
Energy-Efficient Location Service Protocols for Mobile Ad Hoc Networks

Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY, 12180.

{wangz,bulute,szymansk}@cs.rpi.edu

February 27, 2011

Abstract

Location-based routing protocols are stateless since they rely on position information in forwarding decisions.

However, their efficiency depends on performance of location services which provide the position information of

the desired destination node. Although several location service schemes have been proposed, their main goal is

merely to find the location of the destination node. Seldom they consider energy efficiency in their designs for the

forwarding of location update and query packets. Based on the analysis of the previous works, we propose two

novel location service protocols aiming to decrease the distance traveled by the location update and query packets

and, thus, to reduce the overall energy cost. Simulation results for both static and mobile networks are presented to

demonstrate that the proposed schemes achieve significantly higher energy efficiency and improve the query success

rate in comparison to the previously proposed algorithms.

1 Introduction

In mobile ad hoc networks, one of the fundamental challenges is to design routing protocols under constantly changing

topology. Recently, location based routing has received much attention and is considered to be the most efficient and

scalable routing paradigm [1]. However, before a packet can be routed, the source node needs to retrieve the location

information of the destination node. Thus, a critical issue for location based routing protocols is to design efficient

location services that can track the locations of mobile nodes and at any time reply to queries about the locations of

nodes residing anywhere in the network.

1.1 Related work

There have been various protocols proposed for location service. The earliest of them were flooding-based approaches.

DREAM [2], DLS, and SLS [3] are examples of those in which each node periodically floods the entire network with
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its location information. However, the storage and dissemination overhead of such an approach is very high. Reactive

flooding-based approaches (e.g., RLS [3]) are better than pro-active ones in terms of overhead. Yet, they might still

resort to flooding the entire network when the destination location information is not available in neighbor nodes.

To restrict the location update and query flooding, quorum-based protocols were proposed. One example is the

column-row protocol introduced in [4], where each node periodically propagates its location information in the north-

south direction, while any location query is propagated in the east-west direction. In this case, the update and query

overhead is much lower than it is in flooding-based methods. Yet, the location update cost in terms of hop count is

still the full diameter of the network and the query cost could be nearly as high if the query enters the query column

far from the intersection of this column with the update row. This method is then extended by sending query and

update in non-vertical directions [5] and in multi-directions [6].

Recently, hashing-based protocols, in which location servers are determined via a global hash function, have been

proposed. These protocols can further be divided into flat or hierarchical, depending on how the home regions of the

location servers are structured. In the flat hashing-based protocols [7, 8], each node’s identifier is mapped to a home

region consisting of one or more nodes within a fixed location in the network area. All nodes in the home region

serve as location servers maintaining location information and replying to location queries. However, there are several

drawbacks of such an approach. First, a large overhead is introduced when moving nodes periodically send location

updates to their location servers which may be far away. Second, even if the destination node is arbitrarily close to

the source node, the source node still needs to send location query to the destination node’s location server that could

be far away. Third, when all the location servers are within a fixed geographical area, frequent location queries and

replies drain energy and cause early death of the nodes within this area. Multi-home region method [9] was proposed

to fix some of the above drawbacks.

In the hierarchical hashing-based protocols [10, 11, 12], the network area is recursively divided into a hierarchy of

squares. For each node, one or more nodes in each square at each level of the hierarchy are assigned as its location

servers. Maintaining a hierarchy offers several benefits. First, moving nodes do not need to send location update to

location servers of certain level if they have not moved out of the corresponding square. Thus, the location update

cost is significantly reduced. Second, if the source node and the destination node are close to each other and within

the same low level square, the location query can be replied quickly. Third, location servers are scattered all over the

network, balancing the total network energy usage among nodes.

Since the algorithms that we introduce here take this approach, we summarize the two different phases involved:

(i) location query and response, and (ii) location maintenance.

(i) location query and response: When a source node wants to send a packet to a destination node, it sends a

location query packet to retrieve the location of the destination node from its location servers. Once any of the

location servers for the destination node is found, the location query packet is recursively forwarded to lower level

location servers in the lower level squares until the level-1 location server is reached. Finally, the destination node will

receive the location query packet and will reply to it with its accurate location. Clearly, the most important step in

this procedure is to find the proper location servers.
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(ii) location maintenance: Each node maps its ID into a unique location in the unit size square, using a hash

function known to all nodes. Using this location at square in which it resides at each level 1 ≤ i ≤ N of the grid

hierarchy, the node locates its level-i location server, which simply is the node closest to that unique location. If the

node moves from its last reported position further than a predefined distance but remains within its current level-1

square, it sends location update with its exact location information only to its level-1 location server. If the move

involves higher level squares, handover procedure is used to inform the relevant servers about the change. The details

of processing are further discussed in the subsequent sections.

1.2 Contributions

Although energy-related parameters are considered in some routing protocols such as [13], location service protocols

seldom consider energy efficiency issue when forwarding location update and location query packets. They focus on

the ability to find the location of the destination nodes. In this paper, we address the need for energy efficiency

consideration in the design of location service protocols and present novel schemes with low energy consumption.

Accordingly, the main contributions of this paper are as follows:

1. Efficient schemes for reducing the distance traveled by location update and query packets are proposed, which

lower the energy cost of location service, increase the delivery ratio, and balance the location service load equally

among all nodes.

2. The positions of the location servers are optimized to fully minimize the energy consumption and maximize the

delivery ratio. It also decreases the number of servers in the network but still balances location service load

among nodes.

3. Extensive simulations were performed and results with many varying parameters are presented to show the

advantage of proposed schemes over the leading existing protocol in many different environments.

The remainder of the paper is organized as follows. First, we describe the network model, assumptions, and

hierarchical coordinate system used by the protocols in Section 2. In Section 3, we present our novel location service

schemes. Section 4 provides the simulation results and compares our schemes with the method presented in [12]. We

conclude the paper in Section 5.

2 Preliminaries

2.1 Network Model and Assumptions

We model a mobile ad hoc network as a set of wireless nodes deployed randomly with uniform distribution over a

predetermined finite two-dimensional square area. Each node has a unique ID, and is equipped with a communication

radio with a communication protocol supporting reliable inter-node communication with adjustable transmission range.

We assume that each node knows its own position (e.g., via low power GPS devices or localization techniques [16, 17])
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Figure 1: An example for a 4-level hierarchy network.

and also knows the positions of its neighbors. The latter is typically accomplished via periodic hello messages with

Time-To-Live (TTL) set to one hop. Thus, this packet will only be received by one-hop neighbor of the sender, instead

of flooding the entire network. Additionally, we assume that the nodes move within the square network area according

to a mobility model.

2.2 Hierarchical Coordinate System

The whole network area is recursively divided into a hierarchy of squares which are known to each node in the network.

At the top level, the entire area is called a level-N square, where N is the total number of levels in the hierarchy.

Each of level-i (1<i≤N) square is further divided into four level-(i-1) quadrants, until the entire region is divided into

n = 4N−1 level-1 squares. Given L as the side length of the whole network area, the side length of a level-i square is

Li = L
2N−i . Fig. 1 illustrates an example of a 4-level hierarchy network in which each node resides within exactly one

square at each level i, such that 1≤i≤N .

Using the lower left point as the origin of the system, we can define the address of level-i square as a sequence of

coordinate pairs (aN−1
x , aN−1

y ). . .(ai
x, ai

y) (in short ai
x|y) computed as:

ai
x|y =

si
x|y −∑N−i−1

k=1 LN−k × aN−k
x|y

Li

(1)

where (si
x, si

y)(si
x|y in short) is the lower left coordinate of the level-i square. For example, the address sequence

for the marked level-1 square in Fig. 1 is (1,0)(1,0)(0,1).
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Inversely, the lower left coordinate of the level-i square can be computed as follows:

si
x|y =

N−i
∑

k=1

LN−k × aN−k
x|y (2)

With such a partitioning and the square address scheme applied to the entire network, the specific location of a

node can be identified by the square in which this node resides.

Given a node’s coordinate (nx, ny), the address sequence (naN−1
x , naN−1

y ). . .(nai
x, nai

y) (in short nai
x|y) of the

level-i square to which this node belongs is calculated using the following formula:

nai
x|y = ⌊

nx|y −∑N−i−1
k=1 LN−k × naN−k

x|y

Li

⌋ (3)

For example, the address sequence of the level-1 square in which the destination node in Fig. 1 resides is (0,0)(1,0)(0,1).

3 Energy Efficient Location Service Protocol

In this section, we give the details of how the location update and query operations are performed in the proposed

protocol. We also present an analysis which finds the optimal positions of location servers in the current setting.

3.1 Location Update

The following key issues need to be addressed in attempt to reduce the distance traveled by the location update

packets:

3.1.1 Location Server Selection and Update

Each node selects one level-i location server in each level-i square in which it resides using its unique ID and a hash

function known to all nodes. Therefore, each node only needs to maintain N location servers. Moreover, the storage

overhead is evenly distributed all over the network as nodes with different IDs use different servers. The position of

the level-i location server (lsi
x, lsi

y) (referred to as location server point) for each node in level-i square is determined

as:

(lsi
x, lsi

y) = (si
x, si

y) + hash(ID,Li) (4)

where ID is the unique identifier of the node and (si
x, si

y) is the lower left coordinate of the level-i square in which

the node resides. hash(ID,Li) is a global function known to each node that maps a node’s ID to a relative position

in a level-i square1. There may be no node at the exact location server point. In such a case, we choose the node

1In the simulations, we used the following simple hash function. For level-k (1 ≤ k ≤ N for ADJ method and k = 1 for OPT method,

as explained later) square, we divided it into M × M grids, where M ≫ n, then chose the center of grid (gx, gy) as the hash point where

gx = ID%M , gy = ⌊ID/M⌋. However, our methods can also use other hash functions.

5



nearest to the location server point as the corresponding location server using the perimeter based scheme presented

in [12].

If the node moves from its last reported position further than a predefined distance but remains within its current

level-1 square, it sends location update with its exact location information only to its level-1 location server. Otherwise,

if the node moves off the current level-i (i ≥ 1) square Sold
i into new level-i square Snew

i within the lowest level-k

(k ≥ i + 1) common square Scom
k that contains both Snew

i and Sold
i , it updates its location information as follows.

First, it sends location update to its level-k location servers. Second, it sends location update to all of its level-j

(1≤ j ≤ i) location servers in Snew
i . Third, it sends location remove packets2 to all of its outdated level-j (1≤ j ≤ i)

location servers in Sold
i .

Obviously, if a node oscillates between two nearby points at two sides of a high level square boundary, sending of

location updates immediately after each slight location change will be costly. Therefore, to reduce such an overhead,

we employ lazy update technique similar to ones presented in [14, 15], and let each node send location update only if

it moves out of level-i square for at least a certain threshold distance d(Li).

3.1.2 Location Information Update and Storage

In the proposed method, each location server maintains a list of nodes whose location information it stores. Each

element of the list stores the following information: node ID (32 bits), location server level (log2N bits), location

information (will be introduced in the next paragraph), and expiration time (32 bits).

It should be noted that the exact location information of destination nodes is only stored at level-1 location servers.

At all other levels, the location servers only store the address sequence of the square in which the level-(i-1) location

server (and also the destination node) resides, as shown in Fig. 1. There are three advantages of storing location

information in this way. First, the memory usage is reduced because the address sequence of a square takes only

2(N -i+1) bits for level-i location server while the exact location information takes 64 bits. For each location server,

on average, there are only N entries3 in the list. That is, for the example in Fig. 1, where N = 4, the memory usage

is only 340 bits4 per node. Second, the size of the location update packet is also reduced which decreases the energy

cost for location update. Third, the location information at level-i location server needs to be updated only when

the destination node moves out of the corresponding level-(i-1) square, which significantly reduces the frequency of

location updates and thus the energy consumption.

2Here, both the location update and remove packets are sent following the route computed by greedy Hamiltonian path algorithm. We

elaborate on this in Section 3.1.4
3Since there are N location servers for each node in the network, in total we have N×(node count) entries in the tables of all nodes.

This makes an average of N entries per node (or location server) in the network.
4On average, each node becomes a level-i server for only one node. Therefore, it keeps 130 bits for the node for whom it serves as level-1

server and 68, 70 and 72 bits for the nodes for whom it is level-2,-3 and -4 server, respectively.
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3.1.3 Location Information Handover

Each location server periodically (with the same frequency of hello messages for all the nodes) checks each entry in

its list and calculates the distance between its current position and the location server point (computed by Eq. 4) for

each destination node. If this distance exceeds certain predefined handover threshold, the current location server will

choose the neighbor node closest to the corresponding location server point as the new location server5. With the

sufficiently large move of a location server between the checking times, it is also possible that it can lose its ‘location

server duty’ for more than one nodes at a time. Therefore, the location server may need to inform multiple new

location servers (each for a different node) about such loss. Even in such cases, only one location handover packet is

broadcast to accomplish that. The packet carries a list of location servers to be informed (indexed by the server’s node

ID) and the corresponding location information to be stored at each server. Each node receiving location handover

packet checks whether it is on the list. If this is the case, it stores the corresponding location information. Compared

to the broadcasting of location handover packet for each new location server individually, this solution decreases the

chance of packet collision (an observation confirmed by simulation) and consequently reduces the energy cost.

3.1.4 Sending Location Update Packet

In previous work, all the location update packets are sent to location servers individually. In our protocol, we achieve

location updates in a more energy efficient way. If one node needs to send a location update to more than one location

server, it first calculates the distances that would be traveled by the update messages in two cases: (i) when they

are sent to each desired location server individually (referred as d-indiv) (ii) when they are sent in one packet that

traverses all the desired location servers (referred as d-all). If d-indiv incurs smaller distance than d-all does, the

location update messages are sent to each desired location server individually. Otherwise, all the update messages are

integrated into one packet that is forwarded according to a forwarding table indicating the sequence of location servers

to be visited. Traversing multiple points in a plane is an instance of the Hamiltonian path problem. We use a simple

greedy solution in which the next visited node is always the nearest one to the currently visited node. Any intermediate

node greedily forwards location update packet to the neighbor nearest to the position of the next location server in

the forwarding table. Once the location update packet reaches a location server at certain level, the corresponding

location information will be stored at this server and the next entry in the forwarding table will pop up. If certain

intermediate node can not find a neighbor node closer to the location server in the current forwarding table entry than

itself, this entry will be dropped and the next table entry will pop up. All the outdated table entries are deleted and

therefore the corresponding server will not be updated6.

In order to reduce packet size, only the table entry for level-1 location server stores the exact location information

of the destination node (64 bits). All the other table entries store only location server level (⌈log2 i⌉ bits) and the

5Note that this handover procedure involves only the old and new location servers of a node and it is different than the update procedure

defined in Section 3.1.1. Both procedures indeed run in parallel. Therefore, it is also possible that even if a node does not move, its level-i

location server may change due to the movement of current level-i location server.
6This lowers the location query success rate, but it happens so infrequently that its impact on the performance of the protocols is

negligible.
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Figure 2: An example of location update and forwarding table.

address sequence for the level-(i-1) square in which the destination node resides (2(N -i+1) bits). The computational

complexity of this coding procedure is O(N2). Note that, when all n nodes are evenly distributed over the entire

network which is divided into n = 4N−1 squares, we obtain N ≈ log(n)/2. Thus the computational complexity of the

coding procedure indeed becomes O(log(n)2). Any intermediate node receiving the location update packet can decode

the information to get the location of the server in the current forwarding table entry.

The first entry in the forwarding table in Fig. 2 is an example. Any intermediate node can get the address sequence

of the level-1 square in which the level-1 location server resides. This address is computed from the destination node’s

location (x,y) by applying Eq. 3. Then, the lower left coordinate of the square can be computed by applying Eq. 2.

Finally, the position of the corresponding level-1 location server can be calculated using Eq. 4. The computational

complexity of this decoding procedure is O(N2) (O(log(n)2)).

An advantage of sending location update in one packet instead of many is that the distance traveled by the location

update packet is shorter, reducing the energy cost.

3.2 Location Query

Here, we focus on the most important step, location query processing, that is used to find the proper location servers

to obtain location information.

3.2.1 Observations and Basic Idea

We made the following observations about the previous methods described in [12, 13, 14]. In the method introduced

in [12] (referred to as HIGH-GRADE method and abbreviated as HG in our paper), the source node calculates all

candidate level-i location server points assuming the destination node resides in the same level-i square as itself. Then,
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Figure 3: Location query scheme from [12].

the location query packet traverses the candidate location server points in increasing order of location server levels until

the lowest level square in which both the source and the destination nodes reside is found. Clearly, such a common

square always exists (in the worst case this is the level-N square). The main drawbacks of this method are as follows.

First, the real location server could be quite nearby, but the location query packet has to travel a long distance to

find it. One example of such a situation is shown in Fig. 3. Second, the location query packets are always forwarded

from lower to higher levels of candidate location server points, even if visiting the latter and dropping the former will

decrease the distance traveled by packet. In fact, if the high level candidate location server is not a real one, then

neither is the low level one. If the location query packet can check the high level candidate location server points first,

then there is no need to check the low level candidate location server points at all. Thus, both the distance traveled

by the location query packet and the corresponding energy cost could be reduced.

Schemes proposed in [14, 15] tried to address the aforementioned first drawback by forwarding location query

packet in a spiral with increasing radius until it meets one of the location servers. Consequently, the nearby location

servers can be found quickly. Yet, the location query packet may still travel a long distance if the location servers are

far away from the source node.

We observed that:

1. for the source node, it is worth searching the adjacent squares outside its own high level square, but only if the

expected gain (finding right location server quickly, thus decreasing the average distance traveled by packet) is

bigger than the cost for visiting extra location server points;

2. if jumping over lower level candidate location server points and visiting higher level candidate location server

point first will decrease the average distance traveled by packet, then the source node should send the location

query packet to visit the higher ones first.
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3.2.2 Location Query Procedure

Based on our observation, we propose a new location query method (referred to as ADJ), as shown in Algorithm 1.

We first analyze the gain and cost of using this new method and then introduce the location query procedure in detail.

Gain and cost analysis

If the source node finds (with probability of 4−N+k) the right (e.g. with information about the destination) level-k

location server when searching adjacent squares (these servers are called extra location servers), then we gain by

avoiding sending first a query packet to a sequence of servers at levels growing from 1 to N and then descending from

N to k. Hence, the gain measured in distance is:

gk =

(

d(source, LSP1) +

N−1
∑

i=1

d(LSPi, LSPi+1)

+

N−1
∑

i=k

d(LSPi, LSPi+1)

)

4−N+k

(5)

where d(pi, pj) denotes the distance from pi to pj .

Algorithm 1 Location Query Procedure

1: Determine which method to use (ADJ or HG)

2: Find optimal visiting list sequence

3: if ADJ is used then

4: Find adjacent squares to be searched

5: Compute gain and cost for each nearby square found

6: if gain > cost then

7: Put corresponding location server point into visiting list

8: end if

9: end if

If the source node visits one level-k location server point (LSPkn
) in adjacent square but does not find the destination

location information there (this happens with probability of 1−4−N+k), then the location query packet has to go back

to visit possible location servers within source node’s square using HG method (referred to as base location servers).

In this case, we get no gain but pay the extra cost. Assume LSP1 is the first location server point that the source

node will visit using HG method. Then the cost will be:

ck =(4−N+k)d(source, LSPkn
)+

(1 − 4−N+k) [d(source, LSPkn
)+

d(LSPkn
, LSP1) − d(source, LSP1)]

=d(source, LSPkn
)+

(1 − 4−N+k)[d(LSPkn
, LSP1) − d(source, LSP1)]

(6)

Selecting the method to use
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When the source node wants to find the location of the destination node, it first draws a circle with itself as center

with the estimated maximum gain as a radius. If this circle intersects with other level-h (predefined parameter, should

be high, we set it to N -1) squares (not the one containing the source node), the source node will choose to use ADJ

method. Otherwise, the source node will choose to use HG method. The maximum gain is estimated as follows. It is

clear that max(distance(source, LSP1)) =
√

2L1, where L1 is the side length of level-1 square. According to the hash

function we used, d(LSPi+1,i+2) = 2d(LSPi, LSPi+1). Given the ID of the destination node and a level-2 square, it

is easy to compute the exact maximum distance from the four possible LSP1s to LSP2 (referred to as L(1, 2)max).

Thus, Eq. 5 becomes:

gk =

(√
2L1 + L(1, 2)max

(

∑N−1
i=1 2i−1 +

∑N−1
i=k 2i−1

))

4N−k

(7)

It is easy to prove (see Appendix) that gk is a strictly increasing function of k, thus we have the maximum gk when

k = N − 1:

gkmax
=
(√

2L1 + L(1, 2)max((3(2N−2) − 1)
)

/4

Finding optimal visiting list sequence

Algorithm 2 Optimal Visiting List Sequence

1: opt path = 2N−1 − 1

2: opt dist = Length(opt path)

3: for i = 0; i < 2N−1 − 1; i++ do

4: dist = Length(i)

5: if dist < opt dist then

6: opt dist = dist

7: opt path = i

8: end if

9: end for

In original HG method, the source node visits servers from LSP1 to LSPN in sequence. However, in our protocol,

if the node selects to run HG method, we send the query over the optimal visiting list sequence (path) giving the

minimum cost among all possible paths (there are 2N−1 of them) from source to LSPN . For example, if the source node

visits LSP1 and LSP2 in sequence, then with probability of 4−N+1, it will find the destination location information in

LSP1 and stop going further; with probability of 1 − 4−N+1, it will continue to search LSP2. Thus the average cost

of getting from source to LSP2 is d(source, LSP1) + (1 − 4−N+1)d(LSP1, LSP2). If the source node drops LSP1 and

visits LSP2 directly, then with probability of 4−N+2, it will find the destination location information in LSP2 and will

go to the level-1 location server that contains detailed destination location information. Since only one out of four

servers at level 1 serviced by LSP2 is LSP1, the probability that the search will go back from LSP2 to LSP1 is just

1/4 × 4−N+2, or 4−N+1. With probability of 1 − 4−N+2, the search will continue to server LSP3. Thus the average
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cost of getting from the source to LSP2 (when jumped over LSP1) is d(source, LSP2)+(4−N+1)d(LSP2, LSP1). In

general, optimal visiting list sequence finding process is shown in Algorithms 2 and 3.

Finding adjacent squares to be searched

In order to narrow down the possible adjacent squares to be searched, we use the following process. After finding

optimal path, source node knows the exact cost from itself to LSPN (Let L(s,N) denote this cost). It then draws a

new circle with itself as center and with a radius of rest=
[

L(s,N) + L(1, 2)max

(

∑N−1
i=k 2i−1

)]

4−N+k. If this circle

intersects with level-k (1 ≤ k ≤ h) squares contained within another level-h square (not the one that contains the

source node), the source node will put the corresponding level-k squares into list. For each of the level-k squares in the

list, the source node will calculate LSPk assuming the destination node is within this square. If LSPk is not within

the new circle, the corresponding square will be removed from the list.

Algorithm 3 Length(int path)

1: dist = 0

2: last node = 0

3: for i = 1; i ≤ N ; i++ do

4: if ((ith digit of path from right is 1) || (i = N)) then

5: if (last node=0) then

6: dist = dist + d(LSPlast node, LSPi)

7: else

8: dist = dist + d(LSPlast node, LSPi) × (1 − 4−N+last node)

9: end if

10: last node = i

11: else

12: dist = dist + d(LSPi, LSPi+1) × 4−N+i

13: end if

14: end for

15: return dist

Gain and cost comparison

For each square in the final adjacent square list, the source node will compute the exact gain and cost using Eq. 5

and Eq. 6. If the gain exceeds the cost, the corresponding location server point in adjacent square will be put into the

visiting list.

Fig. 4 shows an example in which the source node resides in the level-1 square which is beside the boundary of

level-3 square. After refining the four base location server points, the level-1 location server point is removed. The

source node finds some extra location server points in adjacent squares, but only the level-3 location server point in

adjacent square (0,0) will be put into the visiting list. Then, all candidate location server points are sorted in the

order shown in Fig. 4, as defined by the path originating in the source node and traversing all nodes in the list.
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Figure 4: Location query procedure and forwarding table.

To reduce the packet size, the forwarding table uses the same information coding technique which was used by the

location update procedure. All table entries store the location server level i (⌈log2i⌉ bits) and the address sequence of

the level-i square in which the candidate location server resides (2(N − i) bits). Any intermediate node receiving the

location query packet can decode the information and learn the location of the candidate location server in the current

forwarding table entry. During the location query procedure, if any location server with destination information is

found, the location query packet will stop following the forwarding table and instead will use the information found

in this location server.

Consider the forwarding table shown in Fig. 4. From the first table entry, an intermediate node calculates the lower

left coordinate of the square by applying Eq. 2 to address sequence (0,0). Then, the position of the corresponding

candidate location server can be calculated using Eq. 4 that is of complexity O(N) (O(log(n))).

3.3 Location Server Position Optimization

In the previous section, we tried to reduce the location update and query costs by adjusting the paths traveled by these

packets. In this section, we try to reduce the location update and query costs by adjusting the position of location

servers. We first take a two-level grid as an example to analyze the average cost of location query procedure and then

derive the optimal position for location servers.

As shown in Fig. 5, the two-level grid is divided into four level-1 grids, marked as grids A, B, C and D. H1a, H1b,

H1c and H1d are four level-1 location server points for these grids. Note that the relative position to the lower left

corner of level-1 grid for each of these points is the same for the same destination node, thus the distance between

H1a and H1b is L1, which is the side length of the level-1 grid. H2 is the location server point for the level-2 grid.

13



Figure 5: A two-level grid example.

We denote the distance between H1a and H2 as a, the distance between H1b and H2 as b, the distance between H1c

and H2 as c, and finally the distance between H1d and H2 as d. The source node and the destination node could fall

within each level-1 grid with equal possibility of 1/4. Thus, in total, there are 16 cases, each of them occurring with

equal probability of 1/16, as shown in Table 1. Since the same procedure will apply to the lower levels, we ignore the

distance traveled by the location query packet between the source node (or the destination node) to the level-1 location

server in the same level-1 grid and just take the distance between level-1 location server and level-2 location server into

consideration. For example, if the source node and the destination node are within the same grid A, then the location

query packet will first go to H1a and then will find the destination node’s information and go to the destination node

directly. Thus, the location query cost will be 0. If the source node is within grid A and the destination node is within

grid B, then the location query packet will visit H1a, H2, H1b and the destination node in sequence. Thus the location

query cost will be a+b. By considering all possibilities, we conclude that the average location query cost is 3(a+b+c+d)
8 ,

as shown in Table 1.

Source/Destination A B C D

A 0 a+b a+c a+d

B b+a 0 b+c b+d

C c+a c+b 0 c+d

D d+a d+b d+c 0

Table 1: Location query cost analysis.

We can minimize average location query cost by adjusting the position of H2. We take the case that the source node

is in grid A and the destination node is in grid D as an example to derive the optimum position of H2. Let’s assume

that we decide to find the best position for server H2 at certain distance x from one side of square H1aH1bH1cH1d. As

shown in Fig. 6, given the arbitrary line H ′H2H”, parallel to side H1aH1d, H1am is the mirror image of H1a over this

line. Hence, H1dH2 +H2H1am > H1dH1am by triangle principle, then H2−opt projected onto side H1aH1d (point H2p)

lays in the middle of this side, because triangle H1dH2−optH” is equal to triangle H1amH2−optH
′. Placing a mirror

on line H2pH2−opt shows that the optimal placement of server H2 is at the center of square of potential positions of

14



Figure 6: Optimal placement of server Hl+1.

servers at level 1.

Hence, given the position (x1, y1) of the level-1 location server in the most lower-left level-1 grid within the whole

grid, the optimum position of level-i (xi, yi) location server could be computed as:

xi = x1 +

i−1
∑

k=1

Lk

2
and yi = y1 +

i−1
∑

k=1

Lk

2

Algorithm 4 Average Location Query Cost

1: dis = 0

2: for x1 = 0.5/M ; x1 < L1; x1 = x1 + 1.0/M do

3: for y1 = 0.5/M ; y1 < L1; y1 = y1 + 1.0/M do

4: dis = dis +
√

x2
1 + y2

1

5: dis = dis +
√

(L1 − x1)2 + y2
1

6: dis = dis +
√

x2
1 + (L1 − y1)2

7: dis = dis +
√

(L1 − x1)2 + (L1 − y1)2

8: end for

9: end for

10: dis = 3dis
8(M2L2

1
)

We can also estimate the benefit from the optimization of location server positions. When the location servers are

placed at the optimal positions, then a=b=c=d=
√

2L1/2 in Table 1, thus the average cost of location query will be

1.0607L1. Moreover, when the locations of servers are determined by Eq. 4, we can compute the average location query

cost by using numerical integration7 as shown in Algorithm 4, that yields the average distance of 1.1478L1 (increasing

M improves accuracy). Thus, we can expect to achieve an improvement of about 8.2%.

According to the location update rule introduced above, the average location update cost will be a+b+c+d
4 , which is

2/3 of the average location query cost. Thus, we can get the same improvement for location update when the location

7Assuming that an M × M grid is located on the whole area and the location servers can be in the middle of each of these grid cells

with the same probability, we compute the average location query cost in all possible cases. Note that, if H1a is at point (x1, y1), H2 is

located at (2x1, 2y1). Then the sum of (a+b+c+d) in Fig. 5 for a single case becomes the sum computed in lines 4-7 of Algorithm 4.
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servers are placed at the optimized positions.

4 Simulations

4.1 Simulation Model and Settings

We used NS-2.33 simulator to evaluate our proposed schemes and compared them with the HIGH-GRADE method

presented in [12] (referred to as HG). Our method that adjusts the paths traveled by location update and query packets

is referred to as ADJ, while our method with the location servers optimally placed is referred to as OPT. It should be

noted that OPT shares with ADJ all other protocol improvements introduced above (however, they may yield different

results due to the different positions of servers versus themselves and the source node). The whole network is deployed

over a 1000 m by 1000 m area partitioned into 4-level squares. IEEE 802.11 is used as the MAC and physical layer

protocol. We used two-ray-ground propagation model. Each node’s transmission range varies from 0 to Rmax. The

power consumed by each transmission is 1.6 W for omni-directional transmission of the maximum 250 m range and

lower for shorter transmit ranges. The power drained for reception is constant and equal to 1.2 W. The detailed energy

consumption model for nodes with ranges less than Rmax could be found in NS2 documentations [18].

4.2 Performance Metrics

To evaluate the performance of the proposed schemes, we used the following metrics:

1. The average total distance8 traveled by all location update packets for all nodes, referred to as update distance.

2. The average number of packets forwarded by each node, referred to as packet count.

3. The average distance traveled by location query packets, referred to as query distance.

4. The average delay of location query packets, referred to as query delay.

5. The average energy usage9 per node in the network.

6. The average location query success rate.

The distance traveled by a location update or query packet is accumulated during the packet forwarding procedure.

For example, if a packet is forwarded from node A to node B, its hop distance will increase by one and its traveled

distance will increase by the distance between node A and node B.

8We sum the total distance traveled by all location update packets for all nodes in a single topology, then take the average of this sum

for different topologies. Distance is measured both in meters and hops. We provide different graphs for each.
9Since all the methods compared use periodic hello messages, the cost of those messages is not included in total energy usage.
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Figure 7: Performance comparison of three algorithms according to metrics 1 and 2 in static network scenario.
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Figure 8: Performance comparison of three algorithms according to metrics 3 and 4 in static network scenario.

4.3 Simulation Results

This section presents the results of our evaluations of the proposed algorithms according to the aforementioned metrics.

We used both the static and mobile network scenarios. Although many other location service studies do not look at

the performance of their algorithms for static networks, we demonstrate them here for the sake of completeness and

for showing the superiority of our algorithms even in the static case.

4.3.1 Static Network Scenario

In this scenario, we keep the neighbor count for each node constant and vary the number of nodes in the network from

200 to 600 by changing Rmax from 177 m to 102 m10. This enables us to evaluate the proposed schemes with different

numbers of nodes in the network while preserving the number of neighbors of each node. We randomly generated five

static topologies for each configuration. For each of them we ran 20 groups of simulations. Each simulation ran for

S + 45 seconds, where S is the number of nodes. For the first S seconds, node s sent location update at sth second11.

Then, starting from (S + 20)th second, each of five randomly selected source nodes generated five location queries to

randomly selected destination node, with 5 seconds interval between its queries.

10These settings are similar to the settings of [12], where the compared algorithm, HG, is presented.
11Here, we applied this scheme to avoid packet collision in the initial location update procedure. When nodes start to move, as in the

scenarios considered in the next section, they will send location updates only when necessary.
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Figure 9: Average energy usage per node in static network scenario.

Figure 7 presents the average results (of all topologies) for update distance and packet count as a function of number

of nodes. Clearly, the location update costs for our two methods are much lower than for HG. This is mainly because

the location update messages in our method could be sent in one packet. The location update cost for OPT is even

lower than for ADJ because the distance traveled by the location update packets is further reduced by adjusting the

positions of location servers. On average, we get improvement of 9.6%, which is very close to the analysis result 8.2%

in Section 3.3. Since most of the packets forwarded are location update packets and the average number of forwarded

packets by each node is directly proportional to the hop distance, the slopes of the plots (and the relations between

the slopes of plots) shown in Figure 7c look similar to the ones in Figure 7a and 7b, which also verifies the simulation

results in these figures.

Figure 8 gives the average results for query distance and delay as a function of number of nodes. The cost of

the ADJ is lower than HG, with an average improvement of 17%. The improvement comes from two scenarios: 1)

the source node finds the destination location information in adjacent squares worthy visiting; 2) the visiting list is

improved by Algorithm 2. Consequently, ADJ method decreases the location query delay in worst case too. This is

important for some time sensitive applications, which requires that there is a limit for the location query delay in worst

case. Moreover, the cost of OPT method is much lower than ADJ and HG because the optimized positions of location

servers provide additional cost savings. Furthermore, since the delay of location query packets is directly proportional

to the hop distance of location query packets, the slope of simulation results shown in Fig. 8c is very similar to the

slopes of results in Figures 8a and 8b, which also verifies the simulation results in these figures.

We also computed the energy usage for three methods. The results are illustrated in Fig. 9. As expected, the

energy usage for ADJ is lower than HG, and it is in the range of 75% to 87% of HG’s energy use. The energy usage

for OPT is even lower than ADJ, in the range of 88% to 95% of the ADJ’s energy use. Consequently, ADJ and OPT

can provide 13% to 25% and 24% to 30% saving against HG, respectively.

Table 2 shows the average location server counts for three methods in static network scenario. We can see that

ADJ has almost the same location server number as HG, but OPT has much fewer location servers. In Fig. 10, we

illustrate the average remaining energy (and its variance (mean square error)) of location server nodes and non-server
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nodes with respect to time for three methods in static scenario12. From the figure, we observe that the energy usage

for location server nodes are a little higher than for non-server nodes in all three methods. This is because the location

servers spend their energy on two activities. First is receiving location update, receiving location query and sending

location reply for itself. Second is forwarding location update, location query and location reply for other nodes. In

contrast, non-server nodes only forward location update, location query and location reply. OPT uses fewer location

servers than HG, suggesting that the work and energy usage per each location server will be higher in OPT than in

HG. Yet, the energy usage (and variance) for location server nodes and non-server nodes are nearly the same in ADJ

and OPT13. Both of them, however, are lower than in HG, which means that 1) our two methods use less energy and

have better energy balancing than HG; 2) the energy usage is evenly distributed in OPT even though its location

server count is only 45% to 75% of location servers in ADJ. From these simulation results, we conclude that most of

the energy is spent by forwarding packets for other nodes, and therefore evenly distributed among all nodes.

node count 200 400 600

HG 128.8 274.4 546

ADJ 125.2 274.4 546

OPT 99 175.2 251.3

Table 2: Average location server count in static network scenario.

Here, we also would like to discuss why the energy usage (and variance) for location server nodes and non-server

nodes in ADJ and OPT are almost the same, even though OPT uses more location server. Consider Fig. 11 where we

show the increasing sharing of the higher level servers in OPT versus ADJ. Location server at the first level in OPT

are selected equally randomly as in ADJ method. Location servers at the second level in OPT must be within unit

square (yellow) while in ADJ they are randomly placed within the 4 unit square with yellow sides. Thus, OPT level 2

servers are 4 times more likely to be on the same node as ADJ servers. Location servers at the third level in OPT must

be within unit square (red) while in ADJ they are randomly placed within the 16 unit square with red sides. Thus,

OPT level 3 servers are 16 times more likely to be on the same node as ADJ servers. Location servers at the fourth

level in OPT must be within unit square (black) while in ADJ they are randomly placed within the whole are with

black sides of 64 units. Thus, OPT level 4 servers are 64 times more likely to be on the same node as ADJ servers.

Note that this is easy to prove from the fact that level k+1 servers are the centers of squares with level k servers,

so they are level k square side from in each direction from each level k server. For example, the whole lowest left

square (that contains all possible location of level-1 server in this square) shifts half a unit up and right to create

yellow square. Then, yellow square moves up and right a unit to create red square. Finally red square moves up and

right 2 units to become black square. That proves that if two nodes share level-1 server in OPT, they share all higher

level servers, which is not true in ADJ.

12Because location update cost is much larger than location query cost, we only consider location update energy usage here.
13This is because in OPT average distance between two subsequent levels of location servers is shorter than in ADJ, so packets sent to

higher level servers travel shorter distance in OPT than in ADJ. We explain this in more detail in Appendix.
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Figure 10: Average remaining energy and variance in static scenario.

Figure 11: Possible location server regions in ADJ and OPT. While the shaded (yellow, red and black) unit squares

show the regions for OPT, the square regions with colorful sides show the regions for ADJ.
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Consequently, if a node is in colored squares, it has higher chance of becoming higher level server in OPT then in

ADJ, but this loss is moderated by the gain of sending its packets to servers in shorter distance than in HG, as they

are close (because packets are sent directly to higher level servers, especially if they are close). Conversely, if it is not

in color squares it can never be a high level server (it can be at most level 1 server) but since it is far from servers,

and since the packets are needed to be sent to higher level servers directly often, while gaining on one part, it loses on

the other. Because of all these reasons, in OPT there is still a good balancing of energy usage and the energy usage

(and variance) for location server nodes and non-server nodes in ADJ and OPT are almost the same.

As a final statistics in static scenario, in Table 3 we show the average location query success rate for three methods.

We observe that OPT method yields higher success rate than ADJ does, while HG method has the lowest success rate.

This is mainly because of the higher number of packets forwarded by each node in HG method than in ADJ and OPT

methods (as it is illustrated in Figure 7c), which increases the chance of packet collision resulting in location update

or query packet loss.

Node count 200 400 600

HG 93.5% 92.9% 78.0%

ADJ 98.2% 95.6% 83.3%

OPT 99.2% 96.8% 86.1%

Table 3: Average location query success rate in static network scenario.

4.3.2 Mobile Network Scenario

In the mobile network scenario, nodes move according to the random way-point14 mobility model with no pause time.

The moving speed for each node is chosen between zero and a maximum moving speed Vmax. We keep the number

of nodes in the network at 400 but vary the maximum nodal speed Vmax from 2.5 m/s to 7.5 m/s. All the other

configurations are the same as for the static network scenario, except that all nodes start to move after (S + 20)th

second. The d(Li) used in lazy update procedure is set to Li

20 i and the handover threshold is set to 90 m15.

Figure 12 plots the average simulation results for update distance and packet count as a function of maximum speed

Vmax. The plots show that the location update cost (both hop count and distance traveled) grows for all methods with

the increase of Vmax. This is because when the maximum speed of nodes increases, nodes need to send location update

packets more frequently (as they move out of a certain level of the grid), which will increase the location update cost.

But it is much lower for both of our methods than for HG for two reasons. First, our methods send location update

in one packet. Second, we use the lazy update procedure which reduces the update cost when node oscillates near the

square boundaries.

14We also performed simulations using several other mobility models such as random walk and random direction. Since the results were

similar to the ones with random way-point model, we did not include them in the paper for the sake of brevity.
15We chose these values after an extensive run of simulations with different values.

21



2.5 3.75 5 6.25 7.5

2

3

4

5

6

x 10
5

V
max

 (m/s)

T
o

ta
l 
d

is
ta

n
c
e

 (
m

e
te

rs
)

HG
ADJ
OPT

(a) Metric 1 (in meters)

2.5 3.75 5 6.25 7.5
2000

3000

4000

5000

6000

7000

V
max

 (m/s)

T
o

ta
l 
d

is
ta

n
c
e

 (
h

o
p

s
)

HG
ADJ
OPT

(b) Metric 1 (in hops)

2.5 3.75 5 6.25 7.5
4

6

8

10

12

14

16

18

20

V
max

 (m/s)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
p

a
c
k
e

ts

HG
ADJ
OPT

(c) Metric 2

Figure 12: Performance comparison of three algorithms according to metrics 1 and 2 in mobile network scenario.
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Figure 13: Performance comparison of three algorithms according to metrics 3 and 4 in mobile network scenario.

Figure 13 shows the average simulation results for query distance and delay as a function of Vmax. As the plots

illustrate, the cost of ADJ is lower than HG and the cost of OPT is lower than ADJ for the same reasons that we

discussed in case of the network scenario illustrated in Fig. 8. It is interesting to note that the location query cost

decreases with the increased maximum speed for all methods but for different reasons. The location query packet in

HG is always forwarded to level-1 location server first and then forwarded to immediately higher level location servers.

Thus, the decrease of location query cost comes only from the increase of node’s mobility. For ADJ and OPT, besides

the reason for HG method, the chance of meeting higher level location servers for each node increases with the increase

of Vmax. According to the location query scheme of ADJ and OPT introduced above, the location query packets will

be forwarded to higher level location servers directly, which reduces the distance traveled by these packets.

The energy usage for mobile scenario is shown in Fig. 14. As expected, the energy usage grows with the increase

of speed Vmax. This is because the main energy cost results from location update, which increases with the increase

of maximum node speed. However, ADJ method uses only 70% of the energy used by the HG method, while OPT

method uses even less of it. For example, OPT uses 95% of the energy used by the ADJ when Vmax=7.5 m/s.

Table 4 shows the average location server counts used in each method in mobile network scenario (we still count

a node as location server after it sends location handover packet and transfers server duty to other nodes). Again,

ADJ has almost the same number of location servers as HG does, but OPT uses much fewer of them. Fig. 15 shows

the average remaining energy (and its variance (mean square error)) of location servers and non-servers with time for
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Figure 14: Average energy usage per node in mobile network scenario.

three methods in mobile scenario. We observe that the difference between the variance of server nodes and non-server

nodes for each of the three methods decreases with the increase of node speed, which indicates that the mobility helps

balancing the energy usage among all nodes [19]. It is also clear that the energy usage (and variance) for all nodes in

ADJ and OPT are almost the same, which means that the energy usage is evenly distributed in OPT even though it

uses 20% to 40% fewer location servers than ADJ does. The reason for this is the same as in static scenario.

Vmax (m/s) 2.5 5 7.5

HG 296.6 326 348.4

ADJ 291.8 332 359

OPT 188.2 242.2 290.4

Table 4: Average location server count in mobile network scenario.

Table 5 shows the average location query success rate for three methods in mobile network scenario. They drop

with the increase of Vmax but still OPT has the highest success ratio, while ADJ is better than HG. From Fig. 12c,

we see that in HG method each node forwards more packets than ADJ and OPT methods. This increases the chance

of packet collision and results in location update or query packet loss, thus a decrease in success rate.

Vmax (m/s) 2.5 5 7.5

HG 62.9% 48.7% 41.2%

ADJ 67.5% 53.5% 49.5%

OPT 69.7% 60.8% 51.0%

Table 5: Average location query success rate in mobile network scenario.
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(c) Vmax = 7.5
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Figure 15: Average remaining energy and variance in mobile scenario.

5 Conclusion

In this paper, we introduced two novel location service protocols with the goal of reducing the overall energy cost by

decreasing the distance traveled by the location update and query packets. To achieve this goal, one method, ADJ,

adjusts the path for location update and query packets, while the other one, OPT, places the location servers at their

optimal positions. Extensive simulations were performed to demonstrate that the new schemes achieve significantly

higher energy efficiency and improve query success rate when compared to the existing methods.

In future work, we will use these location services in designing routing protocols and applications for mobile wireless

networks. We also plan to analyze the effect of utilizing such energy efficient location services in the design of routing

protocols such as [20, 21] for delay tolerant networks where the intermittently occurring contacts between nodes and

low node density makes the routing challenging. Moreover, we will also look at the problem of finding optimum N

(number of hierarchical levels in the network) that provides the best energy efficiency for the given number of nodes

in the network and its area of coverage. Furthermore, the influence of real-world environment will also be considered

in the future [22].
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Appendix

The calculation of pk

The probability that one possible location server point of level k (1 ≤ k ≤ N) residing in a level-k square contains

information about the destination is equivalent to the probability that the destination resides in the level k square.

Hence, this probability is pk = 4−N+k.

The proof of why gk is a strictly increasing function of k

gk =
√

(2)L1 + L(1, 2)max ×
(

N−1
∑

i=1

2i−1 +

N−1
∑

i=k

2i−1

)

× 4−N+k

> L(1, 2)max ×
(

N−1
∑

i=1

2i−1

)

× 4−N+k

> L(1, 2)max × 2N−1 × 4−N+k

= L(1, 2)max × 22k−N−1

and

gk+1 =
√

(2)L1 + L(1, 2)max ×
(

N−1
∑

i=1

2i−1 +

N−1
∑

i=k+1

2i−1

)

× 4−N+k+1

= 4gk − L(1, 2)max × 2k−1 × 4−N+k+1

Thus,

gk+1 − gk = 3gk − L(1, 2)max × 2k−1 × 4−N+k+1

> 3L(1, 2)max × 22k−N−1 − L(1, 2)max × 2−2N+3k+1

> L(1, 2)max × 22k−N − L(1, 2)max × 2−2N+3k+1

= L(1, 2)max × 22k−N ×
(

1 − 2k+1−N
)

.

Because k + 1 ≤ N , thus we have gk ≤ gk+1.
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