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Abstract

We outline here two new algorithms for growing perfect power-law graphs of increasing size for
the given set of parameters of the desired graph, such as the average and maximum node degrees
as well as desired exponent of the power law distribution of the node degrees. We present also
relations of these parameters to each other and constraint of their feasible values. Both
algorithms are distributed, therefore they requires just one broadcast for joining each newly added
node and limited response from the existing nodes to interconnect new edges to the existing
nodes. In both cases only nodes with the currently desired node degree respond to the broadcast.
In making a choice of the node to which the new edge is added, additional criteria for node
selection, such as distance to the newly added node, can be used. The first presented algorithm,
SRA (Semi-Random Algorithm), select the currently desired node degree according to the
probabilities defined by the power law distribution of node degrees. The second algorithm, SDA
(Semi-Deterministic Algorithm), selects the currently desired node degree to minimize the sum of
absolute differences between current and desired node degrees.

1. The Desired Properties of the Algorithm

The goal of this note is to derive an algorithm for constructing a graph with a power-law distribution of
node degrees. Unlike previous solution, see for example [1, 2], we aim at having power law distribution
of node degrees at every stage of construction and for the given set of power-law and graph
parameters, such as exponent of the power-law, the minimum, average and maximum node degree in
the graph. The construction starts with a fully connected graph with just ny,=2k+1 nodes, where 2k
denotes the desired average node degree and the process continues until the graph with the desired
number of nodes n,,,, is constructed. In each step of the construction, we add a new node with the
number of edges equal to the half of desired average node degree 2k. These edges are then connected
to the nodes of the graph created in the previous step. We will characterize such a set of graph by the
following parameters:

n — the current number of nodes in the graph, in our analysis n is not a constant, like other parameters,
but rather an instance of the value, and can assume any positive value between k and n,,,,, but we are
interested in cases when ny,q,>>k, and of course n>2k;

m>2k — the maximum degree of any node, so nodes with degree m stop accepting any new connections;
below we analyze the simplest case of m being integer, so all edges have at most degree of m (we
excluded the trivial of k=m/2 which will result in the graph will all nodes of degree 2k, so trivially



satisfying definition of power law distribution of node degrees, there is also clear that the maximum
degree of any node must be less than the number of nodes, so naturally m<n, and in general n<n,,,).

k — as mentioned above, it is the half of average node degree, so each time a new node is added to the
graph, on average k edges are also added; below we analyze the simplest case of k being integer and the
growth being made with a constant number of edges added, so with each new node, exactly k new
edges are added; it is a matter of simple extension to have instead a vector [k;] of expected frequencies
(defined of course by the desired power-law distribution of node degrees) with which i edges are added

m
with the newly added node, and then k = Z:iki ;

i=1

y>0- the exponent of the desired power-law distribution of node degree, that defined the fraction of
nodes of degree d as being proportional to d”(we consider below the values of this exponent larger
than 1, following the traditional assumptions, however, for certain values of m and k, this is not
necessary).

It is interesting to note that the three constant parameters: k, m, ¥, are independent of each other
except that for certain values of m, and k, when there is lower bound for values of ¥ that that could be
larger than 1.

Let n; denotes the number of nodes with degree i in the graph with n nodes. By simple enumeration of
all nodes we have:

(1) n= Zm:ni.
i=k

By simple enumeration of all edges (by construction, there are exactly kn edges in the graph with n
edges) and taking into account that each edge belongs to two nodes, we have:

(2) 2kn= iini.
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From Eq. (1) we have 2kn = Zani hence, removing last element from the sum of Eq. (2) we get
i=k
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Finally, the required power-law distribution of node degrees yields the equation
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(4) n =— for i<m.
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Note that we cannot enforce the power-law distribution for the nodes with maximum degree m because
their frequency is defined by Eq. (3). Only for certain values of k, m, n and y, this equation will yield
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Using Eq. (4) to substitute in the right hand side of Eq. (3), we get
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(5) Ny = 2
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Clearly, the nodes with maximum node degree will also have frequency defined by the power-law if yis
selected such that

Using Eq. (4) to substitute in the right hand side of Eq. (3), we get
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Since m>2k, than the left hand side of Eq. (6) is always positive, its derivative for yis -In(m)(m-2k)/m’
while its value approaches (1-2k/m)m™"* when Y tends to infinity. The right hand side of this inequality
can be initially negative, but for large y it must be positive, its value approaches k7" when y tends to
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infinity and it has the derivative — E |n(I)T.
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It is easy to show then, that the right hand side decreases slower than the left hand side and therefore
at most one unique value of ycan satisfy Eq. (6). The condition for the unique solution to exits is that for
=0, the right hand side is smaller than the left hand side, hence m-2k>2k(m-k)+(m-1)m/2+k(k+1)/2
which reduces to (m-2k)?2k*+3k and since m>2k and (k+1)2<k’+3k<(k+1.5)*.

Using Eq. (4) to substitute in the right hand side of Eq. (3), we get

(7) m>3k+2.

In short, for m greater or equal to 3k+2, there exists a unique value of y for which the constructed graph

will have power-law distribution for all node degrees.

Now, we can use Eq. (1) to compute the constant c from Eq. (4)
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To be independent of the graph size n, we will use frequency fi
substituting c using Eq. (8), we get from Eq. (4)

9) f, = T_;—Zk for i<m.
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Using Eq. (5) and c substitution from Eq. (8) we get also
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It is easy to check, using Eq. (9) and Eq. (10) that, as needed, we have
m m-1 m-1 H
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so we can use this equality to replace Eq. (10) with a simpler one:

m-1
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Eq. (9) and Eq. (11) express frequencies f’s as simple functions of m, k and y.

Let’s consider now a growth of the graph from its size n nodes to the

size of n+1 nodes. The added node

has on average k edges originating at it which are then connected to the existing nodes, so on average it

increases by 1 the number of nodes with degree k, i.e. n’,=n,+1.

Let a; denote the average number of nodes that increase their degree from j to i+1 in one step of growth

(hence, decreasing the number of nodes of degree i by a; and increasing the number of nodes with

degree i+1 by a;) by connecting to a newly added node. Of course, each existing node can add at most

one connection to a newly added node. Hence, we have fi (n+1)=fxn + 1 — ay, so fy=1 — a,and finally

(12) ag= 1 '.fk-

Similarly, f;=a;.;— a;for k<i<m and therefore by induction

(13) &, =1—Z fj for ksi<m

i=k

Finally, f,= 0.1 50
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Since we are adding k edges in each step of growth, then Zai =K. However
i=k
m-1 -1
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so the required constraint can be rewritten asm— 2Kk = (m—2k) —
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Clearly, the sum on the right hand side sums up to one, so this restriction is always satisfied.

Finally, another restriction is that all frequencies must be positive. From Eq. (9) and Eq. (10), it is clear
m-19
that because m>2k, it is necessary and sufficient that Z
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If this condition is not satisfied, it is always sufficient either to appropriately increase yor to sufficiently

>0, which can be rewritten as

decrease m. Other changes to these parameters or parameter kK may or may not, depending on the
particular values of the parameters, also cause the inequality of Eq. (15) to be satisfied. For sufficiently
large yany value of m will be feasible. Indeed, we have
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Thus, for 7=3 we have for the right hand side of inequality in Eq. (16):
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Hence, in this case for at least k=1, any value of m would be feasible (and there is a numerical evidence

that this holds for any k). Similar reasoning for y=4 shows that for at least k=1, and 2 again any value of
m is feasible.



2. Algorithms
2.1. Random Interconnection

The algorithm starts with the initial configuration of fully interconnected graph of 2k+1 nodes, and then,

i

a

in each subsequent step, the newly joining node generates k random numbers, r; ... r,. Let V; = Z—'

1=k
and v,.;=0. The newly added i-th edge will be connected to node of such degree j that V;_; << V. All
k desired node degrees are broadcast in one message. The nodes of the desired degrees respond in time
proportional to their fithess to make a connection. If no node responds (because either there are no
nodes of the given degree, or all nodes of that degree already are connected to a new node), nodes with

node degree by one lower respond, and so on.

The advantage of this algorithm is that it creates different graphs in different runs. However, random
selection of the node degree to which the new edge is connected may occasionally create fairly large
(few percent) differences between the desired and actual number of nodes of the give degree.

2.2. Selecting Interconnections to Increase Power-Law Distribution Adherence

To decrease random divergence from the power law, the algorithm sketched here uses this divergence
in the currently created graph to select the connections of the newly added edged. Namely, for each
edge, the algorithm computes which node degree has the node count most divergent from the desired
one if a node with this node degree will not be selected for connection to the edge being currently
added. This computation is done at each existing node of the current graph in response to a broadcast
of the request for connection to newly created edges by the node being currently added. In a sequence
of k responses, those existing nodes for which the node degree count would diverge the most from the
number required by the power-law send prioritized responses (each response is proportional to the
fitness of the responding node).

This algorithm is deterministic and reduces the differences between the desired and actual number of
nodes of the give degree by the order of magnitude compared to the previously described randomize
algorithm.

3. Examples

Two examples of computations of frequencies for the described algorithms are shown below.
The first example assumes m=5 and uses three different values of =2, 1, and 0.

m/y ad a3 a2 f5 f4 f3 f2

5/2 0.5906 0.6510 0.7584 0.5906 0.0604 0.1074 0.2416
5/1 0.5517 0.6552 0.7931 0.5517 0.1034 0.1379 0.2069
5/0 0.5 0.6667 0.8333 0.5 0.1667 0.1667 0.1667



The second example assumes m=10 and uses several values of y ranging from 1.34 to 6. The values of a’
coefficients are shown first followed by the corresponding values of frequencies f.

a9 a8 a7 a6 a5 a4 a3 a2
10/2.12 0.1055 0.1234 0.1464 0.1769 0.2193 0.2815 0.3815 0.5655
10/2 0.0925 0.1133 0.1395 0.1738 0.2205 0.2878 0.3929 0.5797
10/2.12 0.1055 0.1234 0.1464 0.1769 0.2193 0.2815 0.3815 0.5655
10/1.35 0.0005 0.0449 0.0969 0.1592 0.2359 0.3340 0.4666 0.6620
10/1.34 -0.001 0.0437 0.0962 0.1590 0.2363 0.3349 0.4678 0.6634
10/3 0.1728 0.1786 0.1868 0.1991 0.2186 0.2522 0.3180 0.4739
10/4 0.2107 0.2121 0.2145 0.2185 0.2259 0.2414 0.2790 0.3979
10/5 0.2287 0.2291 0.2297 0.2310 0.2336 0.2403 0.2608 0.3468
10/6 0.2378 0.2379 0.2381 0.2384 0.2394 0.2422 0.2529 0.3132

f10 f9 f8 f7 f6 f5 fa 3 f2
0.1055 0.0179 0.0230 0.0305 0.0423 0.0623 0.1000 0.1840 0.4345
0.0925 0.0208 0.0263 0.0343 0.0467 0.0673 0.1051 0.1868 0.4203
0.1055 0.0179 0.0230 0.0305 0.0423 0.0623 0.1000 0.1840 0.4345
0.0005 0.0444 0.0520 0.0623 0.0767 0.0981 0.1326 0.1955 0.3380
-0.0012 0.0449 0.0525 0.0628 0.0772 0.0986 0.1330 0.1955 0.3366
0.1728 0.0058 0.0082 0.0123 0.0195 0.0337 0.0658 0.1559 0.5261
0.2107 0.0015 0.0024 0.0040 0.0074 0.0154 0.0376 0.1189 0.6021
0.2287 0.0004 0.0006 0.0012 0.0027 0.0067 0.0204 0.0860 0.6532
0.2378 0.0001 0.0002 0.0004 0.0009 0.0028 0.0107 0.0603 0.6868
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