We assign the
final set of uncommon deletions as the feature set. Using the
final feature set, we determine spoligotype deletions that are
effective in discriminating the strains of the dataset. Feature
selection algorithm is summarized in Algorithm 1. Numbers

of spoligotype deletions found informative for each major
lineage are given in Table 1.

Algorithm 1 FeatureSelection(StrainDataset)

1: Classify all possible deletions according
to their frequency fi

- 0 ≤ fi < th: Nonexistent deletions (N)
- th ≤ fi < 1: Uncommon Deletions (U)
- fi = 1: Common deletions (C)

where th is the upper bound of frequency for nonexis-
tent deletions.

2: Remove uncommon deletions which are a
supersequence of a common deletion

3: for each uncommon deletion u ∈ U do
4: if ∃c ∈ C such that u is a supersequence of c then
5: Remove u from uncommon deletions: U = U \ {u}
6: end if
7: end for
8: Return uncommon deletion set U as the final feature set.

3.2.2 Multiple-Biomarker Tensor

The dataset is arranged as a three-way array with strains in
the first mode, spoligotype deletions in the second mode,
and MIRU patterns in the third mode. Each entry A(i, j, k)
in the array corresponds to the number of repeats in MIRU
pattern k of strain i with spoligotype deletion j. If spolig-
otype deletion j does not exist in strain i, then the tensor
entry A(i, j, .) is 0. Thus strain datasets are formed as strain
× spoligotype deletion × MIRU pattern tensors, as shown in
Figure 2. Generation of these multiple-biomarker tensors
from the biomarker information of each strain is shown
in Figure 3. We represent spoligotype deletions with s⃗,
where si ∈ {0, 1} and i ∈ {1, .., n} where n is the number
of informative spoligotype deletions found using feature
selection algorithm. We represent 12-loci MIRU with m⃗,
where mj ∈ {0, .., 9,≥ 9} and j ∈ {1, .., 12}.

Fig. 2: Strain × spoligotype deletion × MIRU pattern tensor.
Each entry X(i, j, k) of the tensor represents the number
of repeats in MIRU pattern k of strain i with spoligotype
deletion j.
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Fig. 3: Biomarker kernel matrix s⃗ ⊗ m⃗ for each strain
forms multiple-biomarker tensor. s⃗ represents spoligotype
deletions and m⃗ represents MIRU patterns.

3.3 Multiway modeling
Multiway models are needed to fit a model to multiway ar-
rays. We used PARAFAC and Tucker3 techniques to model
the three-way biomarker tensor. We determined the number
of components for each model to ensure a bound on the
explained variance of data.

3.3.1 Multiway models
We used PARAFAC and Tucker3 models to explain the
tensor with high accuracy. Multiway modeling of multiple-
biomarker tensors was carried out using n-way Toolbox of
MATLAB by Bro et al. [11].

PARAFAC
PARAFAC is a generalization of SVD to multiway data

[12], [13]. A 3-way array X ∈ RI×J×K is modeled by an
R-component PARAFAC model as follows:

Xijk =
R∑

r=1

GrrrAirBjrCkr +Eijk (1)

where A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R are component
matrices of first, second and third mode. G ∈ RR×R×R is
the core array. E ∈ RI×J×K is the residual term containing
all unexplained variation. A description of the PARAFAC
model is shown in Figure 4.

Fig. 4: PARAFAC model of a three-way tensor X. The tensor
is modeled as a linear combination of rank-one tensors for
each mode.

The PARAFAC model is symmetric in all modes and the
number of components in each mode are the same [14].
The PARAFAC model is a simple model, which comes
with a restriction on the number of components in each
mode which makes it difficult to fit a data array with the
PARAFAC model. One advantage of the PARAFAC model
is its uniqueness: fitting the PARAFAC model with the
same number of components to a given multiway data
returns the same results.

Tucker3
Tucker3 is an extension of bilinear factor analysis to mul-

tiway datasets [15]. A 3-way array X ∈ RI×J×K is modeled
by a (P,Q,R)-component Tucker3 model as follows:

Xijk =

P∑
p=1

Q∑
q=1

R∑
r=1

GpqrAipBjqCkr +Eijk (2)

where A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R are the component
matrices of first, second and third modes respectively. G ∈
RP×Q×R is the core array and E ∈ RI×J×K is the residual
term. A description of the Tucker3 model is shown in Figure
5.

Fig. 5: Tucker3 model of a three-way tensor X with (P,Q,R)
components at each mode. The tensor is decomposed into
component matrices A, B, C, core array G, and residual
array E.

Tucker3 is a more flexible model compared to PARAFAC.
This flexibility is due to the core array G, which allows
interaction of any factor in a mode with any other factor in
other modes [16]. Therefore, the number of components for
each mode can be different. This results in indeterminacy
of the Tucker3 model, since it cannot determine component
matrices uniquely.

3.3.2 Model validation

A multiway model is appropriate if adding more compo-
nents to any mode does not improve the fit considerably.
There is a tradeoff between the complexity of the model and
the variance of the data explained by the model. Therefore,
validation of a model also determines a suitable complexity
for the model.

We used the core consistency diagnostic (CORCONDIA)
to determine the number of components of the PARAFAC
model [17]. The core consistency diagnostic measures the
similarity of the core array G of the model and the super-
diagonal array of ones. Core consistency is always less than
or equal to 100% and may also be negative. As a rule of
thumb, Bro et al. suggests that a core consistency above 90%
implies an appropriate model [17]. The validated number of
components along with core consistency values are shown
in Table 2.

In order to determine the number of components of the
Tucker3 model, we started with fitting a Tucker3 model with
same number of components to the tensor. We picked the
number of components that explains the variance of the data
with close to 100% accuracy. Then we decreased the number
of components until the most important factor combinations
are found that explain over 90% of the variance of the
data. The validated number of components along with the
percentage of variance explained are shown in Table 2.
Other methods for selecting the dimensions of a Tucker3
model include Difference in Fit (DIFFIT), deviance analysis
and st-criterion based on convex hulls [14], [18], [19].
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Major Lineage
PARAFAC Tucker3

# Components Core Consistency # Components Variance

M. africanum 3 94.79 [4 4 3] 95.66
M. bovis 2 100.00 [7 6 4] 95.05

East Asian (Beijing) 2 100.00 [3 4 2] 93.09
East-African Indian (CAS) 2 100.00 [11 10 4] 97.23

Indo-Oceanic 4 94.32 [15 13 5] 95.55
Euro-American 14 99.03 [14 13 5] 89.77

TABLE 2: Number of components used in PARAFAC and
Tucker3 model to fit the tensors for the datasets to be
clustered. We used core consistency diagnostic to validate
PARAFAC models and percentage of variance explained by
the model to validate Tucker3 models.

3.4 Clustering algorithm

We developed the kmeans_mtimes_seeded algorithm, a
modified version of the k-means algorithm, to group MTBC
strains based on the score matrices of the multiway models.
K-means is a commonly used clustering algorithm with
two weaknesses: 1) Initial centroids are chosen randomly, 2)
The objective value of k-means, measured as within-cluster
sum of squares, may converge to local minima, rather than
finding the global minimum. We solve these problems with
two improvements: 1) Initial centroids are chosen by careful
seeding, using a heuristic called kmeans++, suggested by
Arthur et al. [20]. Let D(x) represent the shortest Euclidean
distance from data point x to the closest center already
chosen. kmeans++ chooses a new centroid at each step such
that the new centroid is furthest from all chosen centroids.
Algorithm 2 summarizes the getInitialCentroids al-
gorithm. 2) The local minima problem is partially solved by
repeating k-means algorithm multiple times and retrieving
the run with the minimum objective value. We repeated the
algorithm m = 20 times. The kmeans_mtimes_seeded
algorithm combines these two improvements, as shown
in algorithm 3. The kmeans_mtimes_seeded algorithm
is more stable compared to the k-means algorithm, and
produces more accurate results.

Algorithm 2 getInitialCentroids(A,k)

1: Pick the first centroid c1 at random
2: for i = 2 to k do
3: Find D(a), distance to closest centroid picked so far,

for each data point a ∈ A
4: Pick the data point a with maximum D(a) as new

centroid
ci = argmax

a
D(a)

5: Add ci to the set of initial centroids
6: end for

Algorithm 3 kmeans_mtimes_seeded(A,k,m)

1: for i = 1 to m do
2: initCentroids = getInitialCentroids(A,k)
3: Apply k-means with initCentroids
4: Get the objective value of k-means run
5: end for
6: Pick the k-means run with minimum objective value

3.5 Cluster Validation

Clustering results for the MTBC strains are evaluated to deter-
mine the best choice for the number of clusters and compare
it with existing sublineages using cluster validity indices. We
used the best-match stability to pick the most stable clusterings.
In case of a tie in average best-match stability, we used the DD-
weighted gap statistic or F-measure for cluster validation [21].

3.5.1 DD-Weighted Gap Statistic (PC)

Tibshirani et al. proposed a cluster validity index called the gap
statistic, which is based on the within-cluster sum of squares
(WCSS) of a clustering [22]. Let the dataset be X ∈ Rn×p

consisting of n data points with p dimensions. Let dij be the
Euclidean distance between data points i and j. After clustering
this dataset, suppose that we have k clusters C1, .., Ck, where Ci

denotes the indices of data points in cluster i, of size ni =| Ci |.
The sum of within-cluster pairwise distances for cluster r is
defined as:

Dr =
∑

i,j∈Cr

dij

and the within-cluster sum of squares for a clustering is defined
as:

Wk =

k∑
r=1

1

2nr
Dr

The idea of the gap statistic method is to compare Wk and its
expected value under a reference distribution of the dataset.
Therefore, the gap value is defined as:

Gapn(k) = E∗
n{log(Wk)} − log(Wk)

where E∗
n represents expected value under a sample of size n

based on reference distribution. The optimal number of clusters
is the value k̂ for which Gapn(k) is maximized.

The reference distribution can be one of the two choices:
uniform distribution (Gap/Unif), or a uniform distribution over
a box aligned with the principal components of the dataset
(Gap/PC). Experiments by Tibshirani et al. show that Gap/PC
finds the number of clusters more accurately, therefore we used
Gap/PC in this study [22]. Computation of the gap statistic is
summarized in algorithm 4.

Algorithm 4 Gap Statistic(X,kmax,B) [22]

1: Cluster the data X , varying the total number of clusters
from k=1,2,..kmax, with corresponding Wk values.

2: Generate B reference datasets using the reference dis-
tribution, and find the corresponding W ∗

kb values for
b=1,2,..,B and k=1,2,..,kmax. The estimated gap statistic
is found by:

Gap(k) =
1

B

B∑
b=1

log(W ∗
kb)− log(Wk)

3: Let l =
1

B

B∑
b=1

log(W ∗
kb) and compute the standard

deviation:

sdk =

(
1

B

B∑
b=1

(
log
(
W ∗

kb − l
))2)1/2

and sk = sdk

√
(1 + 1

B
). Choose the number of clusters

k̂ as the smallest k such that Gap(k) ≥ Gap(k+1)−sk+1.
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The gap statistic is a powerful method for estimating the
number of clusters in a dataset. However, a study by Dudoit
et al. showed that gap statistic does not estimate the correct
number of clusters for every case [23]. This may be because
Wk increases as the number of data points increase. Hierarchical
structure of the data may also cause problems. The data may be
composed of nested clusters and gap statistic will be capturing
only the minimum of these candidate number of clusters. There-
fore, the gap statistic needs improvement. Yan et al. suggested
a 2-step improvement to gap statistic, called the DD-weighted
gap statistic [24]. They defined average within-cluster pairwise
distances for cluster r as follows:

Dr =
Dr

2nr(nr − 1)

and the weighted within-cluster sum of squares Wk as:

Wk =

k∑
r=1

Dr =

k∑
r=1

Dr

2nr(nr − 1)

Based on Wk, weighted gap statistic Gapn(k) is defined as

Gapn(k) = E∗
n{log(Wk)} − log(Wk)

Let DGapn(k) denote the difference in Gapn(k) when number
of clusters is raised from k-1 to k. DGapn(k) is defined as

DGapn(k) = Gapn(k)−Gapn(k − 1) (3)

DGapn(k) > 0 for k < k̂, and otherwise it will be close to zero.
Therefore, to find a ”knee” point in the plot, we introduce a
second difference equation and define DDGapn(k) as

DDGapn(k) = DGapn(k)−DGapn(k + 1) (4)

From equations (3) and (4), DDGapn(k) is defined as:

DDGapn(k) = 2Gapn(k)−Gapn(k − 1)−Gapn(k + 1) (5)

DDGapn(k) is maximized when k is equal to true number of
clusters. The advantage of DDGapn(k) over the gap statistic is
that there may be multiple peaks in the plot of DDGapn(k) and
this may indicate a hierarchical structure of the data. In such
cases, multilayer analysis should be used instead of a single
step procedure.

3.5.2 Best-Match Stability
The stability of a clustering is found by the distribution of
pairwise similarities between clusterings of subsamples of the
data. The idea behind stability is that if we repeatedly sam-
ple data points and apply the same clustering algorithm to
the subsample, then a clustering algorithm should produce
clusterings that do not vary much for different subsamples
[25]. Therefore, the algorithm is stable independent of input
randomization. Several stability methods to estimate the correct
number of clusters were proposed. Ben-Hur et al. suggested a
stability-based model explorer algorithm, Lange et al. suggested
a stability-based model order selection algorithm [26], [27]. We
use best-match stability suggested by Hopcroft et al. [28]. The
algorithm clusters the same data multiple times, and compares
the reference cluster to alternate clusterings. We used 25 model
clusterings to compare with the reference cluster. Stability of
each cluster is calculated by finding the average best match
between this cluster and the clusters identified using other
model clusterings. High average best-match values denote that
the two clusters have many strains in common and are of
roughly the same size. We also calculate the average best-match
of a clustering by finding the average of best-match values
for all clusters in the reference clustering. Best-match stability
procedure is summarized in algorithm 5.

Algorithm 5 BestMatchStability(C∗, Cref)

1: k = number of clusters obtained from C∗

2: B = number of reference clusterings obtained from Cref
3: Stability = zeros(k)
4: for i = 1 to k do
5: C = Strains in cluster i in clustering C∗

6: for j = 1 to B do

7:
k∪

m=1

refCm = Cref(j)

8:

best match(C,

k∪
m=1

refCm) = max
m=1,..,k

match(C, refCm)

where

match(C,C
′
) =

| C ∩ C
′
|

max (| C |, | C′ |)
9: Stability(i) = Stability(i) + best match

10: end for
11: end for
12: Stability = Stability /B
13: AverageBestMatch = Sum(Stability) / k
14: Return Stability and AverageBestMatch

F-measure
The F-measure is a weighted combination of precision and
recall of a clustering. We use the F-measure to evaluate how
similar the tensor sublineages are to the SpolDB4 families.
According to contingency table in Table 3, precision and recall
are defined as follows:

Same cluster Different clusters
Same class a b

Different classes c d

TABLE 3: Contingency table. a is the number of data points
that belong to same class and same cluster, b is the number
of data points that belong to same class but different clus-
ters, c is the number of data points that belong to different
classes but same cluster, d is the number of data points
that belong to different classes and different clusters. Given
that there are n data points in the datasets, the following
condition holds: a+ b+ c+ d =

(
n
2

)
.

P =
a

a+ c

R =
a

a+ b

Different weights for precision and recall have been used
to define F-measure, but the most common of all defines F-
measure as the harmonic mean of precision and recall, as
follows:

F =
2PR

P +R

Since the F-measure combines precision and recall of clustering
results, it has proven to be a successful metric.

4 RESULTS

We subdivide each of the major lineages of MTBC into sublin-
eages using multiple-biomarker tensors. For each major lineage,
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we generated the multiple-biomarker tensor using spoligotypes
and MIRUs and applied multiway models to identify putative
sublineages of each major lineage. To evaluate the resulting
clusters, we compare them with the published SpolDB4 families
for each major lineage dataset. The results are summarized in
Table 4. For each lineage, results show that the tensor approach
finds highly stable sublineages (the best-match stability is
≥85%) and that the number of sublineages found using tensors
is close but not always identical to the number of SpolDB4
families.

The F-measures range from 57% to 87% indicating that the
sublineages found by the tensor only partially overlap with
those of SpolDB4. Recall that the SpolDB4 families were created
by expert analysis using only spoligotypes and that analysis by
alternative biomarkers such as SNP and LSP has led to alterna-
tive definitions of MTBC sublineages. The tensor sublineages
are based on spoligotype and MIRU, thus in some cases the
tensor divides SpolDB4 families due to difference in MIRU even
if the spoligotypes match. In other cases, the tensor analysis
merges together the SpolDB4 families because the collective
spoligotypes and MIRU are very close. In some cases, the
tensor analysis almost exactly reproduces a SpolDB4 family
providing strong support for the existence of these families with
no expert guidance. Thus multiway analysis of MTBC strains
of each major lineage with multiple biomarkers leads to new
sublineages and reaffirms existing ones. Further insight can be
obtained by examining the putative sublineages for each major
lineage.

4.1 Sublineage structure of M. africanum
The tensor methodology used Tucker3 to construct four distinct
sublineages for M. africanum. Table 5 gives the stability of
each sublineage and the correspondence between the tensor
sublineages and the SpolDB4 families. The four sublineages are
quite distinct as shown by the stability of 1 for each sublineage
and the clear separation of the four sublineages in the PCA
plot in Figure 6. Figure 7 shows heat maps representing the
spoligotype and MIRU signatures for each of the tensor sublin-
eages with white indicating 0 probability and black indicating
probability of 1.

MA1 MA2 MA3 MA4
Stability 1 1 1 1

AFRI 2 1 5 0
AFRI 1 21 0 0 16
AFRI 2 0 0 12 0
AFRI 3 0 6 1 0

TABLE 5: Confusion matrix for 64 distinct M. africanum
strains showing the correspondence between the SpolDB4
families and tensor sublineages. The stability of each of the
tensor sublineages is given in the second row. The clustering
is validated by the best-match stability and DD-weighted
gap statistic.

The tensor sublineages strongly support the existence of the
SpolDB4 AFRI 1, AFRI 2 and AFRI 3 families and show that
the AFRI family is composed of these three families. With an
F-measure of 66%, the tensor sublineages differ markedly from
the SpolDB4 families for the M. africanum lineage. The AFRI
family results largely explain this difference – AFRI is spread
across three tensor sublineages. Disregarding AFRI, sublineages
MA2 and MA3 match families AFRI 3 and AFRI 2 respectively.
Interestingly, AFRI 1 is further subdivided into sublineages
MA1 and MA4. The spoligotypes in MA1 and MA4 differ by
only one contiguous deletion of spacers 22 through 24, but
their MIRU signature clearly distinguishes them especially in

Fig. 6: Clustering plot of M. africanum strain dataset using
Principal Component Analysis (PCA).

Fig. 7: Spoligotype and MIRU signatures of tensor sublin-
eages of M. africanum strain dataset.

MIRU loci 10, 12 and 40. The tensor indicates that the AFRI
sublineage classification defines somewhat generic M. africanum
strains that can be distinctly placed in the groups MA1 (part of
AFRI 1), MA4 (other part of AFRI 1), MA2 (AFRI 3) and MA3
(AFRI 2).

The MIRU-VNTRplus labels, determined on the basis of LSPs
indicate that there are two sublineages, West African 1 and
West African 2 within M. africanum. Table 6 indicates the
correspondence between the tensor sublineages and MIRU-
VNTRplus labels. MA1 and MA4 clearly correspond to West
African 2 and MA3 corresponds to West African 1. There is
no data labeled by MIRU-VNTRplus in MA2, but we speculate
that it is West African 1 since MA2 and MA3 have more closely
related MIRU and spoligotype signatures.
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Major Lineage # SpolDB4 families # Tensor sublineages F-measure Average best-match stability
M. africanum 4 4 0.66 1

M. bovis 5 3 0.71 1
East Asian (Beijing) 2 5 0.87 1

East-African Indian (CAS) 4 3 0.82 1
Indo-Oceanic 13 11 0.57 0.90

Euro-American 33 33 0.61 0.85

TABLE 4: Number of SpolDB4 families and number of tensor sublineages for each major lineage. F-measure and average
best-match stability values assess the agreement of the sublineages to the SpolDB4 families and the certainty of tensor
sublineages respectively.

MA1 MA2 MA3 MA4
West African 1 0 0 5 0
West African 2 21 0 0 16

Unspecified 2 7 13 0

TABLE 6: Confusion matrix for 64 distinct M. africanum
strains showing the correspondence between the West
African 1 and 2 sublineages and tensor sublineages. For
data not from MIRU-VNTRplus, the lineage is indicated as
unspecified.

4.2 Sublineage structure of M. bovis
The tensor methodology used PARAFAC to construct 3 sub-
lineages for M. bovis, MB1, MB2 and MB3, while the dataset
contains 5 SpolDB4 families, BOV, BOVIS1, BOVIS1 BCG, BO-
VIS2 and BOVIS3. Table 7 gives the correspondence between the
tensor sublineages and the SpolDB4 families. All the clusters
have perfect stability and are well distinguished in the PCA
plot in Figure 8. Figure 9 shows heat maps representing the
spoligotype and MIRU signatures of tensor sublineages. Much
like the M. africanum SpolDB4 AFRI family, the BOV family
defines a generic M. bovis that spreads across all three tensor
sublineages. Disregarding BOV, MB1 consists of all of BO-
VIS1 and BOVIS1 BCG. Since BOVIS1 BCG is the attenuated
bacillus Calmette-Guérin (BCG) vaccine strain, it is difficult
to distinguish it from BOVIS1 using only MIRU and spolig-
otypes. Therefore, the merger of BOVIS1 and BOVIS1 BCG
makes genetic sense. Disregarding BOV, the MB2 and MB3
sublineages exactly match the SpolDB4 families BOVIS3 and
BOVIS2 respectively.

MB1 MB2 MB3
Stability 1 1 1

BOV 5 5 7
BOVIS1 29 0 0

BOVIS1 BCG 11 0 0
BOVIS2 0 0 24
BOVIS3 0 21 0

TABLE 7: Confusion matrix of M. bovis strain dataset clus-
tered into 3 groups using PARAFAC. Correct labels are
SpolDB4 labels on the rows, and tensor sublineages are
represented by each column. The clustering is validated by
the best-match Stability and F-measure.

4.3 Sublineage structure of East Asian (Beijing)
The tensor methodology used PARAFAC to construct five
distinct sublineages for East Asian denoted B1 through B5. The
variability in the spoligotypes of East Asian is limited to spacers
35 through 43 since all East Asian strains have spacers 1 to

Fig. 8: Clustering plot of M. bovis strain dataset using
Principal Component Analysis (PCA).

Fig. 9: Spoligotype and MIRU signatures of tensor sublin-
eages of M. bovis strain dataset.
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Fig. 10: Clustering plot of East Asian (Beijing) strain dataset
using Principal Component Analysis (PCA).

34 absent. Since the SpolDB4 classification is based only on
spoligotypes, the limited variability allows only two families,
BEIJING and BEIJING-LIKE. Table 8 shows the correspondence
between tensor sublineages and the SpolDB4 families. Clus-
tering plot of tensor sublineages is shown in Figure 10. Heat
maps representing the spoligotype and MIRU signatures of
tensor sublineages are shown in Figure 11. The tensor cleanly
subdivides BEIJING into three sublineages B1, B4 and B5 all
with stability 1. Spoligotype signatures of these sublineages
differ, and MIRU signature of sublineage B5 is clearly distinct
in MIRU locus 40. The tensor subdivides the BEIJING-LIKE
into sublineages B2 and B3 each with distinct spoligotype
signatures. Thus the tensor strongly supports the existence of
BEIJING and BEIJING-LIKE families, but also suggests that
they can be further subdivided.

B1 B2 B3 B4 B5
Stability 1 1 1 1 1
BEIJING 463 0 0 41 23

BEIJING-LIKE 0 36 8 0 0

TABLE 8: Confusion matrix of East Asian (Beijing) strain
dataset clustered into 5 groups using PARAFAC. Correct la-
bels are SpolDB4 labels on the rows, and tensor sublineages
are represented by each column. The clustering is validated
by the best-match Stability and DD-weighted gap statistic.

4.4 Sublineage structure of East-African Indian (CAS)
The tensor methodology used PARAFAC to construct three
distinct sublineages for East-African Indian (also known as
CAS) denoted C1, C2 and C3 while the dataset has four
SpolDB4 lineages CAS, CAS1 DELHI, CAS1 KILI and CAS2.
Table 9 shows the correspondence of tensor sublineages and
SpolDB4 families. Figure 12 shows the clustering plot of tensor
sublineages and Figure 13 shows spoligotype and MIRU sig-
natures of tensor sublineages. All sublineages are highly stable
with stability 1. Much like with AFRI and BOV, the generic
CAS family was divided across C1, C2, and C3 sublineages.

Fig. 11: Spoligotype and MIRU signatures of tensor sublin-
eages of East Asian (Beijing) strain dataset.

Disregarding CAS, C1 only contains CAS1 DELHI and C3 only
contains CAS2. C2 contains all of CAS1 KILI. C2 also contains
6 CAS1 DELHI strains, but the vast majority (327 strains) of
CAS1 DELHI fall in C1. Variabilities in MIRU loci 10, 26, and
40 are key to defining differences in the sublineages along with
distinct deletion patterns in the spoligotypes.

C1 C2 C3
Stability 1 1 1

CAS 58 43 6
CAS1 DELHI 327 6 0

CAS1 KILI 0 23 0
CAS2 0 0 45

TABLE 9: Confusion matrix of East-African Indian (CAS)
strain dataset clustered into 3 groups using PARAFAC.
Correct labels are SpolDB4 labels on the rows, and tensor
sublineages are represented by each column. The clustering
is validated by the best-match stability and DD-weighted
gap statistic.

4.5 Sublineage structure of Indo-Oceanic
The tensor methodology used PARAFAC to construct eleven
distinct sublineages for Indo-Oceanic denoted IO1 to IO11
while the dataset has thirteen SpolDB4 lineages. Table 10 shows
the correspondence of tensor sublineages and SpolDB4 families.
Figure 14 shows the clustering plot of tensor sublineages and
Figure 15 shows spoligotype and MIRU signatures of tensor
sublineages. The EAI5 family acts much like the CAS, BOV
and AFRI families, spreading across all the Indo-Oceanic sub-
lineages except IO2 and IO5. The small MANU1 family also
spreads across four sublineages. The existence of the MANU1
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Fig. 12: Clustering plot of East-African Indian (CAS) strain
dataset using Principal Component Analysis (PCA).

Fig. 13: Spoligotype and MIRU signatures of tensor sublin-
eages of East-African Indian (CAS) strain dataset.

family has not been well established by other biomarkers. Dis-
regarding these two troubling families, the tensor sublineages
correspond closely to the SpolDB4 families. Specifically, the
mapping between the most stable clusters (with sublineages
stability) and the families are IO1 (.99) equals EAI3 IND, IO2
(1) equals ZERO, IO3 (.99) equals EAI2 NTB, IO4 (.98) equals
a subset of EAI5, IO9 (.97) equals some EAI5 plus all of
EAI8 MDG and some of EAI1 SOM, IO11 (.94) contains the
vast majority of EAI1 SOM and EAI6 BDG1, and some of EAI5,
and IO7 (.79) equals EAI4 VNM and EAI. EAI2 MANILLA is
subdivided into three sublineages: IO8 (1) consisting of 241
strains, IO5 (.81) with 24 strains, and IO10 (.69) with 11 strains.
While the spoligotype and MIRU signatures show that there
are distinct EAI5 subgroups, the definition of the EAI5 and
MANU1 groups are not well supported by the tensor analysis.
They may represent a more general sublineage that is further
subdivided. Distinct patterns are observable in the spoligotype
and MIRU signatures for most of the lineages.

Fig. 14: Clustering plot of Indo-Oceanic strain dataset using
Principal Component Analysis (PCA).

4.6 Sublineage structure of Euro-American
We used Tucker3 to find 33 sublineages for Euro-American
denoted E1 to E33, the same number as the dataset which
has 33 SpolDB4 lineages. Table 11 shows the correspondence
of tensor sublineages and SpolDB4 families. Figure 16 shows
the clustering plot of tensor sublineages and Figure 17 shows
the spoligotype and MIRU signatures of tensor sublineages.

Fig. 16: Clustering plot of Euro-American strain dataset
using Principal Component Analysis (PCA).

Strains belonging to families H2, H37Rv, H4, LAM12 MAD1,
T1 (Tuscany variant), T1 RUS2, T4, T5 MAD2 and T5 RUS1 are
clustered in tensor sublineages E15, E24, E12, E8, E18, E6, E29,
E29 and E18 respectively. In contrast, the T1 family, an ancestor
strain family, is distributed across 25 tensor sublineages, with
most of the T1 strains in E29. Sublineage stability is above .90
for 18 tensor sublineages. Spoligotype and MIRU signatures of
sublineages suggest either subdivision or merging of SpolDB4
families. For instance, tensor sublineages E2, E14 and E25



11

IO1 IO2 IO3 IO4 IO5 IO6 IO7 IO8 IO9 IO10 IO11
Stability 0.99 1 0.99 0.98 0.81 0.76 0.79 1 0.97 0.69 0.94

EAI 0 0 0 0 0 0 6 0 0 0 0
EAI1 0 0 0 0 0 0 0 0 0 0 2

EAI1 SOM 0 0 0 0 0 4 0 0 8 0 105
EAI2 MANILLA 0 0 0 0 24 0 0 241 0 11 0

EAI2 NTB 0 0 15 0 0 0 0 0 0 0 0
EAI3 IND 105 0 0 0 0 0 0 0 0 0 0

EAI4 VNM 0 0 0 0 1 0 44 0 0 0 0
EAI5 23 0 2 17 0 25 28 10 45 7 235

EAI6 BGD1 0 0 0 0 0 1 0 0 0 0 42
EAI8 MDG 0 0 0 0 0 0 0 0 4 0 0

MANU1 0 0 0 0 0 1 2 5 0 0 1
MICROTI 0 0 0 0 0 0 0 0 0 3 0

ZERO 0 6 0 0 0 0 0 0 0 0 0

TABLE 10: Confusion matrix of Indo-Oceanic strain dataset clustered into 11 groups using PARAFAC. Correct labels are
SpolDB4 labels on the rows, and tensor sublineages are represented by each column. The clustering is validated by the
best-match stability and F-measure.

Fig. 15: Spoligotype and MIRU signatures of tensor sublineages of Indo-Oceanic strains.
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a) Spoligotype signature of tensor sublineages of Euro-American strains.
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b) MIRU signature of tensor sublineages of Euro-American strains.
Figure 17: Spoligotype and MIRU signatures of tensor sublineages of Euro-American strains.
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include T1 strains only. In addition to common spacer deletions
of Euro-American strains, E2 lacks spacers 15 through 26, E14
lacks spacers 9 through 23 and E25 lacks spacers 3 through
12 and 14 through 18. This sublineage classification further
subdivides the poorly-defined ancestor T1 family. Strains of
LAM families on the other hand are grouped together in tensor
sublineages E1 and E21. Prior studies have found that LAM
Rio strains identified by SNPs are found in multiple SpolDB4
lineages [29]. Therefore, it is not surprising that use of the
multiple biomarkers leads to subdivision or merging of some
SpolDB4 families.

5 CONCLUSION

We developed a clustering framework which groups MTBC
strains based on their spoligotype and MIRU information via
multiple-biomarker tensors. We generated multiple-biomarker
tensors for representation of high-dimensional biomarker infor-
mation and used multiway models for dimensionality reduc-
tion. The multiway representation determines a transformation
of the data that captures the similarities and differences be-
tween strains based on two distinct biomarkers. We clustered
MTBC strains based on transformed data using improved k-
means clustering and validated clustering results. We evaluated
the sublineage structure of major lineages of MTBC and found
similarities and clear distinctions in our subdivision of major
lineages compared to the SpolDB4 classification. Simultaneous
analysis of spoligotype and MIRU through multiple-biomarker
tensors and clustering of MTBC strains lead to coherent sublin-
eages of major lineages with clear and distinctive spoligotype
and MIRU signatures.

The clustering framework used in this study can be further
extended to find subgroups of MTBC strains based on other
biomarkers such as RFLP and SNPs. We can use spoligotype
and MIRU to group MTBC strains and compare them to labels
derived from SNPs. Representation of MTBC genotype via
multiple-biomarker tensors can also be extended to include 15-
loci and 24-loci MIRU pattern. Moreover, more biomarkers can
be used in the MTBC strain genotype representation. We can
extend multiple-biomarker tensors and add a new mode for
each biomarker added to genotype representation of strains,
such as RFLP. This would be a major advancement because
there is no way to define a similarity measure between RFLPs
of strains other than determining whether or not the patterns
match exactly. Addition of new biomarkers will increase the
number of modes of the multiple-biomarker tensor, while the
multiway analysis methods remain the same.

Future work will involve using various biomarkers to group
MTBC strains. Multiple-biomarker tensors with spoligotype,
MIRU patterns, and RFLP in modes may lead to a clustering of
MTBC strains which is comparable with lineages identified on
the basis of SNPs. This flexible representation should enable
identification of subgroups of MTBC strains based on nu-
cleotide sequences in one of the modes. Since many subfamilies
are clearly known and more biomarkers are being developed,
the multiple-biomarker tensor can be used in supervised and
even semi-supervised classification to build reliable classifiers
of MTBC sublineages and can be used to enhance TB control,
epidemiology and research.
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