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Abstract— Advanced grasp control algorithms could benefit
greatly from accurate tracking of the object as well as an
accurate all-around knowledge of the system when the robot
attempts a grasp. This motivates our study of the G-SL(AM)2
problem, in which two goals are simultaneously pursued: object
tracking relative to the hand and estimation of parameters
of the dynamic model. We view G-SL(AM)> problem as a
filtering problem. Because of stick-slip friction and collisions
between the object and hand, suitable dynamic models exhibit
strong nonlinearities and jump discontinuities. This fact makes
Kalman filters (which assume linearity) and extended Kalman
filters (which assume differentiability) inapplicable, and leads
us develop a particle filter. An important practical problem that
arises during grasping is occlusion of the view of the object by
the robot’s hand. To combat the resulting loss of visual tracking
fidelity, we designed a particle filter that incorporates tactile
sensor data. The filter is evaluated off-line with data gathered in
advance from grasp acquisition experiments conducted with a
planar test rig. The results show that our particle filter performs
quite well, especially during periods of visual occlusion, in which
it is much better than the same filter without tactile data.

I. INTRODUCTION

Why is autonomous grasping and manipulation in unstruc-
tured environments still so hard for robots after 30+ years
of research? For a robot to perform skilled grasping and
manipulation, it has to have information that is hard to obtain
with sufficient accuracy: a geometric model of the object,
estimates of important physical quantities (such as weight
and friction), and the ability to track the pose of the object
and contacts in real-time.

The best scenario for a robot is that it can get an accurate
physical model from a database, has a vision system that
can track the object, and tactile sensors that can aid tracking
when the fingers occlude the visual tracking features. Even
in this case, the localization errors of the perception system
and positioning errors allowed by the control system may not
be small enough to ignore during the process of grasp ac-
quisition or subsequent manipulation. These errors can cause
the hand to bump the object accidentally when reaching or
curling the fingers, possibly causing the object to slip and
tumble out of the grasp. The problems are magnified when
the physical quantities are known only roughly, or vary over
space and time as friction parameters are known to do.

This paper is motivated by the idea that one can dramati-
cally advance the state of the art in autonomous grasping and
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manipulation by designing algorithms that can incrementally
improve a physical model' of a grasping system (composed
of hand, object, and environment), while accurately tracking
the object during grasping and manipulation. We will refer
to this problem as the G-SL(AM)?> problem.

The G-SL(AM)?> problem is to autonomous robotic grasp-
ing, what the SLAM problem is to autonomous robotic
mobility. The G stands for Grasping. SL(AM)? stands for:
Simultaneous Localization, and Modeling, and Manipulation.
The word “Modeling” implies that the robot will use its
sensor systems (tactile, visual, and kinesthetic) to build
and improve a model of the object. “Manipulation” implies
that the robot will physically manipulate the object to help
accomplish the modeling task. “Localization” implies that
the robot will track the pose of the object during grasp
acquisition and manipulation. “Simultaneous” implies that
localization, modeling, and manipulation will all occur to-
gether — in real time.

The G-SL(AM)> problem is potentially a high-
dimensional filtering problem that presents special challenges
peculiar to dynamic systems with intermittent contact: a
nonsmooth dynamic model, a very high-dimensional state-
space, and unknown contact friction parameters that vary
unpredictably. To complicate things further, the dimension
of the state-space varies in time as contacts form and break,
and each such event effectively changes the structure of the
dynamic model.

Our approach to the G-SL(AM)? problem is based on
Bayesian filtering, in particular, particle filtering [5]. A
straight forward application would be to directly sample over
the whole state space, which will be bound to fail in our
problem, because in grasping, large portions of the state
space are invalid. Specifically, particles should not be chosen
that correspond to overlap between the geometric models
of the bodies, nor should they correspond to contact forces
that are not within their respective friction cones. Some may
argue that a trial-and-error approach will help to recognize
the correct samples, while we insist that such a method would
lead to very few effective samples when contact is present,
thereby causing poor estimation.

To shed light on these issues, we present a case study of a
particular scaled-down version of the G-SL(AM)? problem,
using data from our planar grasp acquisition testbed shown
in Fig. 1. The main advantages of using this testbed for our

I'The physical model includes the shapes of the bodies and other quantities
such as friction coefficients and the mass of the object.



initial study are the lower-dimensional state space and the
smaller number of unknown model parameters. In this paper,
it is assumed that the geometric models and most parameters
of the physical model are constant and known; only four
friction parameters are assumed unknown.

A. Related Research

In [8], Yanbin Jia et al. investigated the problem of blindly
determining the pose and motion of a planar object with
known geometry from pushing the object. Their method used
tactile data and geometric models during the pushing process
to infer the locations of the contact points on the object
and the object pose. In [6], Haidacher et al. presented an
approach to locally estimate the pose of an object during
grasp acquisition in 3D when visual servoing is obstructed by
the gripper. The approach first refined the object description
offline by characteristic relations between planar facets of
the geometric model and stored those values in a description
database. After receiving tactile measurements from the
robotic hand, this database was searched for possible match-
ing facet combinations to determine the position of the object
relative to the hand. Both of these research efforts relied on
tactile sensors to infer object pose when object geometry
was given and when there was no visual information. M.
Krainin et al. developed an approach to build 3D surface
model of unknown object using data from a depth camera.
Their approach doesn’t rely on either highly accurate depth
sensor or highly precise manipulator as they use a Kalman
filter to help track both the arm and object’s positions in
[9]. These research work all focused on dealing with object
geometries, while we interest in building a complete model
of the system which includes geometry as well as physical
parameters. It appears though there’s no direct approach to
incorporating these information to their work.

Yuval Tassa et al. formulated a Stochastic Linear Com-
plementarity Problem (SLCP) when trying to apply local
methods to nonlinear control problems involving contact and
friction by claiming that SLCP dynamics is differentiable in
[13]. However, as the authors pointed out, the actual distri-
butions propagated by the true dynamics become multimodal
upon contact, requiring either nontrivial parameterization
or mixture of samples where the dynamics still be non-
differentiable.

The rest of the paper is organized as follows. Section II
introduces our planar grasp testbed and its discrete-time
dynamic model in the form of a nonlinear complementarity
problem [10]. The accuracy of this model and the robustness
of physics engine dvVC2d in simulating the grasping process
has been shown in previous work [15]. Section III develops a
particle filter algorithm that effectively deals with the issues
associated with the contact and friction constraints mentioned
earlier. These modifications are not specific to grasping, but
are appropriate for any dynamic system composed of nom-
inally rigid bodies which undergo intermittent contact with
Coulomb friction, such as assembly problems. In Section IV,
we apply our particle filter to two planar grasp acquisition
problems to demonstrate its ability to track the state of the

grasped object and friction parameters, with and without
visual and tactile signals. Section V summarizes the work
and points out future directions.

II. EXPERIMENT AND DYNAMIC MODEL
A. Experimental Set-Up and Assumptions

In our experimental environment shown in Fig. 1, one
linear pusher (or thumb) and three fixels (or fixed fingers) are
mounted on an aluminum plate to act as a simple one-degree-
of-freedom “hand.” The object is shown in configuration
q = (x,y,0) defined by the x- and y-coordinates of the origin
of the object-fixed frame, and the relative angle of the x-axes
of the base and object frames. During grasp acquisition, the
object is pushed toward the fixels, until fixel contacts halt
the motion or the pusher reaches its travel limit.

As the system moves, frames action are captured by an
overhead camera at 30Hz and are post-processed to extract
the configuration trajectory of the object and pusher. After
calibration, the camera provides positions and orientations
with resolutions of about 1mm in displacement and 1° in
rotation. The thumb’s actuator is very stiff with settable
“constant” speeds, so its motion is tracked using visual data
and a simple Kalman filter.

As this paper is being written, the testbed has no tactile
sensors. However, in Section IV, synthetic tactile data is
generated to study the potential impact of using tactile data
when, in 3D systems, the robot’s view of the object is
occluded by the hand. In our testbed, the camera’s view is
never occluded. This is a benefit for this study, since we can
choose the periods of visual occlusion.

Our main modeling assumptions are as follows. Since
gravity acts perpendicular to the support plane and the pusher
moves parallel to the plane, we can reasonably assume
that the object will maintain face-to-face contact with the
support plane. In addition, all bodies are assumed rigid
and all contacts are assumed to be discrete points where
Coulomb’s Friction Law applies. The face-to-face contact
between the object and the support plane is represented by
three points of support rigidly fixed to the object. The points
form an equilateral triangle whose center is directly below
the object’s center of mass. This model greatly simplifies
a highly complex friction process that actually depends on
details of the geometries of the object and support surface at
the contact points, material properties, dirt, relative humidity,
and more.

B. Dynamic Model

The dynamic model is composed of the Newton-Euler
equation (restricted to the plane), non-penetration constraints
(restricted to the object, pusher, and fixels), and Coulomb’s
Friction Law. Frictional contact occurs between the object
and fixels, the object and pusher, and the object and the
support surface. For the former two, the contact normals lie
in the plane of motion, so the friction cones reduce to 2D
linear cones. For the support contacts, the contact normals
are perpendicular to the plane, so the full 3D quadratic cone
is retained. The resulting dynamic model can be formulated
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Fig. 1. Planar Grasping Testbed

as a mixed nonlinear complementarity problem (mixed NCP)
and solved by the path solver [4]. This mixed NCP could
be linearized by approximating the quadratic cones with
polyhedral cones, but previous results show that the NCP
model is more accurate and can be solved just as quickly as
the linearized model [2].

Our decision to use a tripod to represent the support
contacts allows us to solve uniquely for the normal forces
at the vertices of the tripod. The support contact points each
bear one-third of the object’s weight. This partial solution
reduces the size of the NCP that must be solved for every
simulation time-step. However, we cannot solve for the
friction forces at the tripod vertices without considering the
complete dynamics of the system, because they depend on
the motion of the object. As such our problem satisfies the
conditions of the 2.5D dynamic model available in dVC2d
simulator as described in [3]. The “half” degree of freedom
is added to represent the fact that, because the friction
forces acting between the object and the support surface are
determined by the gravity force, which acts perpendicular to
the plane of motion.

Below, the mixed NCP implementing the 2.5D, discrete-
time, dynamic model is presented in equations (1) and (2)
(see [1] for a complete derivation). Let At be the (constant)
simulation time-step and let ¢ = {0,1,...,N} denote the
index of the current time step. In the NCP formulation,
the unknowns are the contact impulses p‘t!, the object
velocity v/*!, and contact slip indicators 6/*!, where the
superscript is not an exponent, but rather indicates time t =
At(£+1). All the other terms in the equations are constructed
from information available at the current time: p[, vl of,
input forcing functions, collision detection algorithms, and
physical properties of the system. To simulate the grasping
process, this NCP is formulated and solved at each discrete
time point, £ = 1,...,N. The new velocity v*! is used to
update the object’s pose with a backward Euler time-stepping
rule.
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In equation (1) above, the first equation is the Newton-Euler
equation. The second imposes linearized non-penetration
constraints, the third and fourth are the linear friction laws
for the object contacts with the pusher and fixels, and the
last three equations encode the friction laws for the object
contacts with the support surface. In addition, the subscripts
n and ¢ indicate that a quantity is related to the normal and
frictional components of the contact impulses, respectively.
The subscript ¢ indicates relationship to the support surface,
and the subscripts ¢ and ¢ refer to the two perpendicular
components of the support friction impulse in the plane.
The other quantities in the formulation are the object’s
inertia matrix M, the contact constraint Jacobian matrix W,
the diagonal matrix U of friction coefficients, the selection
matrix E, and the impulse applied to the body from all non-
contact SOurces papp.

A key point to keep in mind about this model is that it
is nonsmooth - not just nonlinear with inequality constraints
imposed by contacts, but nonsmooth. Clearly Kalman filters
(which assume a linear dynamic model) do not apply. Model
nonsmoothness manifests as impulsive contact forces and
discontinuous velocities. These are a result of transitions
in and out of contact and between sticking and slipping at
sustained contacts. At these times, derivatives with respect
to the state variables do not exist. This fact makes the
application of extended Kalman filters (which assume model
differentiability) to our model impossible. Strictly speaking,
a Kalman filter or extended Kalman filter could be used,
but only after removing the contact features of the model. In
terms of the dynamic model, equations (1) and (2), this would
mean eliminating complementarity conditions (2) entirely
and all but the first equation in equation (1). This first
equation is Newton’s second law with all contact forces
treated as unknown disturbances in pqpp.

Notice also that the first four equations of system (1)
are linear in the unknowns. The last three are bi-linear
or quadratic (the o operator is the Hadamard product of



two vectors). The derivatives of these expressions with
respect to the state variables exist everywhere, so it might
appear as though one could use an EKF for the G-SL(AM)?
problem. However, the combination of system (1) with the
complementarity conditions expressed in equation (2) causes
nonexistence of the needed derivatives.

Remark: To avert a potential minor point of confusion,
the p’s and s’s on the left sides of equations (1) are simply
names for the expressions on the right-hand sides. These are
used to express equation (2) in a compact form.

The NCP problem defined by equations (1) and (2) is
needed within our filter. To form the NCP at the current time,
we need estimates of the state of the object X’ = [g, v] (where
q is the object’s configuration and V is its time derivative), the
unknown physical parameters ¢, and the input u’. Solving
the NCP yields the system state X‘*! at the end of the current
time step. For the planar grasp testbed, the mass and moment
of inertia of the object and the shapes of the pusher, object,
and fixels may be considered constant and known exactly.
However the friction model parameters vary in space and
time. These parameters are the radius of the support tripod
dyi and the coefficients of friction between the object and
pusher L, the object and fixels pi¢, and the object and support
Us. These four parameters are the elements of B for the
testbed. For the remainder of this paper, we will denote the
mixed NCP as I', and write the time-stepping subproblem in
the following compact form:

X+ :r(xf,uf, B) : 3)

Note that this form is generally applicable to systems of
bodies with intermittent frictional contact, not just 2.5D
grasping problems.

ITII. A PARTICLE FILTER FOR GRASPING

A recursive Bayesian filter that uses a parametric dynamic
model of manipulation and data from all available sources
(e.g., visual, tactile, and kinesthetic sensors) can help us
to track the object while also estimating unknown model
parameters 3. With this approach, if all the sensors fail,
the model will be as accurate as possible, so error accrual
during a sensor blackout will be minimized. As argued above,
we have chosen to apply a particle filter to the G—STL(AM)?
problem.

A particle filter is a simulation-based Bayesian filter that
aims to sequentially estimate the distribution of the state
vector X! given an observed sequence of output vectors
Y141 on-line?. The estimation process works by iteratively
applying a model to predict the state one time step in the
future, and then using observation data to improve the pre-
diction. A general discrete-time Bayesian state-space model
is given by the following two conditional probability density
functions:

Xé+1 ~ PX[+1|X£ (X[,u[)

vt o~ Pyoxe (Xé,uf) “)

2A tutorial on particle filtering methods and a mathematical derivation
can be found in [12].

where Y* denotes the observation at t = (At. Pyii1 ix¢(+) is the
state transition model and Pyrx:(-) the observation model,
or sensor model. Particle filters assume that the system
dynamics is a first-order Markov process, which means
that past and future data are independent if one knows the
current state X'. Also the observation data is conditionally
independent if the state X’ is given. Most multibody dynamic
models satisfy these conditions.

The condensation algorithm, a.k.a. Sequential Importance
Resampling, is a popular particle filtering method. It approx-
imates the state distribution by a weighted set of particles
(Dxt (gt Each X! is a possible system state, or particle,
and Vg’ is the importance weight. The sum of the weights
over all the particles must be one. The weighted particles
can be used to approximate expectations and higher-order
moments of various functions with respect to the approxi-
mated state distribution.

In particle filtering, when approximating a state distri-
bution by weighted particles, it would be ideal to draw
those particles from the actual distribution. However, this
distribution is not available, so particles are drawn from a
“proposal distribution,” which represents our best guess of
the actual distribution at the current time. In the condensation
algorithm, the proposal distribution is chosen as the state
distribution from the current time step. This choice makes
sampling and weight update computations very easy, but
accuracy is reduced.

A. State Space Definition

To track the object’s pose and estimate the unknown
model parameters, one may define the filter’s state vector as
the object’s state, the model parameters, and tactile sensor
values. In our problem, the filter state is defined as follows:

X= [x7y7 9,)@}.’7 éausaup7uf7dtriacl3C23C3}T7
where cq, ¢z, and c3 are the binary outputs of the tactile
sensors on each of the three fixels (Note that it is also
possible to incorporate contact force data if the tactile sensors
can provide it.). Two experiments are studied in the next
section. One of them ignores the tactile data and so the filter
state is 10-dimensional. The other experiment uses tactile
data, so the filter is 13-dimensional.

It is worth noting here that the control of the pusher is
very stiff. Therefore, in the dynamic model, the pusher is
viewed as a position source and not a dynamic object. As
such, the pusher’s position and velocity are not part of the
state in equation (3). Rather they are included in the system
input u. The only time when the pusher does not behave as a
position source is when the object touches the fixels in a way
that causes the pusher to jam (i.e., when the grasp achieves
frictional form closure [7], [11]). A final point here is that
in our experimental study, we use the actual motion of the
physical pusher to drive the simulation model.



B. Issues in Applying Particle Filters to Grasping

A commonly used model in tracking problems is:
X€+l _ f(Xf,z/)—&—wé
vt = n(xtut) "

System
&)

Observation

In this model, w denotes the process noise and v the obser-
vation noise. Here both w and v are mutually independent
distributed sequences with known probability density func-
tions. The functions, f(.) and /(.), are known deterministic
state transition and observation functions. If we use this
form of the system model (by replacing f with I'), noise
will be added to the solution of the state predicted by the
dynamic model of the grasping system. This noise will be
obtained by choosing random rigid body displacements in the
ambient state space. However, when contacts are possible,
those samples should come from a collision-free subset
of the state space or from a lower-dimensional manifold
defined by the contact constraints. Physically, this means
that in configurations with contact, many of the particles will
correspond to configurations in which bodies are overlapping
or are separated when they should be touching. As a result,
the particles and weights found will be a very poor approx-
imation of the state distribution. A trial-and-error approach
will be able to tell which particles are in bad configuration.
However, we argue that such an approach still cannot avoid
the problem of lacking effective particles and thereby causing
poor state representation.

Previous work in [14] introduced a way of estimating un-
known parameters by composing a parameter dynamic model
in addition to the system dynamic model, thereby forming
an expanded state transition model. The main complications
here are that there are no physically-motivated dynamics
for the friction parameters, and the system model cannot
generate useful estimates of parameters that are not currently
impacting the system. As an example, before the object
contacts a fixel, the object-fixel friction coefficient ¢ cannot
be estimated, so computations associated with its estimation
would be wasteful. Our approach to handling this problem
is described in the next two subsections.

C. Solution

To attack the challenges explained above, we designed a
specific particle filter based on the condensation algorithm.
The process noise is broken into two components, external
force noise waypp, and parameter noise wg. The force noise
enters the dynamic model as follows:

MV = MV WP 4 papp + Wapp-

WEp't1 represents the sum of all contact and friction impulse
terms from the first equation of equation (1) and we denote
the new dynamic model as r. Adding noise in this way
guarantees that the nonpenetration and friction constraints
will be satisfied at the end of the time-step. The parameter
noise is added to the current value of the parameter vector
to allow its estimate to evolve as the state estimate evolves.
In particular, we generate an intermediate value 3‘*! as:

TABLE I
SELECTIVE STRATEGY OF ¢

contact between the pusher and object exists choose /ft;“
choose ‘ﬁf”l

choose A1 and d T

contact between the pusher and fixel exists
V]| >0 or v >0

Bt = ﬁ(—FWﬁ -7(B"), where 7 is chosen to ensure that
the parameters remain within physically reasonable limits.
Now, the expanded state transition model can be written as
follows:

v€+1 = r"([qévvq7ueaﬁé+lawﬂpp)
ﬁé-&-l — @(Bévﬁéﬁ-l) (6)
q[+l _ qf L Af- v[+l

where @(-,-) encodes rules that update only those parameters
which are actively involved in the evolution of the system
state according to the rules in Table I. When the state is
expanded with ¢y, ¢, and c3, their values will be obtained
from collision detection at every time step.

D. Algorithm

We assume the initial distribution of g is normal with
mean equal to the first observation data. The variance was
carefully chosen to balance granularity and diversity of
the particles. The system is initially at rest and the object
does not contact the fixels. All initial particles generated
share common initial parameter values, namely a nominal
parameter set o = [0, Hpo, Mo, dirio], and are assigned equal
weights. The parameter values could be obtained via offline
calibration or from relevant databases. Fortunately, the accu-
racy of these parameters is not strictly required for good filter
performance. The general algorithm framework is described
as followed:

Algorithm: Grasp Acquisition Particle Filter

For each time step { =1,...,N:
If satisfies resample condition
Resample all particles
For each particle i = 1,...,Np:
Run the system transition model defined in eq (6)
Run observation model
if sensory data is available
Update particle weight () g
else
Particle weight is unchanged
end
Calculate estimated mean X! using {)g'}

IV. APPLICATION TO REAL EXPERIMENTS

In this section, to demonstrate the effectiveness of the
proposed approach, we will present the results from using
our particle filter to postprocess the visual data gathered in
two representative experiments. The tracking outputs of the



filter will be plotted beside the results from deterministic
simulations using fixed nominal values of the unknown
parameters. Since it is impossible to know object’s true tra-
jectory to verify the our estimates, we will calculate certain
statistics for comparison. In addition, the state estimates will
be mapped back onto the camera images to allow visual
verification.

The first experiment was a typical one from among a set
of similar experiments, in which the system jammed very
soon after the object first made contact with a fixel. In
this experiment, the performance of our particle filter was
compared to that of a Kalman filter for which the dynamic
model treats all contact forces as disturbances, as discussed
above. We repeated the comparison after removing the visual
data a few time steps before grasp formation.

The second experiment was a typical one from a set of
experiments characterized by extended sliding against the
fixels, ultimately ending with contact with all three fixels.
Visual information was again taken away just before the first
fixel contact, but in this experiment, we introduced synthetic
binary tactile data for the fixels. Because the Kalman filter
cannot use tactile data, the comparison here was between our
particle filter with and without tactile data.

A. Comparison to Kalman Filter

Since the Kalman filter did not contain terms representing
the contact forces, it could not estimate friction parameters,
so in the first experiment, we compared the object trajectories
for two scenarios with different sensory data availability. In
the first scenario, the visual data was available throughout
the entire grasping process. In the second, visual data was
blacked out before the first fixel contact.

Fig. 2a) shows the trajectory errors of the x-coordinate 3
of the nominal simulation (yellow curve), the particle filter
(green curve), and the Kalman filter (red curve), taking the
camera tracking data as exact. Figs. 3 a), b), and c) show
the final grasp achieved by the real system overlaid by the
final configurations of the object predicted by the nominal
simulation, the particle filter, and the Kalman filter (drawn
in yellow (Fig. 3a)), green (Fig. 3b)), and red (Fig. 3c))),
respectively.

The performance of the Kalman filter is poor only right
after the object contacts the pusher (at about ¢ = 130) and
a fixel (¢ = 270). At these times, the red curve exhibits
transients caused by the contact impulses that the Kalman
filter treats as disturbances. Note that by the time the second
transient subsides, the Kalman filter’s estimate of the object’s
final state matches the that of the real system (again look at
(Fig. 3¢))).

Another interesting feature of the trajectories is apparent
near the time of the object-fixel contact. The error of the
nominal simulation becomes very large, because it uses con-
stant nominal values of the friction parameters. By contrast,
the particle filter updates the parameters over time to keep the

3The error plots for y and 6 revealed similar trends and hence are not
presented.
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Fig. 2. Estimated Error of Object x-trajectory : a) no visual occlusion

b) visual occlusion

TABLE 11
WMSE (MM)
Experiment Nominal Simulation PF KF
No Visual Occlusion 4.8078 0.1950 0.2549
Visual Occlusion 4.8078 0.1905 | 17.7117

model as accurate as possible. Even though both the nominal
simulation and the particle filter predict that the final grasp
has force closure with one fixel contact, they predict contact
with different fixels. The particle filter, with its more accurate
model, predicts the correct fixel contact.

While the particle filter is the clear winner in the partic-
ular comparison above, we introduce a weighted statistical
value WMSE (weighted mean square error) to quantify the
accuracy of the results:

1Y o A
WMSE = \/N Y (& = %)+ (0 —51)? + (6 - 6,)?
i=

where * denotes the estimated or simulated trajectory com-
ponent, - denotes the observed trajectory component, and 1
is the so-called “virtual radius,” which acts as a weighting
coefficient to balance the orientation component and the
two translational components. The WMSE values for the
simulation and two filters with visual data always available
are listed in the first row of Table II. The large WMSE value
for the simulation and small similar values for the filters
agrees with visual inspection of Figs. 2 and 3.



Fig. 3. Estimated Object Pose at £ = 300: Top row: no visual occlusion
a) nominal simulation b) particle filter estimate ¢) Kalman filter estimate
Bottom row: visual occlusion d) nominal simulation e) particle filter estimate
f) Kalman filter estimate
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Fig. 4. Estimated Parameters: no visual occlusion

B. Visual Occlusion

We reran the same filtering experiment with visual oc-
clusion from ¢ =200 to the end of the experiment. During
the visual signal blackout, the particle filter updated all
particles using the system transition model without either
updating the particle weights or introducing parameter noise.
As a result, the friction parameters did not change after this
time. The resulting x-coordinate trajectories of the nominal
simulation and the two filters are presented in Fig. 2b) with a
compressed vertical scale to accommodate the large error of
the Kalman filter during visual occlusion. The second row of
images in Fig. 3 show the final predicted grasp configurations
overlaid on an image of the real system. The plots in Fig. 2b)
are identical to those in Fig. 2a) up to the time of the
occlusion. After that, the errors of the Kalman filter accrue
slowly until the grasp is formed at £ = 270. At this point, the
system stops moving, but the Kalman filter predicts that the
object continues to move with the velocity it last estimated.
This is clearly evident at the right end of the red curve in
Fig. 2 and also in Fig. 3f), which shows overlap of the object
pose predicted by the Kalman filter with the fixels. On the

other hand, the particle filter still delivers good estimates
through the period of visual occlusion.

Fig. 4 shows the friction parameter trajectories estimated
by the particle filter with the visual data. The case with visual
occlusion is not shown, since the only difference is that after
the occlusion, the estimated parameter values do not change.
In Fig. 4, notice that the pusher friction coefficient u, and the
support friction parameters, Us and dy;, start to vary as soon
as the pusher touches the object. However, the filter cannot
gain any knowledge of (i until object touches a fixel. Except
for uy, all three parameters vary within a relatively smaller
range after some initial transients.

One should also observe the spikes in the plots, especially
for u,. This is not an indication that the real parameters
underwent drastic sudden changes. Actually, the spikes are
caused by the fixel contact. Specifically, since the grasp sticks
to the two contacts, the dimension of the effective state
space of valid particles is reduced. As a result our algorithm
produced too few particles to accurately represent the state
density function.

C. Using Synthetic Tactile Sensor Data

In the second experiment, our particle filter was tested on
an experiment in which the acquired grasp had contact with
all three fixels after a significant period of sliding on one
fixel. We assumed visual occlusion occurred just before the
first fixel contact.

Three error plots are shown in Fig. 5: simulation with
nominal parameters (yellow), the particle filter without tactile
data (green), and the particle filter with tactile data (blue).
The pusher contacts the object at time-step ¢ = 130, the first
fixel contact occurs at £ =257, and the grasp is completed
at £ = 270. Visual occlusion is chosen to occur at £ = 240.
Fig. 6 shows predicted object poses on camera images at
times £ =257 (top row of images) and ¢ = 300 (bottom row).
The colors of the projected object correspond to the filter
error colors.

Consider the green plots in Fig. 5 and the corresponding
images in Fig. 6b). We can see from the upper image in
column b) of Fig. 6 that at the time of the first fixel contact,
the filter without tactile data estimates the object’s pose
accurately. However, by the end of the grasping process, less
than two seconds later, the error has become significant. The
filter’s estimate shows the object in contact with only one
fixel and overlapping the pusher. Interestingly, the orientation
error of the filter with tactile data is slightly larger than that
of the filter without. This is due to the fact that the filter
with tactile data has different dynamics.

Comparing images in the center and right of the bottom
row, the filter with tactile data clearly outperforms the filter
without by the end of the grasping process. The error plots
in Fig. 5 also support this conclusion, which might not be
so obvious with the y-error plot. Notice that this plot ends
with nearly 2mm of error. This is because the binary tactile
sensor data contains no information about the displacement
when sliding along all three contacts.
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257 Bottom row: at £ = 300 a) nominal simulation b) no tactile sensor c)
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Estimated Object Pose with Visual Occlusion: Top row: at £ =

TABLE III
WMSE (MM)
Nominal Simulation | No Tactile | Tactile
3.9990 6.7502 1.3301

One curious characteristic to notice in Fig. 6a) is the
set of fairly regular small spikes in the first half of the
error trajectories. These were caused by a problem with our
frame grabber not keeping up with the 30Hz refresh rate,
and thus having the same data in several successive frames.
This problem is also responsible for the rapid oscillations
in the error curves in Fig. 2. Nonetheless, the particle filter
performed reasonably well on our problems. The WMSE
value in Table III quantifies this fact.

D. Several More Experimental Results

Table IV gives the results from processing four other
experiments with the Kalman filter and with our particle filter
with and without tactile and visual information. Column 2
contains the WMSE errors for the nominal simulation using
the best available constant friction parameter values. The data
in columns 3, 4, and 5 contain the WMSE values for the three
filters discussed above, and assuming that visual occlusion
occurred just before the first fixel contact. The last column
was generated using our particle filter with tactile data and
assuming visual data was always available.

Generally, from the results we can see that when visual
occlusion occurs, the Kalman filter can have very big errors.
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Fig. 7. Estimated Parameters with Visual Occlusion

The particle filter without tactile data performs marginally
better, but the particle filter with tactile data performs much
better — nearly as well as the case with all data sources
available all the time.

E. Computational Issue

In the current work, we found 500 particles to be suffi-
cient for good filtering results. Each particle runs collision
detection, forms NCP problems, and calls the path solver
[4] to solve the dynamic model independently of the other
particles. Due to this parallel nature, we adopted parallelism
when computing state transitions for the particles. However,
processing a pre-collected 20-second experiment currently
requires 10 minutes of cpu time on a core-i7 desktop PC.
This is far slower than real time, and if we expand the filter
state to include geometric model parameters of the object
in the filter state, then we will require even more particles
and cpu time. Nonetheless, we have reason to be optimistic.
Over 90% of the computational effort was spent on solving
the dynamic model. New solvers based on new formulations
of the dynamic model have the potential to be hundreds times
of faster when depolyed on modern multi-threaded CPUs and
GPUs.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we developed an approach to apply particle
filters to the G-SL(AM)?> problem. The approach ensures
that non-penetration and stick-slip friction constraints of the
dynamic model are always satisfied with all particles and



TABLE IV

WMSE (MM)
Experiment Nominal Simulation | Kalman Filter | No Tactile | Tactile | No Occlusion
1(Contact with a fixel and slide) 9.9906 40.5436 14.2866 0.3754 0.4326
2(Contact with a fixel and slide) 32.8811 56.0046 39.6202 2.2959 0.2572
3(Contact with fixel and stop) 1.4412 4.5666 0.6282 1.3973 0.3876
4(Contact with fixel and stop) 0.584 21.8527 0.4534 0.336 0.3739

also provides a reasonable model to refine the physical pa-
rameters. From the particular grasping experiments studied,
one can conclude that the proposed approach can be effec-
tive in improving our knowledge of the system’s physical
parameters while simultaneously tracking the object during
visual occlusion. While the paper focused on the G-SL(AM)?
problem, it is important to note that the approach taken is
applicable to a wide variety of dynamic multibody system
with intermittent contact.

For future work, we need to solve the “sample degen-
eracy” problem when the valid subset of state space is
tightly constrained. A possible idea is to investigate hybrid
sampling by sampling from the sensory model. Furthermore,
we would like to incorporate geometric model parameters
and extend the filtering scheme to G-SL(AM)? problem in
three-dimensional space. Computational problems must be
addressed to facilitate achieving these goals.
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