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Abstract

We propose a novel approach to visualization of heterogeneous data characterized by both a relation-
ship graph structure and intrinsic features. Each data point is a node in a graph with a given structure.
Each data point is also associated with a set of features that have a corresponding distance or similarity
measure. A successful visualization accurately captures the desired proximity structure as measured by
some embedding objective while simultaneously optimizing an aesthetic criterion, no edge crossings. The
edge-crossing constraint is expressed as a nonlinear constraint which has an intuitive geometric interpre-
tation closely related to support vector machine classification. The approach can be generalized to remove
intersections of general convex polygons including node-edge and node-node intersections. We demon-
strate the approach on multi-dimensional scaling or equivalently Kamada-Kawai force-directed graph
layout, by modifying the stress majorization algorithm to include penalized edge crossings. The resulting
Expectation-Maximization-like algorithm can be readily adapted to other supervised and unsupervised
optimization-based embedding or dimensionality reduction methods. The method is demonstrated on a
problem in tuberculosis molecular epidemiology – creating spoligoforests for visualizing genetic related-
ness between strains of the Mycobacterium tuberculosis complex characterized by a phylogenetic forest,
and multiple biomarkers with a corresponding non-metric genetic distance.

1 Introduction

Graphs can be used to model relationships between elements, where the elements are represented as nodes and
the relations by edges. Graph visualization can be used to better understand these underlying relationships
in a dataset. Frequently, the nodes of a graph represent objects that have their own intrinsic properties with
associated distances or similarity measures. The motivating heterogenous data/graph application for this
work is visualization of phylogenetic forests of bacteria (here spoligoforests). Each node represents a genetic
strain of Mycobacterium tuberculosis complex (MTBC) and each edge represents a putative evolutionary
change. Each node or strain has a genetic fingerprint and a natural non-metric distance that can be defined
to every other strain even if they are not connected in the underlying graph. Similarly, in a Web hyperlinks
graph, each node may be a web page and the edge may represent a hyperlink between the pages. Each
webpage is a document with intrinsic properties, so there is an associated distance or similarity measure
between nodes even if no link exists between them.

The quality of a visualization can be gauged on the basis of how easily it can be understood and inter-
preted. Certain criteria have been identified that characterize a good visualization. For graphs, it is desirable
to minimize edge crossings. For general data embedding, the desired quality is frequently expressed as a func-
tion of the embedding and then optimized. For example in Multidimensional Scaling (MDS) (or equivalently
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the Kamada-Kawai model in force-directed graph placement (FDP)), the goal is to produce an embedding
that minimizes the difference between the actual and embedded distances between all nodes. If a graph
is planar, we would like to produce a planar embedding of the graph that minimizes the MDS or other
embedding objective. Thus, a natural question for such heterogeneous data that comprises of data points
characterized by features and by an underlying graph structure [?, ?] is how to optimize the embedding
criteria while minimizing the number of edge crossings in the embedded graph.

Figure 2 shows the visualization of planar spoligoforest for the LAM subfamilies of MTBC created by the
proposed approach and three widely-used graph drawing methods: (a) the proposed approach; (b) Graphviz
Neato - which is an FDP algorithm equivalent to MDS; and (c) Graphviz Twopi - a planar radial graph
algorithm (http://www.graphviz.org/). In (c), the radial graph is visually appealing but inaccurate because
genetically similar strains (represented by the same color sublineages) are placed far apart especially when the
graphs are disconnected. In (b), the distances between strains match the sublineage structure but there are
many edge crossings. The proposed approach in (a) represents distance correctly without any edge crossings
in the layout by optimizing the MDS embedding or dimensionality reduction objective with additional edge
cross penalties.

The key insight of the paper is that the condition that two edges do not cross is equivalent to the feasibility
of a system of nonlinear inequalities. In Section 2, we prove this using a theorem of the alternative: Farkas’
Theorem. The transformed system ensures that the two edges are separated by a linear hyperplane. Thus
the edge-crossing constraint reduces to a classification problem which is very closely related to support vector
machines (SVM). The system of inequalities can then be relaxed to create a natural penalty function for
each possible edge crossing. This non-negative function goes to zero if no edge crossings occur. This general
approach is applicable to the intersection of groups of convex polyhedrons including nodes represented as
boxes and edges represented as bars.

In Section 3, we explore how edge-crossing constraints can be added to stress majorization algorithms for
MDS/FDP. We develop an algorithm which simultaneously minimizes stress while eliminating or reducing
edge crossings using penalized stress majorization. The method solves a series of unconstrained nonlinear
programs in Matlab. We demonstrate the approach on a compelling problem in tuberculosis molecular epi-
demiology. The graphical results are shown for spoligoforests drawn using two different types of biomarkers.
Animations of the algorithm illustrating how the edge crossing penalty progressively transforms the graphs
are provided at www.cs.rpi.edu/ bennek/tbinsight/FinalCuts/.

2 Continuous Edge-Crossing Constraints

We show how edge-crossing constraints can be expressed as a system of nonlinear inequalities. Each point
on an edge can be represented as the convex combination of the extreme points of the edge. Consider edge
A with end points a = [ax ay] and c = [cx cy] and edge B with end points b = [bx by] and d = [dx dy]. The
matrices A and B contain the end or extreme points of the edges A and B respectively. Any point in the
intersection of edge A and B can be written as a convex combination of the extreme points of A and convex
combination of the extreme points of B. Therefore, two edges do not intersect if and only if the following
system of equations has no solution:

there exists no δA and δB such that A′δA = B′δB e′δA = 1 e′δB = 1 δA ≥ 0 δB ≥ 0 (1)

where e is a vector of ones and A =

[
ax ay
cx cy

]
and B =

[
bx by
dx dy

]
. The conditions that two given edges do

not cross, i.e. that (1) has no solution, are precisely characterized by using Farkas’ Theorem.

Theorem 1 (Conditions for no edge crossing). The edges A and B do not cross if and only if there exists
u, α and β,

such that Au ≥ αe Bu ≤ βe α− β > 0. (2)
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Allowing A and B to be of an arbitrary number of extreme points, the following corollary can be easily
proven to apply to intersections between convex polyhedrons expressed as a convex combination of their
extreme points.

Corollary 1 (Conditions for no intersection of two polyhedrons). Consider the polyhedrons A = {x|x =

A′δA, e
′δA = 1, δA ≥ 0} and B = {x|x = B′δB , e

′δB = 1, δB ≥ 0}. The polyhedrons do not intersect, A
⋂
B = ∅,

if and only if
there exists u and v such that Au+ γe ≥ 0 Bu+ γe ≤ −e (3)

Therefore, two edges (or more generally two polyhedrons) do not intersect if and only if

0 = min
u,v
||(−Au− eγ)+||qq + ||(Bu+ (1 + γ)e)+||qq where (z)+ = max(0, z) for q = 1 or q = 2. (4)

Much like soft-margin SVM classification, two edges (or more generally two polyhedrons) do not intersect
if and only if there exists a hyperplane that strictly separates the extreme points of A and B. If the edges do
not cross, then the optimal objective of (4) will be 0; while it will be strictly greater than 0 if the edges do
cross. As in SVM, (4) can be converted into a linear or quadratic program depending on the choice of q = 1
or q = 2 respectively. Figure 2 illustrates that the no-edge-crossing constraint corresponds to introducing a
separating hyperplane and requiring each edge to lie in opposite half spaces.

(a)

a

c

b

d xu+γ =−1
xu+γ =0

(b)

a

c

b

d

xu+γ =0

xu+γ =1

xu+γ =.5

Figure 1: In (a) Edge A from a to c and edge B from b to d do not cross. Any line between xu+ γ = 0 and
xu + γ = −1 strictly separates the edges. Using a soft margin, the plane in (b) xu + γ = 0.5 separates the
plane into half spaces that should contain each edge.

Using a penalty approach, edge crossing minimization can be incorporated into any optimization-based
embedding or graph drawing formulation. In this paper, we use the Kamada-Kawai stress, a weighted version
of MDS, with the addition of 1-norm edge crossing penalties, thus producing

min
X,u,γ

stress(X) +

m∑
i=1

ρi
2

[||(−Ai(X)ui − γi)+||1 + ||(Bi(X)ui + (1 + γi)e)+||1] (5)

where the penalties ρ ≥ 0, Xi is the position of the node i in the embedding and dij represents the distance
between nodes i and j, and stress(X) =

∑
i<j wij(||Xi−Xj ||−dij)2. The normalization constant wij = d−αij ,

α = 3 is used. The penalty approach provides an efficient mechanism for dealing with the large number of

potential edge crossings ( `(`−1)
2 for ` edges).

For each fixed value of ρ, Problem 5 is solved using an EM-like algorithm that alternates between
minimizing with respect to X and u. For the X phase, a modified version of “Stress Majorization” [?] is
used to optimize (5). The Matlab BFGS optimization algorithm “fminunc” is used to optimize a quadratic
upper bound on the stress plus the edge crossing penalties for a fixed u. In the u phase, the soft margin
separating plane (u) for each edge pair as defined byX is determined either by solving (4) or by an inexpensive
heuristic (boxes enclosing edges do not intersect). The penalties for crossed edges are driven higher until no
edge crossings exist or the problem converges; thus, most edge pairs have penalty parameter ρi = 0 since they
never cross. The initial solution X0 is calculated using classical multidimensional scaling via the cmdscale
command. This algorithm represents a preliminary effort to demonstrate the potential of the approach.
Many improvements are possible.
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3 Results

To demonstrate the performance of the approach, we return to the motivating application: visualization of
spoligoforests [?] created from DNA fingerprints of MTBC. We examine the visualization of spoligoforests
with distance matrices defined using spoligotype and MIRU for four problems as summarized in Table
1. For each problem, we present three visualizations of the spoligoforest drawn using: a) the proposed
approach that minimizes stress with edge-crossing penalties, (b) Graphviz Neato or stress majorization
with distances specified between all pairs of nodes or equivalently MDS [?], and (c) Graphviz Twopi that
produces radial layouts. In every case, the proposed method can dramatically reduce the edge crossings (to
zero in three of four cases), while making only minor changes in the total stress. The pictures produced are
more informative and accurate than those produced by all existing spoligoforest visualization software that
use Graphviz algorithms, including Twopi, that disregard genetic distances available in the heterogeneous
data (www.emi.unsw.edu.au/spolTools and tbinsight.cs.rpi.edu). The results reported were performed on a
Lenovo Thinkpad W500 laptop with 4GB RAM. The proposed approach can be used to dynamically remove
edge crossings in an existing graph. An animation of the proposed algorithm altering the initial MDS solution
can be viewed at www.cs.rpi.edu/ bennek/tbinsight/FinalCuts/.

Data
Number of Number of Neato EdgeCrossMin

Nodes Edges Stress # Edge cross Init. MDS stress Final stress Init. crossings Final crossings # iterations

LAMs 68 66 204.29 30 180.23 217.54 26 0 41
M. africanum 45 29 2 2 1.71 1.79 9 0 11
H, X, LAM 97 89 276.14 22 255.92 261.93 17 0 101

MIRUVNTRplus 197 124 1320 243 3525.10 1346.52 219 17 29

Table 1: Results of the proposed approach versus MDS/FDP using Neato on four MTBC spoligoforest
datasets.

4 Discussion

We developed a novel approach to simultaneously optimizing preservation of proximity relations and aesthetic
criteria for heterogeneous graph data by introducing a fundamentally new paradigm for elimination of edge
crossings in graph visualizations. This work demonstrates how edge-crossing constraints can be formulated
as a system of nonconvex constraints. Edges do not cross if and only if they can be strictly separated by a
hyperplane. If the edges cross, then the hyperplane defines the desired half-spaces that the edges should lie
within. The edge-crossing constraints can be transformed into a continuous edge-crossing penalty function
in either 1-norm or least-squares form. We developed a stress majorization algorithm with edge-crossing
penalties. Computational results demonstrate that this approach is quite practical and tractable. Continuous
optimization methods can be used to effectively find local solutions. Successful results were illustrated on
problems of the epidemiology of Tuberculosis that were not adequately addressed using existing graphing
approaches since they give undesirable results on disconnected graphs. Edge crossings can be eliminated by
making only small changes in the stress.

This work opens up many avenues for future research at the intersection of machine learning and data
visualization. Here we focused on elimination of edge crossings and FDP/MDS stress optimization. The
general approach is applicable to any optimization-based graph drawing, dimensionality reduction or em-
bedding methods [?, ?] used for data visualization in both supervised and unsupervised learning. Also,
the theorems and algorithms are directly applicable to the intersection of convex polygons in general within
embeddings of arbitrary dimensions. Thus, the method can also be used to eliminate node-node overlaps and
node-edge crossings. Our preliminary work was limited to planar graphs, but the penalty approach could be
used to reduce crossing in more general graphs. Since the edge-crossing constraints are very closely related
to linear SVM, all the different classification and regularization loss functions could be used to produce
crossing-penalty functions with different aesthetic effects (e.g. minimum margin separation) and algorithmic

4

http://www.emi.unsw.edu.au/spolTools/
http://www.cs.rpi.edu/~bennek/tbinsight/index.html
http://www.cs.rpi.edu/~bennek/tbinsight/FinalCuts/


ramifications. Our preliminary work used the Matlab function “fminunc” as its primary workhorse – which
inherently limits the problem size. In reality, there is a great potential for making highly scalable special
purpose algorithms for edge crossing constrained graph embeddings. The state-of-the-art linear SVM algo-
rithms which are massively scalable can potentially adapted to this problem as well. While the method was
motivated by heterogeneous graph data, it can be used to eliminate edge-crossing in any optimization-based
graph drawing algorithm. We leave these promising research directions as future work.
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5 Visualizations

(a)EdgeCrossMin

(b)Neato (c)Twopi

Figure 2: Visualization of LAM (Latin-American-Mediterranean) sublineages. In graph (c) drawn using
Twopi, the radial layout is visually appealing, but genetic distances between strains are not faithfully re-
flected. Graph (b), drawn using Neato preserves proximity relations but has edge-crossings. In graph (a),
the proposed approach eliminates all edge crossings with little change in the overall stress. Note how in
graph (a), the radial structure emerges when both distances and the graph structure are considered.
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(a)EdgeCrossMin

(b)Neato (c)Twopi

Figure 3: The M. africanum lineage is divided into two distinct sublineages. However, the distinction between
the two sublineage is not visible in the graph (c) produced using the radial graph drawing algorithm Twopi.
Graph (b), drawn using GraphViz Neato (stress majorization), clearly shows the separation but is difficult
to understand because of edge crossings. Graph (a) drawn using the proposed approach eliminates all edge
crossings with little change in the overall stress.
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(a)EdgeCrossMin

(b)Neato (c)Twopi

Figure 4: Graphs showing the Haarlem, X, and LAM sublineages of MTBC drawn with (a)EdgeCrossMin,
(b)Neato and (c)Twopi. The proposed method-EdgeCrossMin eliminates all edge crossings and shows the
most genetically relevant arrangements within the sublineages.
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(a)EdgeCrossMin

(b)Neato (c)Twopi

Figure 5: Visualization of strains from the MIRUVNTRplus database [?]. Graph (c), which does not
exploit the distances between all nodes, does not display the data in a genetically sensical manner for
disconnected components. The Neato graph (b) clearly shows the cohesiveness of the lineages, but the
spoligotype structure as represented by the graphs can be hard to follow. In (a), the graph with penalized
edge crossing, the spoligoforest is nicely displayed. Almost all edge crossings are eliminated. The few that
remain would cause great perturbations in the stress. The penalized edge-crossing function allows one to
trade off the degree of proximity preservation and edge crossing removal.
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