
Human-Readable Machine-Checkable

Abstract Reasoning about Actor Systems

David Musser and Carlos A. Varela

Rensselaer Polytechnic Institute
Computer Science Department Technical Report

{musser,cvarela}@cs.rpi.edu

Abstract. The actor model of distributed computing imposes important restrictions on
valid concurrent computations including fairness. We show that many properties of the
model can be expressed and proved at an abstract level, independently of the details of a
particular system of actors, in a logical framework in which proofs are both human-readable
and machine-checkable. The framework, Athena, is briefly overviewed, with emphasis on
its support for abstraction and specialization. A key contribution is the conceptual orga-
nization we develop: a richly structured hierarchy of formal theories that can be used to
represent and reason about actor systems. Within this conceptual framework, we iden-
tify and prove a number of useful abstract-level theorems, including persistence of actors,
preservation of unique actor identifiers, and general consequences of fairness. We also com-
bine the general actor theory with a concrete ticker and clock actor system to prove several
system-specific properties, including a progress theorem that depends on fairness.

1

1 Introduction and motivation

The actor model [9, 1] is useful both as a theoretical framework for reasoning about concurrent
computation [2, 12] and as a practical paradigm for building distributed systems [5, 13]. An actor
is simultaneously a unit of state encapsulation and a unit of concurrency, which makes it a natural
unit of distribution, mobility, and adaptivity in open systems [7]. Actors have unique names and
communicate via asynchronous message passing. In response to a message, an actor may change
its internal state, create new actors with a specified behavior, and/or send messages to other
actors.

Actor theories formalize computation as a labeled transition system between actor configura-
tions, where an actor configuration represents the potentially distributed state of a system at a
single logical point in time. Transitions between actor configurations specify the possible ways in
which an actor computation may evolve. The actor model imposes fairness on valid computation
sequences. Fairness means that if a transition (from an actor configuration) is infinitely often
enabled, the transition must eventually happen. Without fairness, it is not possible to reason
compositionally. An actor system correctness property (e.g., a web server always replying to a
client) would no longer hold when composed with another system (e.g., a denial of service attack),
since the computation may evolve as a sequence of transitions that consistently ignores the web
server actors.

Actor languages can use different models for representing sequential computation within an
actor. Agha, Mason, Smith, and Talcott (AMST) use the untyped call-by-value lambda calculus to
represent an actor’s internal state and its behavior [2], whereas Varela and Agha use an object’s
instance and class to represent an actor’s state and its behavior [13]. In this paper, we define
behavior within an actor with axioms on certain functions and relations on their local states.

While local state axioms are specific to a concrete actor system, it is desirable to describe
the way that actors send and receive messages more abstractly, so that one can derive general
theorems—ones that can be applied to many different actor systems—about properties such as
actor persistence, fairness, and infinitely-often-enabled transitions.

Let us illustrate the actor model using a simple example with two actors: Ticker, which
repeatedly sends tick messages to Clock, which, upon receipt of each tick increments an internal
counter representing a time value.

The unbounded nondeterminism property means that messages are eventually received but
there is no bound assumed on how many transitions may take place beforehand. In the context of
the ticker-clock example, we can rephrase unbounded nondeterminism as the property whereby
the clock may wait an arbitrarily long time (as measured by the number of accumulated ticks) to
receive a tick, but eventually it does and therefore makes progress in incrementing its own time
value.

Fairness is critical to proving this progress property, since without fairness, the ticker could
keep producing tick messages indefinitely without any of them being received by the clock. Yet, as
will be seen from the definitions of fair and infinitely-often enabled transitions in actor systems in
Section 4, we impose no bounds on responses to messages, so unbounded nondeterminism holds.

In this paper we demonstrate that abstract reasoning about actor systems, including issues of
fairness and other key properties such as actor persistence and preservation of uniqueness of actor
identities, can be carried out in a formalism that is both human-readable and machine-checkable.
The logical framework that makes this possible, Athena [4, 3], is briefly described in Section 2, with
emphasis on its support for abstraction and specialization. In Section 3 we begin the development

2

of the actor model at an abstract level, continuing in Section 4 with a general theory of fairness.
In terms of conceptual organization, our development carves out a richly structured hierarchy of
formal theories that can be used to represent and reason about actor systems. In Section 5, we
return to the ticker-clock example and apply a combination of the general actor theory and the
specifics of the example to prove several properties of the system, including a progress theorem
that depends on fairness. Section 6 discusses related work and concludes with thoughts on future
extensions of this work. Because of their length, most proofs are omitted from the main text but
appear in full in appendices .

2 Athena

Athena is interactive and programmable, with separate but intertwined languages for conven-
tional programming and “proof programming.” For conventional programming, the built-in com-
putational domains include not only the usual ones of most languages—booleans, numbers, and
strings—but also those typical of symbolic computation such as lists, terms and sentences of (first-
order, multisorted) logic, substitutions, etc. The principal mechanism for program composition
is the procedure call. Procedures are higher-order, i.e., they may take procedures as arguments
and return procedures as results.

The principal tool for constructing proofs is the method call. A method call represents an
inference step, and can be primitive or complex (derived). Like procedures, methods can accept
arguments of arbitrary types, including other methods and/or procedures, and thus are also
higher-order. Evaluation of a procedure call, if it does not raise an error or diverge, can result
in a value of any type, but evaluation of a method call—again, if it does not raise an error or
diverge—can result only in a theorem: a sentence of logic that is derived by inference from axioms
and other theorems.

While there are generally many ways to express a proof, an Athena method (or a stand-alone,
“straight-line” program in the proof language) is one such expression, and a key attribute of the
Athena proof language is that such expressions of proofs are not only machine-checkable but also
human-readable.1

1 Developing human-readable proofs has advantages and disadvantages in comparison with most ap-
proaches to mechanized theorem proving, which tend to be “black-box” to one degree or another. A
resolution-based prover accepts just a set of axioms and the negation of the sentence to be proved
and tries to find an inconsistency in a vast search space, which may take excessive time whether it
succeeds or not. If it does succeed, even if the time required is minutes or hours, the human who posed
the problem is relieved of having to work out the proof manually—a process which, after all, would
probably take much longer, if it succeeded at all, and would not carry the same assurance that none of
the thousands of details involved was mishandled. One the other hand, the proof found by a resolution
prover is virtually inaccessible to human understanding, so there is little insight gained from it or
carry-over benefit to other proof efforts. Even in the case of proofs developed more interactively and as
expressions of computation, as with Coq [10], HOL [8], Isabelle [11], and other “tactic-based” provers,
the proofs cannot really be understood without replaying them to obtain a transcript of the steps taken
toward deriving the theorem. One partial exception is Isabelle-ISAR, which does provide a much more
readable user-level language, but without the same kinds of programming aids that Athena provides,
and not entirely capable of suppressing the awkwardness, from a programmability standpoint, of the
underlying sequent-based tactics and tacticals. Note that in Athena the two approaches can be freely
mixed: the high-level skeleton of the proof (the important ideas) can be expressed in the language’s

3

The readability of Athena proofs rests mainly on the naturalness with which one can express
important proof methods. In part, this is due to a fundamental mechanism of Athena: its assump-

tion base. When a sentence is assumed or proved, it is entered into the assumption base, which is
a set of sentences that each of Athena’s primitive inference methods interacts with, checking one
or more of its inputs to see if they are present in the set and/or making new entries. For example,
mp is Athena’s version of the modus ponens inference rule: (!mp P Q) checks that both P and
Q are in the assumption base, and that P is an implication, (Q ⇒ R), with Q as its antecedent.
If these conditions are satisfied, then the consequent, R, of the implication is established as a
theorem and entered into the assumption base. If any of the conditions fails, an error is reported.
Modus ponens is one of Athena’s built-in inference rules that form the foundation of its reasoning
capability, but in most cases users do not need to invoke it directly. Instead, they will invoke
higher-level inference methods: equality and implication chaining, induction, case analysis, and
proof by contradiction. For a brief description of how Athena supports each of these methods, see
Appendix A. Athena facilities for abstraction and specialization are described next, since they
are crucial to our abstract-level approach to actor system proofs.

In Athena, one can introduce axioms and theorems at an abstract level via structured theo-

ries [14], as explained below. Proofs are encapsulated in parameterized methods that allow the
proofs to serve for proving theorems that are different specializations of an abstract theorem via
different renamings of function symbols. A library of algebraic theories that have been developed
as structured theories include semigroup, monoid, group, ring, integral domain, etc. Other theo-
ries collected in an Athena library include familiar relational theories: binary-relation, reflexive,
symmetric, transitive, preorder, strict weak order, total order, transitive closure, etc. A few of
these well-known algebraic and relational theories serve as building blocks for actor theories in
the development to be presented. Appendix B presents the relevant algebraic theories. The rela-
tional theories upon which we build actor theories are developed as successive structured theory

refinements ; see Figure 2.
In these definitions we use Athena’s theory procedure. Specifically,

(theory superiors axioms theory-name)

defines a structured theory with name theory-name, (new) axioms, and superiors—theories of
which the new theory is a direct refinement. The set of axioms of the theory so defined is the
union of new axioms and, recursively, the sets of axioms of the superiors. In Irreflexive there
is a single axiom, also named Irreflexive, and one superior, Binary-Relation.Theory, which
has no axioms. Strict-Partial-Order refines Irreflexive.Theory and Transitive.Theory,
and introduces no additional axiom.

The definition of Transitive-Closure.Theory refines an adapted theory,

[Strict-Partial-Order.Theory ’TC [R R+]],

which has the same axioms as Strict-Partial-Order but with R renamed as R+. These
adapted axioms can be referred to by compound names of the form [’TC s], where s is a
Strict-Partial-Order.Theory sentence. For example, from the Transitive axiom in Strict-

Partial-Order.Theory,

readable proof format, while lower-level details may be outsourced to ATPs. In this work we have
not made any use of external ATPs, although we have used some defined Athena methods (such as
implicational chaining) that perform certain limited forms of proof search.

4

module Binary-Relation {

declare R: (T) [T T] - > Boolean [100]

define Theory := (theory [] [] ’Binary-Relation)}

module Irreflexive {

open-module Binary-Relation

define Irreflexive := (forall ?x . ~ ?x R ?x)

define Theory := (theory [Binary-Relation .Theory]

[Irreflexive] ’Irreflexive)}

module Transitive {

open-module Binary-Relation

define Transitive := (forall ?x ?y ?z .

?x R ?y & ?y R ?z ==> ?x R ?z)

define Theory :=

(theory [Binary-Relation .Theory] [Transitive] ’Transitive)}

module Strict-Partial-Order {

open-module Irreflexive

open-module Transitive

define Theory :=

(theory [Irreflexive.Theory Transitive.Theory]

[] ’Strict-Partial-Order)}

module Transitive-Closure {

open-module Irreflexive

open-module Strict-Partial-Order

declare R+, R∗: (S) [S S] - > Boolean [100]

declare R∗∗: (S) [N S S] - > Boolean

define R**-zero :=

(forall ?x ?y . (R∗∗ z e r o ?x ?y) <==> ?x = ?y)

define R**-nonzero :=

(forall ?x ?n ?y .

(R∗∗ (S ?n) ?x ?y) <==>

(exists ?z . (R∗∗ ?n ?x ?z) & ?z R ?y))

define R+-definition :=

(forall ?x ?y . ?x R+ ?y <==>

(exists ?n . (R∗∗ (S ?n) ?x ?y)))

define R*-definition :=

(forall ?x ?y . ?x R∗ ?y <==> (exists ?n . (R∗∗ ?n ?x ?y)))

define Theory :=

(theory [Irreflexive.Theory

[Strict-Partial-Order.Theory ’TC [R R+]]]

[R**-zero R**-nonzero R+ -definition R*-definition]

’Transitive-Closure)

Fig. 1. Structured theory definitions. In symbol declarations the occurrence of a bracketed number such as
[100] specifies a precedence value. Symbol names (and program identifiers) may include special symbols,
so that R+ and R∗ are legal symbols.

5

(forall ?x ?y ?z . ?x R ?y & ?y R ?z ==> ?x R ?z)),

we obtain [’TC Transitive] as the name of the axiom

(forall ?x ?y ?z . ?x R+ ?y & ?y R+ ?z ==> ?x R+ ?z).

With Transitive-Closure.Theory’s other ancestor theory, Irreflexive. Theory, there is
no renaming, so its axiomwith the original R symbol is included. ThusTransitive-Closure.Theory
is defining axioms that relate the three operators R, R+ and R∗.

Although we regard the sentences listed in a theory as axioms, we do not assert them into the
assumption base. Instead, if we have proved that a homomorphic image of each of these sentences
is a theorem, then we will be able to use proof methods associated with the theory to prove new
theorems, rather than having to write their proofs for every structure that models the theory.

Figure 2 illustrates the refinement relation between the algebraic and relational theories and
the actor theory development to be presented.

3 An abstract actor framework

3.1 Configuration theory

We will define actor configurations as a refinement of a more abstract notion of configuration.
We first define a polymorphic configuration datatype, Cfg:

datatype (Cfg T) := Nu l l | (One T) | (++ (Cfg T) (Cfg T))

assert (structure-axioms "Cfg")

The assert enters into the assumption base a small standard set of axioms for the constructors
of the type, such as (forall ?x . Null =/= (One ?x)).

Next we define a configuration theory, Cfg. (Module, datatype, and theory names need not
be disjoint.)

module Cfg {

open-module Abelian-Monoid

declare i n : (T) [T (Cfg T)] - > Boolean

define Empty := (forall ?a . ~ ?a i n Nu l l)

define Self := (forall ?a ?b . ?a i n (One ?b) <==> ?a = ?b)

define Nonempty :=

(forall ?a ?s1 ?s2 . ?a i n (? s1 ++ ?s2) <==>

?a i n ?s1 | ?a i n ?s2)

define Theory :=

(theory [[Abelian-Monoid.Theory ’ ++ [+ ++ <0> Nu l l]]]

[Empty Self Nonempty] ’Cfg)

Thus, the axioms of Cfg theory include those of Abelian-Monoid,2 but adapted to use the
Cfg datatype’s ++ and Null constructors in place of + and <0>, respectively. Additionally, there
are axioms in the new theory defining an in (i.e., membership) predicate.

2 See Appendix B for our formulation of this theory by means of theory refinements.

6

Semigroup (Associativity)

Monoid

Identity Element

Abelian Monoid

Commutativity

Configuration

Actor Configuration

Transition Path

Transition Step Relation

Binary Relation

IrreflexiveTransitive

Strict Partial Order

Transitive Closure

Transition Path Relation

Transition Sequence

Infinitely Often Enabled Fair Transition Sequence

IOE Fair Transition Sequence

Fig. 2. Algebraic, Relational, and Actor Theories

7

Informally, we can think of a configuration as a sort of “soup” of components, with the ++

operator being the glue that holds the soup together, and the associative/commutative properties
reflecting the fact that components can be arbitrarily reordered within the soup [6].

The following theorems relating in to the One and ++ configuration constructors are useful as
lemmas in later proofs:

define Isolate1 := (forall ?s ?a . ?a i n ?s ==>

(exists ?s1 . ?s = ?s1 ++ (One ?a)))

define Isolate2 :=

(forall ?s ?a .

(exists ?s1 . ?s = ?s1 ++ (One ?a)) ==> ?a i n ?s)

define Together :=

(forall ?s ?s1 ?s2 ?a ?b .

?s = ?s1 ++ (One ?a) &

?s = ?s2 ++ (One ?b) &

?a =/= ?b

==> (exists ?s3 . ?s = ?s3 ++ (One ?a) ++ (One ?b)))}

The proof of each of these lemmas is by induction on configurations, with one basis case (for the
Null constructor) and two induction step cases (One and ++). For the ++ case, note that there are
two induction hypotheses available, corresponding to its left and right arguments: see Figure 3.

3.2 An actor configuration theory

We now define Actor-Cfg as a refinement of Cfg theory. Additional axioms for this theory
define a unique-ids predicate that can be used to require that no two actors in a configuration
have the same identifier.

module Actor-Cfg {

open-module Cfg

datatype (Actor Id State) :=

(a c t o r ’ Id State) | (message ’ Id Id Ide)

assert (structure-axioms "Actor-Cfg .Actor")

define a c t o r := lambda (id ls) (One (a c t o r ’ id ls))

define message := lambda (fr to c) (One (message ’ fr to c))

declare u n i q u e - i d s : (T) [(Cfg T)] - > Boolean

define uids-empty := (u n i q u e - i d s Nu l l)

define uids-nonempty :=

(forall ?s ?id ?ls .

(u n i q u e - i d s ?s ++ (a c t o r ?id ?ls)) <==>

~ (exists ? s ’ ? ls ’ . ?s = ? s ’ ++ (a c t o r ?id ? ls ’)))

define uids-ignore-messages :=

(forall ?s ?fr ?to ?c .

(u n i q u e - i d s ?s ++ (message ?fr ?to ?c)) <==>

(u n i q u e - i d s ?s))

define Theory :=

(theory [Cfg.Theory]

[uids-empty uids-nonempty uids-ignore-messages]

’Actor-Cfg)

8

| (s ’ ++ s ’ ’) =>

l e t {ind-hyp1 :=

(forall ?a .

?a i n s ’ ==> (exists ?s1 . s ’ = ?s1 ++ (One ?a)));

ind-hyp2 :=

(forall ?a .

?a i n s ’ ’ ==> (exists ?s1 . s ’ ’ = ?s1 ++ (One ?a)))}

pick-any a

assume A := (a i n (s ’ ++ s ’ ’))

l e t {B := (! chain-last

[A ==> (a i n s ’ | a i n s ’ ’) [Nonempty]])}

(! cases B

assume (a i n s ’)

l e t {B1 := (! chain-last

[(a i n s ’) ==>

(exists ?s1 . s ’ = ?s1 ++ (One a))

[ind-hyp1]])}

pick-witness s1 for B1 B1-witnessed

(! chain-last

[(s ’ ++ s ’ ’)

= ((s1 ++ (One a)) ++ s ’ ’) [B1-witnessed]

= ((s1 ++ s ’ ’) ++ (One a)) [++A ++C]

==> (exists ?s1 .

s ’ ++ s ’ ’ =

?s1 ++ (One a)) [existence]])

assume (a i n s ’ ’)

l e t {B2 := (! chain-last

[(a i n s ’ ’)

==> (exists ?s2 .

s ’ ’ = ?s2 ++ (One a))

[ind-hyp2]])}

pick-witness s2 for B2 B2-witnessed

(! chain-last

[(s ’ ++ s ’ ’)

= (s ’ ++ (s2 ++ (One a))) [B2-witnessed]

= ((s ’ ++ s2) ++ (One a)) [++A]

==> (exists ?s1 .

s ’ ++ s ’ ’ = ?s1 ++ (One a))

[existence]]))}

Fig. 3. A portion of the proof of Isolate1. ++A and ++C are defined as the associative and commutative
axioms for ++. This proof is representative of many of the actor systems proofs in its use of various
inference methods, including induction, case analysis, and equality and implication chaining. The full
proofs of the actor isolation lemmas are given in Appendix D.1.

9

In the Actor datatype, Id and State are type parameters, while Ide refers to a built-in identifier
type. Appendix D.2 presents and proves some useful theorems about consequences of assuming
the unique-ids predicate holds.

3.3 Transition path datatype and theory

We model dynamic changes to actor configurations in terms of transition paths. Syntactically,
transition paths are defined by the following datatype.

datatype (TP Id State) := Initial

| (r e c e i v e (TP Id State) Id State Id Ide)

| (send (TP Id State) Id Id Ide)

| (c r e a t e (TP Id State) Id Id State)

| (compute (TP Id State) Id State State)

assert (datatype-axioms "TP")

For the semantics of transition paths, we define Transition-Path theory:

module Transition-Path {

open-module Actor-Cfg

declare c o n f i g : (Id , State)

[(TP Id State)] - > (Cfg (Actor Id State))

declare a c c ep t : (Id , State , Sender)

[Id State Sender Ide] - > State

declare mak e - r e c e p t i v e : (State) [State] - > State

declare r e a d y - t o : (Id , State) [(TP Id State)] - > Boolean

define trans-receive :=

(forall ?T ?s ?id ?ls ?fr ?to ?c .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) ++

(message ?fr ?id ?c) &

(r e a d y - t o (r e c e i v e ?T ?id ?ls ?fr ?c))

==> (c o n f i g (r e c e i v e ?T ?id ?ls ?fr ?c)) =

?s ++ (a c t o r ?id (a c c ep t ?id ?ls ?fr ?c)))}

Additional axioms for the send, create , and compute transitions are given in Appendix D.3,
as are declarations and axioms for an Enabled predicate on transition paths and actors states
that characterizes when a transition can be taken. In terms of Enabled, we define a refinement
of Transition-Path.Theory named Transition-Step-Relation.Theory. The basic relation
defined is -->>, with axioms such as

define directly-leads-to-receive :=

(forall ?T0 ?T ?id ?ls ?fr ?c .

?T0 -- >> (r e c e i v e ?T ?id ?ls ?fr ?c)

==> ?T0 = ?T & (Enab led (r e c e i v e ?T0 ?id ?ls ?fr ?c)))

The theory thus defined is then combined withTransitive-Closure.Theory to derive aTransition-Path-Relation

theory that defines the irreflexive and reflexive transitive closures, -->>+ and -->>∗, of -->> (see
Appendix D.4).

10

3.4 Actor persistence and unique-ids persistence

The following theorems show that as transition paths are traversed, existing actors persist, and
so does uniqueness of actor id’s.

define actor-persistence :=

(forall ?T ?T0 ?s0 ?id ?ls0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r ?id ?ls0) &

?T0 -- >>∗ ?T &

(u n i q u e - i d s (c o n f i g ?T0))

==> (exists ?s ?ls . (c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls)))

define unique-ids-persistence :=

(forall ?T ?T0 .

(u n i q u e - i d s (c o n f i g ?T0)) & ?T0 -- >>∗ ?T

==> (u n i q u e - i d s (c o n f i g ?T)))

The proof of these theorems (see Appendix D.5) is by induction on transition paths. For each of
the basis case and the receive, send, create, and compute induction-step cases, the proof calls on
many of the axioms and theorems of superior theories.

4 Actor system fairness

We express fairness properties of actor systems in terms of transition sequences, which use natural
numbers to label subpaths from one point in a transition path to another in the same path. This
labeling is effected by a transition sequence function, ts .

module Transition-Sequence {

open-module Transition-Path-Relation

open-module N

declare t s : (Id , State) [(TP Id State) N] - > (TP Id State)

define ts-initial := (forall ?T . (t s ?T z e r o) = ?T)

define ts-directly-connected :=

(forall ?T ?n . (t s ?T ?n) -- >> (t s ?T (S ?n)))

define Theory :=

(theory [Transition-Path-Relation.Theory]

[ts-initial ts-directly-connected]

’Transition-Sequence)}

We first axiomatize infinitely-often-enabled transitions and fairness in separate refinements
of Transition-Sequence theory.

module Infinitely-Often-Enabled {

open-module Transition-Sequence

declare r e c e i v e r , s ende r , c r e a t o r , computer : (Id) [] - > Id

define ioe-receive :=

(forall ?T ?n ?s ?ls ?fr ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r r e c e i v e r ?ls) ++

(message ?fr r e c e i v e r ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?n) r e c e i v e r ?ls ?fr ?c))

11

==>

(t s ?T (S ?n)) = (r e c e i v e (t s ?T ?n) r e c e i v e r ?ls ?fr ?c)

| (exists ?k ? s ’ ? ls ’ .

?k > ?n & (c o n f i g (t s ?T ?k)) =

? s ’ ++ (a c t o r r e c e i v e r ? ls ’) ++

(message ?fr r e c e i v e r ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?k) r e c e i v e r ? ls ’ ?fr ?c))))}

ioe-receive states that if a receive transition is enabled at transition n in an actor transition
sequence, then either the receive is the next transition in the sequence, or there is a future point
in the sequence where receive is enabled again. This property is specific to a concrete actor
system and must be proved for each concrete system (see Appendix E.1 for the proof for the
ticker-clock system). For the remaining IOE axioms, see Appendix D.6.

module Fair-Transition-Sequence {

open-module Transition-Sequence

define fair-receive :=

(forall ?id ?T ?n ?s ?ls ?fr ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r ?id ?ls) ++

(message ?fr ?id ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?n) ?id ?ls ?fr ?c))

==>

(exists ?k ? s ’ ? ls ’ .

?k >= ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) ++

(message ?fr ?to ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?k) ?id ? ls ’ ?fr ?c)) &

(t s ?T (S ?k)) = (r e c e i v e (t s ?T ?k) ?id ? ls ’ ?fr ?c))

| ~ (exists ?k ? s ’ ? ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) =

? s ’ ++ (a c t o r ?id ? ls ’) ++ (message ?fr ?id ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?k) ?id ? ls ’ ?fr ?c))))}

fair-receive states that if a receive transition is enabled at transition n in an actor transition
sequence, then either the receive eventually happens or it becomes permanently disabled. We
have used this definition of fairness from Agha et al. [2]. Since fairness is a requirement of the
actor model, i.e., valid actor implementations must be fair, we regard fair-receive as an axiom.
Again, the remaining axioms are given in Appendix D.6.

Next, we define:

module IOE-Fair-Transition-Sequence {

open-module Infinitely-Often-Enabled

open-module Fair-Transition-Sequence

define Theory := (theory [Infinitely-Often-Enabled.Theory

Fair-Transition-Sequence.Theory]

[] ’IOE-Fair-Transition-Sequence)}

In this combined theory we can state and prove fairness theorems that are more convenient to
use in progress theorem proofs than working from the axioms:

12

extend-module IOE-Fair-Transition-Sequence {

define fair-receive-theorem :=

(forall ?T ?n ?s ?ls ?fr ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r r e c e i v e r ?ls) ++

(message ?fr r e c e i v e r ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?n) r e c e i v e r ?ls ?fr ?c))

==>

(exists ?m ? s ’ ? ls ’ .

?m >= ?n &

(c o n f i g (t s ?T ?m)) = ? s ’ ++ (a c t o r r e c e i v e r ? ls ’) ++

(message ?fr r e c e i v e r ?c) &

(r e a d y - t o (r e c e i v e (t s ?T ?m) r e c e i v e r ? ls ’ ?fr ?c)) &

(t s ?T (S ?m)) =

(r e c e i v e (t s ?T ?m) r e c e i v e r ? ls ’ ?fr ?c)))}

For corresponding theorems for send, create , and compute transitions, see Appendix D.7.

5 A concrete actor system example: ticker-clock

For the example of ticker and clock actors introduced in Section 1, we define:

module Clock-Actors {

open-module Transition-Path

domain Actor-Name

declare Ticke r , Clock1: Actor-Name ;

assert (Ti c k e r =/= Clock1)

datatype CLS := empty | (c l o c a l Actor-Name N)}

The empty and clocal constructors represent the local state of the Ticker and Clock1, respec-
tively. These actors’ behavior is defined by axioms, such as

assert a c c ep t :=

(forall ?t .

(a c c ep t C lock1 (c l o c a l C lock1 ?t) Ti c k e r ’tick) =

(c l o c a l C lock1 (S ?t)))

which defines how Clock1 responds to a tick message. For the other axioms, see Appendix E.
We now define a refinement of IOE-Fair-Transition-Sequence that specializes the tran-

sition sequence function and sender and receiver constants to those of the clock system.

module Fair-Clock-System {

open-module IOE-Fair-Transition-Sequence

open-module Clock-Actors

declare c t s : [(TP Actor-Name CLS) N] - > (TP Actor-Name CLS)

define CA := [t s c t s s e n d e r T i c k e r r e c e i v e r C lock1]

define Theory :=

(theory [[IOE-Fair-Transition-Sequence .Theory ’Clock CA]]

[] ’Fair-Clock-System)}

13

For fair transition sequences as defined by Fair-Clock-System, we have the following the-
orem:

define Clock1-progress :=

(forall ?t ?T:(TP Actor-Name CLS) ?n0 ?s0 ?ls0 ?t0 .

(c o n f i g (c t s ?T ?n0) =

?s0 ++ (a c t o r T i c k e r ?ls0) ++

(a c t o r C lock1 (c l o c a l C lock1 ?t0)) &

(u n i q u e - i d s (c o n f i g (c t s ?T ?n0)))

==> (exists ?n ?s ?ls ?u .

?n >= ?n0 &

(c o n f i g (c t s ?T ?n)) =

?s ++ (a c t o r T i c k e r ?ls) ++

(a c t o r C lock1 (c l o c a l C lock1 ?u)) &

?u >= ?t)

This theorem states that for any arbitrarily large time t the clock will eventually hold a value
u ≥ t. It is proved by induction on t. In the inductive step, one has to show that eventually Ticker

emits a tick message, and eventually Clock1 receives it and increments its internal counter. The
details (see Appendix E.2) depend crucially on the fair-send and fair-receive theorems, the
actor-persistence and unique-ids-persistence theorems, and, of course, the axiomatized
behavior of Ticker and Clock1.

6 Related work and conclusions

Inspiration for two aspects of our work—using abstraction in formulating actor theories with sub-
sequent specialization to concrete systems, and manipulating configurations using AC-rewriting—
came from the work of Talcott et al. in Maude [6]. Maude’s high level language and powerful AC
rewriting are the foundation of its system specification and model checking capabilities, but
Athena’s proof capabilities are more suitable for formulating the axioms, theorems, and proofs
we have developed. Exploring fairness, for example, was done in [6] based on a built-in “fair
rewriting” capability, frewrite, a breadth-first strategy for applying rules and equations. Our
expression of fairness is more fundamental and subject to many different implementation strate-
gies. Athena also provides general support for model checking, which we have yet to exploit. We
view it as a complementary tool, useful for testing specifications before attempting full proofs.
To date, we have only explored such testing in a limited way; see Appendix F for a sample se-
quence of transitions exercising the clock system, beginning with the clock creating the ticker and
continuing through several send and receive transitions.

Reasoning about the ticker-clock actor system to prove that the clock actually makes progress
requires application of many of the axioms and theorems developed in this paper. Indeed, the
detailed development of much of that theory was inspired by what was needed in the proofs about
the ticker-clock system, but formulating the needed axioms and theorems at an abstract level,
as we have done, makes them available for reasoning about many other actor systems. Human-
readability of proofs makes it possible to recognize repetitive patterns and develop methods that
encapsulate them, so that existing proofs can be shortened and future proof development sim-
plified. These methods can enable further formal reasoning about distributed system properties

14

such as information flow and fault tolerance.

Acknowledgment: The authors wish to thank Konstantine Arkoudas for many useful comments and

suggestions on earlier drafts of this paper.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.
2. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. Journal

of Functional Programming, 7:1–72, 1997.
3. K. Arkoudas. Athena. http://people.csail.mit.edu/kostas/dpls/athena.
4. K. Arkoudas. Specification, abduction, and proof. In F. Wang, editor, Second International Sympo-

sium on Automated Technology for Verification and Analysis (ATVA 2004), volume 3299 of LNCS,
pages 294–309. Springer-Verlag, 2004.

5. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Programming in
Erlang, Second Edition. Prentice-Hall, 1996.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All about
Maude—a high-performance logical framework: how to specify, program and verify systems in rewrit-
ing logic. Springer-Verlag, 2007.

7. T. Desell, K. E. Maghraoui, and C. A. Varela. Malleable applications for scalable high performance
computing. Cluster Computing, pages 323–337, June 2007.

8. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.

9. Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence,
8(3):323–364, 1977.

10. The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Ver-
sion 8.0.

11. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS 828.
12. C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic Compu-

tation, 11(3):281–343, 1998.
13. Carlos A. Varela and Gul Agha. Programming dynamically reconfigurable open systems with SALSA.

ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings, 36(12):20–34, De-
cember 2001.

14. Aytekin Vargun and David Musser. Code carrying theory. In SAC ’08 Proceedings of the 2008 ACM
symposium on applied computing, pages 376–383.

15

Appendices

A Athena proof methods

Assumption bases (introduced in Section 2) play a fundamental role in Athena proofs. Anyone
acquainted with the basics of how conventional programs are interpreted or compiled, manipu-
lation of the assumption base during proofs will seem familiar, because it is similar to the way
that the run-time stack is used to hold results of intermediate computations. As with the stack,
sentences may be added to the assumption base temporarily and later removed. An important
case is the construct

assume A

D

during whose evaluation A is added to the assumption base and remains present while evaluating
deductionD. IfD succeeds in proving a theorem C then the new sentence added to the assumption
base is (A ⇒ C), and A is removed.3 (A is also removed if D raises an error condition.) This
is logically sound because A was added to the assumption base only for the purpose of proving
(A ⇒ C), and validity of that sentence itself does not depend on A.

A.1 Equality and implication chaining

One of the most ubiquitous proof methods is proving equations by chaining together a sequence
of terms connected by equalities. In Athena, we can express such proofs with the chain method:

(!chain [t0 = t1 [J1] = t2 [J2] = · · · = tn [Jn]])

proves the equation t0 = tn, where each Ji is a justification for the preceding equality ti−1 = ti.
Each justification Ji must be a sentence—in this case a previously assumed or proved universally
quantified equality or conditional equality—or a method capable of proving ti−1 = ti.

4 Thus,
each justification that is a sentence must already be in the assumption base, and each one that
is a method must work with assumption base entries to prove the equality step.

One can also express implication chains with the chain method. To prove the implication
S0 ⇒ Sn, one can write a chain call

(!chain [S0 ⇒ S1 [J1] ⇒ S2 [J2] ⇒ · · · ⇒ Sn [Jn]])

where the Si are sentences and the justification Ji proves (Si−1 ⇒ Si). If S0 has already been
proved, the variant

(!chain-last [S0 ⇒ S1 [J1] ⇒ S2 [J2] ⇒ · · · ⇒ Sn [Jn]])

proves Sn.

3 For simplicity, we speak here of sentences being “added” or “removed” as if assumption bases were
stateful objects subject to destructive modification. In reality, assumption bases are functional. Thus,
for instance, the body of the assume deduction above is evaluated in a new assumption base, obtained
by augmenting the outer assumption base with the hypothesis A.

4 Actually, the justification can be a list of such sentences or methods which together justify the equality.
Also, in place of a sentence or method one can write an arbitrary Athena expression that evaluates to
it.

ii

A.2 Induction

For natural numbers, ordinary mathematical induction takes the form of dividing a proof of
(∀n. (P n)) into two cases: (i) (P 0) and (ii) (∀n. (P n) =⇒ (P n + 1)). Case (i) is called the
Basis Case, case (ii) is called the Induction Step, and within it (P n) is called the Induction

Hypothesis. Proof of the Basis Case and the Induction Step suffices, basically because every
natural number is either 0 or can be constructed from 0 by a finite number of increments by 1.
This property of natural numbers can be stated in Athena by defining natural numbers as the
following datatype:

datatype N := z e r o | (S N)

The symbols zero and S (“successor”) are called the constructors of N. Given this declaration, the
only ground terms allowed by Athena’s type system for N values are zero , (S zero), (S (S zero)),
etc. Furthermore, from this datatype declaration, Athena derives the usual natural number
induction principle and makes it available via its by-induction form. Schematically,

by-induction (forall ?n . P ?n) {

z e r o =>

conclude (P z e r o)

...

| (S n) =>

l e t {ind-hyp := (P n)}

conclude (P (S n))

...

}

Here we have given a name ind-hyp to the induction hypothesis (P n), but whether we name it
or not, it is available in the induction-step case (i.e., by-induction places it in the assumption
base) for use in the proof of (P (S n)).

More generally, Athena can extend by-induction to provide an induction principle based on
the form of constructors as given in any datatype declaration. An example only slightly more
complex than N is a list type defined by

datatype (List T) := n i l | (:: T (List T))

This defines a polymorphic datatype: T is a sort parameter, and (List T) is the sort of homo-
geneous lists of sort T elements; e.g., (List Boolean), (List N), (List (List N)), etc., are
separate sorts that share the nil and :: constructors. A use of the corresponding induction
principle might take the form:

by-induction (forall ?L ?x . (Q ?L ?x) {

n i l =>

conclude (forall ?x . (Q n i l ?x))

...

| (y :: L) =>

l e t {ind-hyp := (forall ?x . (Q L ?x))}

conclude (forall ?x . (Q (y :: L) ?x))

...

}

Note that the induction cases retain the universal quantification of variables other than the
induction variable.

Proofs of many of the properties of actor systems proceed by induction on transitions that
take an actor configuration to a new configuration. We obtain the appropriate induction principle
by defining transitions as a datatype and using the corresponding form of by-induction for the
proofs.

A.3 Case analysis

An induction proof is one important kind of case analysis, breaking a proof into one or more basis
cases (corresponding to datatype constructors that take no arguments of the type) and one or
more induction step cases (corresponding to constructors that take at least one argument of the
type). More generally, case analysis can be applied independently of a datatype, when we have
the same proof goal under each of several different assumptions whose disjunction is known to
cover all possibilities. For example, assuming the disjunction

(P1 | P2 | ... | Pn)

is in the assumption base, if we write

(! cases (P1 | P2 | ... | Pn)

assume P1

D1

assume P2

D2

...

assume Pn

Dn)

and fill in each of the Di deductions to conclude the same goal sentence Q, then Q is the result
of the entire cases deduction.

An important special case is just two disjuncts with one the negation of the other. We can
write

(! two-cases

assume A

D1

assume (~ A)

D2)

since it is equivalent to

(! cases (! ex-middle A)

assume A

D1

assume (~ A)

D2)

where (!ex-middle A) deduces (A | ~ A) for any sentence A. (Athena’s logic is classical.)

iv

A.4 Proof by contradiction

In Athena, the main form of a proof by contradiction is

(! by-contradiction P

assume (~ P)

D)

where D deduces false . Commonly, D obtains false with a call of the absurd method, of the
form

(! absurd Q R)

where Q and R have been deduced from (~ P) and other members of the assumption base and
R is the negation of Q.

Sometimes one does not need the negation of P to obtain the contradiction. Then one can
deduce P more simply with the from-complements method:

(! from-complements P Q R)

where R is the negation of Q.

A.5 Proofs at an abstract level

To introduce the way that abstract-level proofs can be encapsulated in a parameterized method,
let us state a couple of Transitive-Closure theorems, define a proof method that can prove any
adapted version of the theorems, and show how the theorem statement and proof method can be
incorporated into the Transitive-Closure theory.

extend-module Transitive-Closure {

define RR+-inclusion := (forall ?x ?y . ?x R ?y ==> ?x R+ ?y)

define TC-Transitivity1 :=

(forall ?x ?y ?z . ?x R+ ?y & ?y R ?z ==> ?x R+ ?z)

define theorems := [RR+-inclusion TC-Transitivity1]}

These are two of five Transitive-Closure theorems used in our actor theory development; see
Appendix C for the full set of theorems.

extend-module Transitive-Closure {

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

[R R+ R∗] := (adapt [R R+ R∗])}
match theorem {

(val-of RR+-inclusion) =>

pick-any x y

(! chain

[(x R y)

==> (x R y | (exists ?z . x R+ ?z & ? y ’ R y))

[alternate]

==> (x R+ y) [R+-definition]])

| (val-of TC-Transitivity1) =>

pick-any x y z

assume A := (x R+ y & y R z)

(! chain-last

[A ==> (exists ?y . x R+ ?y & ?y R z) [existence]

==> (x R z | (exists ?y . x R+ ?y & ?y R z))

[alternate]

==> (x R+ z) [R+ -definition]])

}

(evolve Theory [theorems proofs])}

The evolve procedure call extends the list of sentences associated with Transitive-Closure theory
to include these theorems and also records the proof method containing the corresponding proofs.
Having done so, we can at any time retrieve an instance one of the Transitive-Closure axioms or
theorems with Athena’s get-property procedure. In general, (get-property P adapt theory)
searches the theory refinement hierarchy for P, using theory as the starting point for the search.
The top-level axioms of theory are searched, followed by a recursive search of each of its superiors.
If get-property finds P it applies the adapt mapping to it and returns the result. It is an error
if the search ends without finding P, or if applying adapt results in an ill-typed sentence.

While get-property is just a procedure, there is a corresponding method—property, which
takes the same arguments and conducts the same search and adaptation—that tries to prove the
resulting sentence using the associated proof method.

The proof method introduces local, adapted versions of methods lemma, chain and chain-last,
and a procedure, given, which are handy tools for simplifying the way that external properties
can be cited in proof steps that need them. The lemmamethod simply calls the propertymethod,
passing it P (lemma’s argument), adapt (one of the enclosing proof method’s arguments), and the
theory to be used as the starting point for searches for P. Thus it finds the cited property in
the theory structure and proves the instance produced by applying adapt to it, using the proof
method that accompanies P.

The given procedure is similar but only retrieves the cited property; it is used in an abstract-
level proof when the property is known either to be an axiom of the theory or to have already
been proved using lemma (or property directly). Thus, in either case, the property is already in
the assumption base.

Lastly, the local definition of chain (and, if necessary, chain-last and chain-first) is
defined in terms of the predefined method chain-help, which tries to apply given to sentences in
chain justifications (if that fails, it uses the sentence itself). This is what allows one to write chain-
step justifications like [R+-definition] instead of the more verbose [(given R+-definition)]

or [(get-property R+-definition adapt Transitive-Closure.Theory)].

B Algebraic theories

The algebraic theories we build on for defining actor configurations are the following:

module Semigroup {

declare +: (T) [T T] - > T [200]

vi

define Associative := (forall ?x ?y ?z .

(?x + ?y) + ?z = ?x + (?y + ?z))

define Theory := (theory [] [Associative] ’Semigroup)}

module Identity {

open-module Semigroup

declare <0>: (T) [] - > T

define Left-Identity := (forall ?x . <0> + ?x = ?x)

define Right-Identity := (forall ?x . ?x + <0> = ?x)

define Theory :=

(theory [] [Left-Identity Right-Identity] ’Identity)}

module Monoid {

open-module Identity

define Theory :=

(theory [Semigroup.Theory Identity.Theory] [] ’Monoid)}

module Abelian-Monoid {

open-module Monoid

define Commutative := (forall ?x ?y . ?x + ?y = ?y + ?x)

define Theory :=

(theory [Monoid.Theory] [Commutative] ’Abelian-Monoid)}

C Transitive-Closure theory

The full definition of Transitive-Closure:

module Transitive-Closure {

open-module Irreflexive

open-module Strict-Partial-Order

declare R+, R∗: (S) [S S] - > Boolean [100]

declare R∗∗: (S) [N S S] - > Boolean

declare S0: (S) [] - > S

define R**-zero :=

(forall ?x ?y . (R∗∗ z e r o ?x ?y) <==> ?x = ?y)

define R**-nonzero :=

(forall ?x ?n ?y .

(R∗∗ (S ?n) ?x ?y) <==> (exists ?z . (R∗∗ ?n ?x ?z) & ?z R ?y))

define R+-definition :=

(forall ?x ?y . ?x R+ ?y <==> (exists ?n . (R∗∗ (S ?n) ?x ?y)))

define R*-definition :=

(forall ?x ?y . ?x R∗ ?y <==> (exists ?n . (R∗∗ ?n ?x ?y)))

define Theory :=

(theory

[Irreflexive.Theory

[Strict-Partial-Order.Theory ’TC [R R+]]]

[R**-zero R**-nonzero R+-definition R*-definition]

’Transitive-Closure)

define R**-sum :=

(forall ?n ?m ?x ?y ?z .

(R∗∗ ?m ?x ?y) & (R∗∗ ?n ?y ?z) ==> (R∗∗ (?m + ?n) ?x ?z))

define RR+-inclusion := (forall ?x ?y . ?x R ?y ==> ?x R+ ?y)

define R+R*-inclusion := (forall ?x ?y . ?x R+ ?y ==> ?x R∗ ?y)

define R+-lemma :=

(forall ?x ?y .

?x R+ ?y <==> ?x R ?y |

(exists ? y ’ . ?x R+ ? y ’ & ? y ’ R ?y))

define R*-lemma :=

(forall ?x ?y . ?x R∗ ?y <==> ?x = ?y | ?x R+ ?y)

define TC-Transitivity :=

(forall ?x ?y ?z . ?x R+ ?y & ?y R+ ?z ==> ?x R+ ?z)

define TC-Transitivity1 :=

(forall ?x ?y ?z . ?x R+ ?y & ?y R ?z ==> ?x R+ ?z)

define TC-Transitivity2 :=

(forall ?x ?y ?z . ?x R ?y & ?y R ?z ==> ?x R+ ?z)

define TC-Transitivity3 :=

(forall ?x ?y ?z . ?x R∗ ?y & ?y R∗ ?z ==> ?x R∗ ?z)

define theorems := [R**-sum TC-Transitivity RR+ -inclusion R+ R*-inclusion

R+-lemma R*-lemma TC-Transitivity1

TC-Transitivity2 TC-Transitivity3]

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

[R R+ R∗ R∗∗ S0] := (adapt [R R+ R∗ R∗∗ S0])}

match theorem {

(val-of R**-sum) =>

by-induction theorem {

z e r o =>

pick-any m x y z

l e t {A1 := (R∗∗ m x y);

A2 := (R∗∗ z e r o y z)}

assume (A1 & A2)

l e t {B := (! chain-last

[A2 ==> (y = z) [R**-zero]])}

(! chain-last

[A1 ==> (R∗∗ m x z) [B]

==> (R∗∗ (m + z e r o) x z) [N. Plu s .right-zero]])

| (S n) =>

l e t {ind-hyp := (forall ?m ?x ?y ?z .

(R∗∗ ?m ?x ?y) & (R∗∗ n ?y ?z) ==>

(R∗∗ (?m + n) ?x ?z))}

pick-any m x y z

l e t {A1 := (R∗∗ m x y);

A2 := (R∗∗ (S n) y z)}

viii

assume (A1 & A2)

l e t {B := (! chain-last

[A2 ==> (exists ? y ’ . (R∗∗ n y ? y ’) & ? y ’ R z)

[R**-nonzero]])}

pick-witness y ’ for B

l e t {B-w1 := (R∗∗ n y y ’);

B-w2 := (y ’ R z)}

(! chain-last

[(A1 & B-w1)

==> (R∗∗ (m + n) x y ’) [ind-hyp]

==> ((R∗∗ (m + n) x y ’) & B-w2) [augment]

==> (exists ? y ’ . (R∗∗ (m + n) x ? y ’) & ? y ’ R z)

[existence]

==> (R∗∗ (S (m + n)) x z) [R**-nonzero]

==> (R∗∗ (m + (S n)) x z) [N.Plu s . right-nonzero]])

}

| (val-of TC-Transitivity) =>

pick-any x y z

l e t {A1 := (x R+ y);

A2 := (y R+ z)}

assume (A1 & A2)

l e t {B1 := (! chain-last

[A1 ==> (exists ?m . (R∗∗ (S ?m) x y))

[R+-definition]]);

B2 := (! chain-last

[A2 ==> (exists ?n . (R∗∗ (S ?n) y z))

[R+-definition]]);

_ := (! lemma R**-sum)}

pick-witness m for B1 B1-w

pick-witness n for B2 B2-w

(! chain-last

[(B1-w & B2-w)

==> (R∗∗ ((S m) + (S n)) x z) [R**-sum]

==> (R∗∗ (S (m + (S n))) x z) [N.Plu s .left-nonzero]

==> (exists ?k . (R∗∗ (S ?k) x z)) [existence]

==> (x R+ z) [R+-definition]])

| (val-of RR+-inclusion) =>

pick-any x y

(! chain

[(x R y)

==> (x = x & x R y) [augment]

==> ((R∗∗ z e r o x x) & x R y) [R**-zero]

==> (exists ? x ’ . (R∗∗ z e r o x ? x ’) & ? x ’ R y) [existence]

==> (R∗∗ (S ze r o) x y) [R**-nonzero]

==> (exists ?k . (R∗∗ (S ?k) x y)) [existence]

==> (x R+ y) [R+-definition]])

| (val-of R+-lemma) =>

pick-any x y

(! equiv

assume A := (x R+ y)

l e t {B :=

(! chain-last

[A ==> (exists ?k . (R∗∗ (S ?k) x y)) [R+ -definition]])}

pick-witness k for B B-w

l e t {C := (! chain-last

[B-w ==> (exists ? x ’ . (R∗∗ k x ? x ’) & ? x ’ R y)

[R**-nonzero]])}

pick-witness x ’ for C C-w

(! two-cases

assume D := (k = z e r o)

l e t {E :=

(! chain-last

[C-w ==> ((R∗∗ z e r o x x ’) & x ’ R y) [D]

==> (R∗∗ z e r o x x ’) [left-and]

==> (x = x ’) [R**-zero]])}

(! chain-last

[C-w ==> (x ’ R y) [right-and]

==> (x R y) [(x = x ’)]

==> (x R y | (exists ? y ’ . x R+ ? y ’ & ? y ’ R y))

[alternate]])

assume D := (k =/= z e r o)

l e t {E :=

(! chain-last

[D ==> (exists ? k ’ . k = (S ? k ’)) [N.nonzero-S]])}

pick-witness k ’ for E E-w

l e t {F :=

(! chain-last

[C-w ==> (x ’ R y) [right-and]])}

(! chain-last

[C-w ==> ((R∗∗ (S k ’) x x ’) & x ’ R y) [E-w]

==> (R∗∗ (S k ’) x x ’) [left-and]

==> (exists ? k ’ . (R∗∗ (S ? k ’) x x ’))

[existence]

==> (x R+ x ’) [R+ -definition]

==> (x R+ x ’ & F) [augment]

==> (exists ? x ’ . x R+ ? x ’ & ? x ’ R y) [existence]

==> (x R y | (exists ? x ’ . x R+ ? x ’ & ? x ’ R y))

[alternate]]))

assume A := (x R y | (exists ? y ’ . x R+ ? y ’ & ? y ’ R y))

l e t {RRI := (! lemma RR+-inclusion)}

(! cases A

(! chain [(x R y) ==> (x R+ y) [RRI]])

assume B := (exists ? y ’ . x R+ ? y ’ & ? y ’ R y)

pick-witness y ’ for B B-w

l e t {C :=

(! chain-last

[B-w ==> (x R+ y ’) [left-and]

==> (exists ?k . (R∗∗ (S ?k) x y ’)) [R+ -definition]])}

pick-witness k for C C-w

(! chain-last

x

[C-w ==> ((R∗∗ (S k) x y ’) & y ’ R y) [augment]

==> (exists ? y ’ . (R∗∗ (S k) x ? y ’) & ? y ’ R y)

[existence]

==> (R∗∗ (S (S k)) x y) [R**-nonzero]

==> (exists ?k . (R∗∗ (S ?k) x y)) [existence]

==> (x R+ y) [R+-definition]])))

| (val-of R*-lemma) =>

pick-any x:(sort-of S0) y:(sort-of S0)

(! equiv

assume A := (x R∗ y)

l e t {B := (! chain-last

[A ==> (exists ?n . (R∗∗ ?n x y)) [R*-definition]])}

pick-witness n for B B-w

(! two-cases

assume C1 := (n = z e r o)

(! chain-last

[B-w ==> (R∗∗ z e r o x y) [C1]

==> (x = y) [R**-zero]

==> (x = y | x R+ y) [alternate]])

assume C2 := (n =/= z e r o)

l e t {D := (! chain-last [C2 ==> (exists ?m . n = S ?m)

[N. nonzero-S]])}

pick-witness m for D D-w

(! chain-last

[B-w ==> (R∗∗ (S m) x y) [D-w]

==> (exists ?m . (R∗∗ (S ?m) x y)) [existence]

==> (x R+ y) [R+ -definition]

==> (x = y | x R+ y) [alternate]]))

assume A := (x = y | x R+ y)

(! cases A

assume A1 := (x = y)

(! chain-last

[A1 ==> (R∗∗ z e r o x y) [R**-zero]

==> (exists ?n . (R∗∗ ?n x y)) [existence]

==> (x R∗ y) [R*-definition]])

assume A2 := (x R+ y)

l e t {B :=

(! chain-last

[A2 ==> (exists ?n . (R∗∗ (S ?n) x y))

[R+-definition]])}

pick-witness n for B B-w

(! chain-last

[B-w ==> (exists ?k . (R∗∗ ?k x y)) [existence]

==> (x R∗ y) [R*-definition]])))

| (val-of R+R*-inclusion) =>

l e t {R*L := (! lemma R*-lemma)}

pick-any x y

(! chain

[(x R+ y)

==> (x = y | x R+ y) [alternate]

==> (x R∗ y) [R*L]])

| (val-of TC-Transitivity1) =>

pick-any x y z

l e t {A1 := (x R+ y);

A2 := (y R z);

R+L := (! lemma R+-lemma)}

assume (A1 & A2)

(! chain-last

[(A1 & A2)

==> (exists ?y . x R+ ?y & ?y R z) [existence]

==> (x R z | (exists ?y . x R+ ?y & ?y R z))

[alternate]

==> (x R+ z) [R+L]])

| (val-of TC-Transitivity2) =>

pick-any x y z

l e t {A1 := (x R y);

A2 := (y R z);

RR+I := (! lemma RR+-inclusion)}

assume (A1 & A2)

(! chain-last

[A1 ==> (x R+ y) [RR+I]

==> (x R+ y & A2) [augment]

==> (x R+ y & y R+ z) [RR+I]

==> (x R+ z) [(given [’TC Transitive])]])

| (val-of TC-Transitivity3) =>

pick-any x:(sort-of S0) y:(sort-of S0) z:(sort-of S0)

l e t {A1 := (x R∗ y);

A2 := (y R∗ z);

RRI := (! lemma R+R*-inclusion);

R*L := (! lemma R*-lemma)}

assume (A1 & A2)

l e t {B1 := (! chain-last

[A1 ==> (x = y | x R+ y) [R*L]]);

B2 := (! chain-last

[A2 ==> (y = z | y R+ z) [R*L]])}

(! cases B1

assume C1 := (x = y)

(! cases B2

assume D1 := (y = z)

(! chain-last

[x = y [C1] = z [D1]

==> (x = z | x R+ z) [alternate]

==> (x R∗ z) [R*L]])

assume D2 := (y R+ z)

(! chain-last

[D2 ==> (x R+ z) [C1]

==> (x R∗ z) [RRI]]))

assume C2 := (x R+ y)

(! cases B2

assume D1 := (y = z)

xii

(! chain-last

[C2 ==> (x R+ z) [D1]

==> (x R∗ z) [RRI]])

assume D2 := (y R+ z)

(! chain-last

[D2 ==> (C2 & D2) [augment]

==> (x R+ z) [TC-Transitivity]

==> (x = z | x R+ z) [alternate]

==> (x R∗ z) [R*L]])))

}

(evolve Theory [theorems proofs])

}

D Additional theory and proofs

D.1 Proofs of configuration lemmas

In addition to the isolation lemmas and Together, we also have:

extend-module Cfg {

define More-Together :=

(forall ?s ?s1 ?s2 ?a ?b ?c .

?s = ?s1 ++ (One ?a) &

?s = ?s2 ++ (One ?b) ++ (One ?c) &

?a =/= ?b & ?a =/= ?c

==> (exists ?s3 .

?s = ?s3 ++ (One ?a) ++ (One ?b) ++ (One ?c)))}

extend-module Cfg {

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative]);

left-Null := (given [’ ++ Left-Identity])}

match theorem {

(val-of Isolate1) =>

by-induction theorem {

Nu l l =>

pick-any a

assume (a i n Nu l l)

(! from-complements

(exists ?s1 . Nu l l = ?s1 ++ (One a))

(a i n Nu l l)

(! chain-last [t r u e ==> (~ a i n Nu l l) [Empty]]))

| (One b) =>

pick-any a

assume (a i n (One b))

l e t {B := (! chain-last

[(a i n (One b))

==> (a = b) [Self]])}

(! chain-last

[(One b)

= (Nu l l ++ (One b)) [left-Null]

= (Nu l l ++ (One a)) [B]

==> (exists ?s1 . (One b) = ?s1 ++ (One a))

[existence]])

| (s ’ ++ s ’ ’) =>

l e t {ind-hyp1 :=

(forall ?a .

?a i n s ’ ==> (exists ?s1 .

s ’ = ?s1 ++ (One ?a)));

ind-hyp2 :=

(forall ?a .

?a i n s ’ ’ ==> (exists ?s1 .

s ’ ’ = ?s1 ++ (One ?a)))}

pick-any a

assume A := (a i n (s ’ ++ s ’ ’))

l e t {B := (! chain-last

[A ==> (a i n s ’ | a i n s ’ ’) [Nonempty]])}

(! cases B

assume (a i n s ’)

l e t {B1 :=

(! chain-last

[(a i n s ’) ==>

(exists ?s1 . s ’ = ?s1 ++ (One a))

[ind-hyp1]])}

pick-witness s1 for B1 B1-witnessed

(! chain-last

[(s ’ ++ s ’ ’)

= ((s1 ++ (One a)) ++ s ’ ’) [B1-witnessed]

= ((s1 ++ s ’ ’) ++ (One a)) [++A ++C]

==> (exists ?s1 .

s ’ ++ s ’ ’ =

?s1 ++ (One a)) [existence]])

assume (a i n s ’ ’)

l e t {B2 :=

(! chain-last

[(a i n s ’ ’)

==> (exists ?s2 .

s ’ ’ = ?s2 ++ (One a))

[ind-hyp2]])}

pick-witness s2 for B2 B2-witnessed

(! chain-last

xiv

[(s ’ ++ s ’ ’)

= (s ’ ++ (s2 ++ (One a))) [B2-witnessed]

= ((s ’ ++ s2) ++ (One a)) [++A ++C]

==> (exists ?s1 .

s ’ ++ s ’ ’ = ?s1 ++ (One a))

[existence]]))}

| (val-of Isolate2) =>

pick-any s a

assume A := (exists ?s1 . s = ?s1 ++ (One a))

pick-witness s1 for A A-witnessed

(! chain-last

[(a = a)

==> (a i n (One a)) [Self]

==> (a i n s1 | a i n (One a)) [alternate]

==> (a i n (s1 ++ (One a))) [Nonempty]

==> (a i n s) [A-witnessed]])

| (val-of Together) =>

pick-any s:(Cfg ’T) s1 s2 a b

l e t {A1 := (s = s1 ++ (One a));

A2 := (s = s2 ++ (One b));

A3 := (a =/= b)}

assume (A1 & A2 & A3)

l e t {I2 := (! lemma Isolate2);

B :=

(! chain-last

[A1 ==> (exists ?s1 . s = ?s1 ++ (One a)) [existence]

==> (a i n s) [I2]

==> (a i n (s2 ++ (One b))) [A2]

==> (a i n s2 | a i n (One b)) [Nonempty]]);

goal := (exists ?s3 . s = ?s3 ++ (One a) ++ (One b))}

(! cases B

assume (a i n s2)

l e t {I1 := (! lemma Isolate1);

C :=

(! chain-last

[(a i n s2)

==> (exists ?s3 . s2 = ?s3 ++ (One a)) [I1]])}

pick-witness s3 for C C-witnessed

(! chain-last

[s = (s2 ++ (One b)) [A2]

= ((s3 ++ (One a)) ++ (One b)) [C-witnessed]

= (s3 ++ (One a) ++ (One b)) [++A]

==> goal [existence]])

assume D := (a i n (One b))

(! from-complements goal

(! chain-last [D ==> (a = b) [Self]])

A3))

| (val-of More-Together) =>

pick-any s:(Cfg ’T) s1 s2 a b c

l e t {A1 := (s = s1 ++ (One a));

A2 := (s = s2 ++ (One b) ++ (One c));

A3 := (a =/= b);

A4 := (a =/= c)}

assume (A1 & A2 & A3 & A4)

l e t {I2 := (! lemma Isolate2);

B :=

(! chain-last

[A1 ==> (exists ?s1 . s = ?s1 ++ (One a)) [existence]

==> (a i n s) [I2]

==> (a i n (s2 ++ (One b) ++ (One c))) [A2]

==> (a i n s2 | a i n ((One b) ++ (One c)))

[Nonempty]]);

goal := (exists ?s3 .

s = ?s3 ++ (One a) ++ (One b) ++ (One c))}

(! cases B

assume (a i n s2)

l e t {I1 := (! lemma Isolate1);

C :=

(! chain-last

[(a i n s2)

==> (exists ?s3 . s2 = ?s3 ++ (One a)) [I1]])}

pick-witness s3 for C C-witnessed

(! chain-last

[s = (s2 ++ (One b) ++ (One c)) [A2]

= ((s3 ++ (One a)) ++ (One b) ++ (One c))

[C-witnessed]

= (s3 ++ (One a) ++ (One b) ++ (One c)) [++A]

==> goal [existence]])

assume D := (a i n ((One b) ++ (One c)))

l e t {E := (! chain-last

[D ==> (a i n (One b) | a i n (One c))

[Nonempty]])}

(! cases E

assume E1 := (a i n (One b))

(! from-complements goal

(! chain-last [E1 ==> (a = b) [Self]])

A3)

assume E2 := (a i n (One c))

(! from-complements goal

(! chain-last [E2 ==> (a = c) [Self]])

A4)))}}

D.2 Theorems about actor configurations

extend-module Cfg {

define unique-ids1 :=

(forall ?s ?s1 ?s2 ?id1 ?ls1 ?id2 ?ls2 .

(u n i q u e - i d s ?s) &

xvi

?s = ?s1 ++ (a c t o r ?id1 ?ls1) &

?s = ?s2 ++ (a c t o r ?id2 ?ls2) &

?id1 = ?id2

==> ?ls1 = ?ls2)

define unique-ids2 :=

(forall ?id1 ?ls1 ?id2 ?ls2 .

?id1 =/= ?id2 ==> (a c t o r ’ ?id1 ?ls1) =/= (a c t o r ’ ?id2 ?ls2))

define proofs :=

method (theorem adapt)

l e t {given := lambda (P)

(get-property P adapt Theory);

lemma := method (P)

(! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative])}

match theorem {

(val-of unique-ids1) =>

pick-any s:(Cfg (Actor ’Id ’LS)) s1 s2 id1 ls1 id2 ls2

l e t {A1 := (u n i q u e - i d s s);

A2 := (s = s1 ++ (a c t o r id1 ls1));

A3 := (s = s2 ++ (a c t o r id2 ls2));

A4 := (id1 = id2)}

assume (A1 & A2 & A3 & A4)

(! by-contradiction (ls1 = ls2)

assume (ls1 =/= ls2)

l e t {CI := (! constructor-injectivity a c t o r ’);

B1 :=

(! by-contradiction

((a c t o r ’ id1 ls1) =/= (a c t o r ’ id2 ls2))

assume C1 := ((a c t o r ’ id1 ls1) =

(a c t o r ’ id2 ls2))

(! absurd

(! chain-last

[C1 ==> (id1 = id2 & ls1 = ls2) [CI]

==> (ls1 = ls2) [right-and]])

(ls1 =/= ls2)));

T := (! lemma Together);

B2 := (! chain-last

[(A2 & A3 & B1)

==> (exists ?s3 .

s = ?s3 ++ (a c t o r id1 ls1) ++

(a c t o r id2 ls2)) [T]])}

pick-witness s3 for B2 B2-w

l e t {s4 := (s3 ++ (a c t o r id1 ls1));

C1 := (! chain-last

[A1 ==>

(u n i q u e - i d s s3 ++ (a c t o r id1 ls1) ++

(a c t o r id1 ls2))

[B2-w A4]

==> (u n i q u e - i d s s4 ++ (a c t o r id1 ls2))

[++A]

==> (~ (exists ? s ’ ? ls ’ .

s4 = ? s ’ ++ (a c t o r id1 ? ls ’)))

[uids-nonempty]]);

C2 := (! chain-last

[(s4 = s4)

==> (exists ? s ’ ? ls ’ .

s4 = ? s ’ ++ (a c t o r id1 ? ls ’))

[existence]])}

(! absurd C2 C1))

| (val-of unique-ids2) =>

pick-any id1 ls1 id2 ls2

assume A := (id1 =/= id2)

(! by-contradiction

((a c t o r ’ id1 ls1) =/= (a c t o r ’ id2 ls2))

assume B := ((a c t o r ’ id1 ls1) = (a c t o r ’ id2 ls2))

l e t {CI := (! constructor-injectivity a c t o r ’)}

(! absurd

(! chain-last [B ==> (id1 = id2 & ls1 = ls2) [CI]

==> (id1 = id2) [left-and]])

A))

} # match theorem

(evolve Theory [[unique-ids1 unique-ids2] proofs])

} # module Actor-Cfg

D.3 Transition-Path axioms

Continuing the definition of Transition-Path theory, begun in Section 3.3:

extend-module Transition-Path {

define trans-send :=

(forall ?T ?s ?id ?ls ?to ?c .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (send ?T ?id ?to ?c))

==>

(c o n f i g (send ?T ?id ?to ?c)) =

?s ++ (a c t o r ?id (mak e - r e c e p t i v e ?ls))

++ (message ?id ?to ?c))

define trans-create :=

(forall ?T ?s ?id ?ls ?new-id ?new-ls .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (c r e a t e ?T ?id ?new-id ?new-ls)) &

(u n i q u e - i d s (c o n f i g ?T) ++ (a c t o r ?new-id ?new-ls))

xviii

==>

(c o n f i g (c r e a t e ?T ?id ?new-id ?new-ls)) =

?s ++ (a c t o r ?id (mak e - r e c e p t i v e ?ls))

++ (a c t o r ?new-id ?new-ls))

define trans-compute :=

(forall ?T ?s ?id ?ls ?new-ls .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (compute ?T ?id ?ls ?new-ls))

==>

(c o n f i g (compute ?T ?id ?ls ?new-ls)) =

?s ++ (a c t o r ?id ?new-ls))

define Theory :=

(theory [Actor-Cfg.Theory]

[trans-receive trans-send trans-create trans-compute]

’Transition-Path)}

The preconditions under which each kind of transition is enabled are also expressed with the
following Enabled predicate.

extend-module Transition-Path {

declare Enab led : (Id , State) [(TP Id State)] - > Boolean

define enabled-Initial := (Enab led Initial)

define enabled-receive :=

(forall ?T ?id ?ls ?fr ?c .

(Enab led (r e c e i v e ?T ?id ?ls ?fr ?c)) <==>

(Enab led ?T) &

(exists ?s .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) ++

(message ?fr ?id ?c) &

(r e a d y - t o (r e c e i v e ?T ?id ?ls ?fr ?c))))

define enabled-send :=

(forall ?T ?fr ?to ?c .

(Enab led (send ?T ?fr ?to ?c)) <==>

(Enab led ?T) &

(exists ?s ?ls .

(c o n f i g ?T) = ?s ++ (a c t o r ?fr ?ls) &

(r e a d y - t o (send ?T ?fr ?to ?c))))

define enabled-create :=

(forall ?T ?id ?new-id ?new-ls .

(Enab led (c r e a t e ?T ?id ?new-id ?new-ls)) <==>

(Enab led ?T) &

(exists ?s ?ls .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (c r e a t e ?T ?id ?new-id ?new-ls)) &

(u n i q u e - i d s (c o n f i g ?T) ++ (a c t o r ?new-id ?new-ls))))

define enabled-compute :=

(forall ?T ?id ?ls ?new-ls .

(Enab led (compute ?T ?id ?ls ?new-ls)) <==>

(Enab led ?T) &

(exists ?s .

(c o n f i g ?T) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (compute ?T ?id ?ls ?new-ls))))

(evolve Theory

[[enabled-Initial enabled-receive enabled-send

enabled-create enabled-compute] Axiom])}

D.4 Transition Relations

For defining fairness in actor systems, it is useful to introduce a binary predicate, -->>, on
transition paths, as axiomatized in the following Transition-Step-Relation theory:

module Transition-Step-Relation {

declare -- >>: (Id , State)

[(TP Id State) (TP Id State)] - > Boolean

define directly-leads-to-receive :=

(forall ?T0 ?T ?id ?ls ?fr ?c .

?T0 -- >> (r e c e i v e ?T ?id ?ls ?fr ?c)

==> ?T0 = ?T & (Enab led (r e c e i v e ?T0 ?id ?ls ?fr ?c)))

define directly-leads-to-send :=

(forall ?T0 ?T ?fr ?to ?c .

?T0 -- >> (send ?T ?fr ?to ?c)

==> ?T0 = ?T & (Enab led (send ?T0 ?fr ?to ?c)))

define directly-leads-to-create :=

(forall ?T0 ?T ?id ?new-id ?new-ls .

?T0 -- >> (c r e a t e ?T ?id ?new-id ?new-ls)

==> ?T0 = ?T & (Enab led (c r e a t e ?T0 ?id ?new-id ?new-ls)))

define directly-leads-to-compute :=

(forall ?T0 ?T ?id ?ls ?new-ls .

?T0 -- >> (compute ?T ?id ?ls ?new-ls)

==> ?T0 = ?T & (Enab led (compute ?T0 ?id ?ls ?new-ls)))

define Theory :=

(theory [Transition-Path.Theory]

[directly-leads-to-receive directly-leads-to-send

directly-leads-to-create directly-leads-to-compute]

’Transition-Step-Relation)}

Given the relation -->>, it is natural to consider its irreflexive and reflexive transitive closures,
-->>+ and -->>∗, respectively:

module Transition-Path-Relation {

open-module Transition-Step-Relation

open-module Transitive-Closure

declare -- >>+, -- >>∗: (Id , State)

[(TP Id State) (TP Id State)] - > Boolean

define nothing-leads-to-Initial :=

(forall ?T . ~ (?T -- >>+ Initial))

define Theory :=

(theory [Transition-Step-Relation.Theory

[Transitive-Closure .Theory

xx

’-- >> [R -- >> R+ -- >>+ R∗ -- >>∗]]]
[nothing-leads-to-Initial]

’Transition-Path-Relation)

The following theorems relating -->>+ and -->>∗ are used in the proof of the actor and
unique-ids persistence theorems in Section 3.4.

define leads-to-receive :=

(forall ?T0 ?T ?id ?ls ?fr ?c .

?T0 -- >>+ (r e c e i v e ?T ?id ?ls ?fr ?c)

==>

(?T0 -- >>∗ ?T & (Enab led (r e c e i v e ?T ?id ?ls ?fr ?c))))

define leads-to-send :=

(forall ?T0 ?T ?fr ?to ?c .

?T0 -- >>+ (send ?T ?fr ?to ?c)

==>

?T0 -- >>∗ ?T & (Enab led (send ?T ?fr ?to ?c)))

define leads-to-create :=

(forall ?T0 ?T ?id ?new-id ?new-ls .

?T0 -- >>+ (c r e a t e ?T ?id ?new-id ?new-ls)

==>

?T0 -- >>∗ ?T & (Enab led (c r e a t e ?T ?id ?new-id ?new-ls)))

define leads-to-compute :=

(forall ?T0 ?T ?id ?ls ?new-ls .

?T0 -- >>+ (compute ?T ?id ?ls ?new-ls)

==>

?T0 -- >>∗ ?T & (Enab led (compute ?T ?id ?ls ?new-ls)))

define theorems := [leads-to-receive leads-to-send

leads-to-create leads-to-compute]

The proofs of these theorems are similar enough that we can take further advantage of Athena’s
programmability to define a single parameterized method that can be called with appropriate
arguments to prove each theorem.

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain-last := method (L) (! chain-help given L ’last);

RR*I := (! lemma [’-- >> R+ R*-inclusion]);

R+D := (given [’-- >> R+ -definition]);

R*D := (given [’-- >> R*-definition]);

proof :=

method (step T0 T directly)

assume A := (T0 -- >>+ (step T))

l e t {B1 := (! chain-last

[A ==>

(T0 -- >> (step T) |

(exists ?T1 .

T0 -- >>+ ?T1 &

?T1 -- >> (step T))) [R+D]])}

(! cases B1

assume C1 := (T0 -- >> (step T))

l e t {(and D1 D2) :=

(! chain-last

[C1 ==> (T0 = T &

(Enab led (step T0)))

[directly]])}

(! chain-last

[D1 ==> (D1 | T0 -- >>+ T) [alternate]

==> (T0 -- >>∗ T) [R*D]

==> (T0 -- >>∗ T & D2) [augment]

==> (T0 -- >>∗ T &

(Enab led (step T))) [D1]])

assume C2 := (exists ?T1 .

T0 -- >>+ ?T1 &

?T1 -- >> (step T))

pick-witness T1 for C2 C2-w

l e t {C2-w1 := (T0 -- >>+ T1);

C2-w2 := (T1 -- >> (step T));

(and D1 D2) :=

(! chain-last

[C2-w2

==> (T1 = T &

(Enab led (step T1)))

[directly]]);

RR*I := (! lemma

[’-- >> R+R*-inclusion])}

(! chain-last

[C2-w1 ==> (T0 -- >>+ T) [D1]

==> (T0 -- >>∗ T) [RR*I]

==> (T0 -- >>∗ T & D2) [augment]

==> (T0 -- >>∗ T &

(Enab led (step T))) [D1]]))}

match theorem {

(val-of leads-to-receive) =>

pick-any T0 T id ls fr c

(! proof lambda (T) (r e c e i v e T id ls fr c)

T0 T (given directly-leads-to-receive))

| (val-of leads-to-send) =>

pick-any T0 T fr to c

(! proof lambda (T) (send T fr to c)

T0 T (given directly-leads-to-send))

| (val-of leads-to-create) =>

pick-any T0 T id new-id new-ls

(! proof lambda (T) (c r e a t e T id new-id new-ls)

T0 T (given directly-leads-to-create))

| (val-of leads-to-compute) =>

pick-any T0 T id ls new-ls

(! proof lambda (T) (compute T id ls new-ls)

xxii

T0 T (given directly-leads-to-compute))

}

(evolve Theory [theorems proofs])}

D.5 Persistence Proofs

extend-module Transition-Path-Relation {

define actor-persistence-proof :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative])}

by-induction theorem {

Initial :(TP ’Id ’LS) =>

pick-any T0 :(TP ’Id ’LS)

s0 :(Cfg (Actor ’Id ’LS))

id0: ’Id

ls0: ’LS

l e t {A1 := ((c o n f i g T0) = s0 ++ (a c t o r id0 ls0));

A2 := (T0 -- >>∗ Initial);

A3 := (u n i q u e - i d s (c o n f i g T0))}

assume (A1 & A2 & A3)

l e t {goal := (exists ?s ?ls .

(c o n f i g Initial) = ?s ++ (a c t o r id0 ?ls));

B1 := (! chain-last

[A2 ==> (T0 = Initial | T0 -- >>+ Initial)

[(given [’-- >> R*-definition])]])}

(! cases B1

assume B1a := (T0 = Initial)

(! chain-last [A1 ==> ((c o n f i g Initial) =

s0 ++ (a c t o r id0 ls0)) [B1a]

==> goal [existence]])

assume B1b := (T0 -- >>+ Initial)

(! from-complements goal B1b

(! chain-last [t r u e ==> (~ B1b)

[nothing-leads-to-Initial]])))

| (r e c e i v e T:(TP ’Id ’LS) id ls fr c) =>

l e t {ind-hyp := (forall ?T0 ?s0 ?id ?ls0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r ?id ?ls0) &

(?T0 -- >>∗ T) &

(u n i q u e - i d s (c o n f i g ?T0))

==> (exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r ?id ?ls)))}

pick-any T0 s0 id0 ls0

l e t {A1 := ((c o n f i g T0) = s0 ++ (a c t o r id0 ls0));

A2 := (T0 -- >>∗ (r e c e i v e T id ls fr c));

A3 := (u n i q u e - i d s (c o n f i g T0))}

assume (A1 & A2 & A3)

l e t {B1 := (! chain-last

[A2 ==> (T0 = (r e c e i v e T id ls fr c) |

T0 -- >>+ (r e c e i v e T id ls fr c))

[(given [’-- >> R*-definition])]])}

(! cases B1

assume B1a := (T0 = (r e c e i v e T id ls fr c))

(! chain-last [A1 ==> ((c o n f i g (r e c e i v e T id ls fr c)) =

s0 ++ (a c t o r id0 ls0)) [B1a]

==> (exists ?s ?ls .

(c o n f i g (r e c e i v e T id ls fr c)) =

?s ++ (a c t o r id0 ?ls))

[existence]])

assume B1b := (T0 -- >>+ (r e c e i v e T id ls fr c))

l e t {goal := (exists ?s ?ls .

(c o n f i g (r e c e i v e T id ls fr c)) =

?s ++ (a c t o r id0 ?ls));

LTR := (! lemma leads-to-receive);

B := (! chain-last

[B1b

==> (T0 -- >>∗ T &

(Enab led (r e c e i v e T id ls fr c))) [LTR]

==> (Enab led (r e c e i v e T id ls fr c)) [right-and]

==> ((Enab led T) &

(exists ?s .

(c o n f i g T) = ?s ++ (a c t o r id ls) ++

(message fr id c) &

(r e a d y - t o (r e c e i v e T id ls fr c))))

[enabled-receive]])}

pick-witness s for (! right-and B) w

l e t {w1 := ((c o n f i g T) = s ++ (a c t o r id ls) ++

(message fr id c));

w2 := (r e a d y - t o (r e c e i v e T id ls fr c))}

(! two-cases

assume (id = id0)

(! chain-last

[w ==> ((c o n f i g (r e c e i v e T id ls fr c)) =

s ++ (a c t o r id (a c c ep t id ls fr c)))

[trans-receive]

==> ((c o n f i g (r e c e i v e T id ls fr c)) =

s ++ (a c t o r id0 (a c c ep t id0 ls fr c)))

[(id = id0)]

==> goal [existence]])

assume (id =/= id0)

l e t {C := (! chain-last

[B1b

==> (T0 -- >>∗ T &

(Enab led (r e c e i v e T id ls fr c)))

xxiv

[leads-to-receive]

==> (T0 -- >>∗ T) [left-and]

==> (A1 & T0 -- >>∗ T & A3) [augment]

==> (exists ?s1 ?ls1 .

(c o n f i g T) = ?s1 ++ (a c t o r id0 ?ls1))

[ind-hyp]])}

pick-witnesses s1 ls1 for C C-w

l e t {D1 := (! chain-last

[(id =/= id0)

==> (id0 =/= id) [sym]

==> ((a c t o r ’ id0 ls1) =/=

(a c t o r ’ id ls))

[unique-ids2]]);

D2 := (! chain-last

[t r u e

==> ((a c t o r ’ id0 ls1) =/=

(message ’ fr id c))

[(exclusive-constructors

"Actor-Cfg .Actor")]]);

MT := (! lemma More-Together);

D3 := (!mp (! uspec* MT

[(c o n f i g T) s1 s

(a c t o r ’ id0 ls1)

(a c t o r ’ id ls)

(message ’ fr id c)])

(! both C-w (! both w1 (! both D1 D2))))}

pick-witness s2 for D3 D3-w

l e t {E1 :=

(! chain

[(c o n f i g T)

= (s2 ++ (a c t o r id0 ls1) ++ (a c t o r id ls)

++ (message fr id c)) [D3-w]

= ((s2 ++ (a c t o r id0 ls1)) ++

(a c t o r id ls) ++ (message fr id c))

[++A]])}

(! chain-last

[(E1 & w2)

==> ((c o n f i g (r e c e i v e T id ls fr c)) =

((s2 ++ (a c t o r id0 ls1))

++ (a c t o r id (a c c ep t id ls fr c))))

[trans-receive]

==> ((c o n f i g (r e c e i v e T id ls fr c)) =

((s2 ++ (a c t o r id (a c c ep t id ls fr c)))

++ (a c t o r id0 ls1))) [++A ++C]

==> goal [existence]])))

| (send T:(TP ’Id ’LS) fr to c) =>

l e t {ind-hyp := (forall ?T0 ?s0 ?id ?ls0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r ?id ?ls0) &

(?T0 -- >>∗ T) &

(u n i q u e - i d s (c o n f i g ?T0))

==> (exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r ?id ?ls)))}

pick-any T0:(TP ’Id ’LS) s0 id0 ls0

l e t {A1 := ((c o n f i g T0) = s0 ++ (a c t o r id0 ls0));

A2 := (T0 -- >>∗ (send T fr to c));

A3 := (u n i q u e - i d s (c o n f i g T0))}

assume (A1 & A2 & A3)

l e t {B1 := (! chain-last [A2 ==> (T0 = (send T fr to c) |

T0 -- >>+ (send T fr to c))

[(given [’-- >> R*-definition])]])}

(! cases B1

assume B1a := (T0 = (send T fr to c))

(! chain-last [A1 ==> ((c o n f i g (send T fr to c)) =

s0 ++ (a c t o r id0 ls0)) [B1a]

==> (exists ?s ?ls .

(c o n f i g (send T fr to c)) =

?s ++ (a c t o r id0 ?ls))

[existence]])

assume B1b := (T0 -- >>+ (send T fr to c))

l e t {goal := (exists ?s ?ls .

(c o n f i g (send T fr to c)) =

?s ++ (a c t o r id0 ?ls));

LTS := (! lemma leads-to-send);

B := (! chain-last

[B1b ==> (T0 -- >>∗ T & (Enab led (send T fr to c)))

[LTS]

==> (Enab led (send T fr to c)) [right-and]

==> ((Enab led T) &

(exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r fr ?ls) &

(r e a d y - t o (send T fr to c))))

[enabled-send]])}

pick-witnesses s ls for (! right-and B) w

l e t {w1 := ((c o n f i g T) = s ++ (a c t o r fr ls));

w2 := (r e a d y - t o (send T fr to c))}

(! two-cases

assume (fr = id0)

(! chain-last

[w ==> ((c o n f i g (send T fr to c)) =

s ++ (a c t o r fr (mak e - r e c e p t i v e ls)) ++

(message fr to c))

[trans-send]

==> ((c o n f i g (send T fr to c)) =

(s ++ (message fr to c)) ++

(a c t o r fr (mak e - r e c e p t i v e ls)))

[++A ++C]

==> ((c o n f i g (send T fr to c)) =

(s ++ (message fr to c)) ++

(a c t o r id0 (mak e - r e c e p t i v e ls)))

[(fr = id0)]

xxvi

==> goal [existence]])

assume (fr =/= id0)

l e t {C := (! chain-last

[B1b

==> (T0 -- >>∗ T &

(Enab led (send T fr to c))) [LTS]

==> (T0 -- >>∗ T) [left-and]

==> (A1 & T0 -- >>∗ T & A3) [augment]

==> (exists ?s1 ?ls1 .

(c o n f i g T) =

?s1 ++ (a c t o r id0 ?ls1))

[ind-hyp]])}

pick-witnesses s1 ls1 for C C-w

l e t {IST := (! lemma Together);

D1 := (! chain-last

[(fr =/= id0)

==> (id0 =/= fr) [sym]

==> ((a c t o r ’ id0 ls1) =/=

(a c t o r ’ fr ls))

[unique-ids2]]);

D3 := (! chain-last

[(C-w & w1 & D1)

==> (exists ?s2 .

(c o n f i g T) =

?s2 ++ (a c t o r id0 ls1) ++

(a c t o r fr ls)) [IST]])}

pick-witness s2 for D3 D3-w

l e t {E1 := (! chain

[(c o n f i g T)

= (s2 ++ (a c t o r id0 ls1)

++ (a c t o r fr ls)) [D3-w]

= ((s2 ++ (a c t o r id0 ls1))

++ (a c t o r fr ls)) [++A]])}

(! chain-last

[(E1 & w2) ==> ((c o n f i g (send T fr to c)) =

((s2 ++ (a c t o r id0 ls1)) ++

(a c t o r fr (mak e - r e c e p t i v e ls)) ++

(message fr to c)))

[trans-send]

==> ((c o n f i g (send T fr to c)) =

((s2 ++

(a c t o r fr (mak e - r e c e p t i v e ls)) ++

(message fr to c)) ++

(a c t o r id0 ls1))) [++A ++C]

==> goal [existence]])))

| (c r e a t e T:(TP ’Id ’LS) id ’ new-id new-ls) =>

l e t {ind-hyp := (forall ?T0 ?s0 ?id ?ls0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r ?id ?ls0) &

(?T0 -- >>∗ T) &

(u n i q u e - i d s (c o n f i g ?T0))

==> (exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r ?id ?ls)))}

pick-any T0:(TP ’Id ’LS) s0 id0 ls0

l e t {A1 := ((c o n f i g T0) = s0 ++ (a c t o r id0 ls0));

A2 := (T0 -- >>∗ (c r e a t e T id ’ new-id new-ls));

A3 := (u n i q u e - i d s (c o n f i g T0))}

assume (A1 & A2 & A3)

l e t {B1 := (! chain-last

[A2 ==> (T0 = (c r e a t e T id ’ new-id new-ls) |

T0 -- >>+ (c r e a t e T id ’ new-id new-ls))

[(given [’-- >> R*-definition])]])}

(! cases B1

assume B1a := (T0 = (c r e a t e T id ’ new-id new-ls))

(! chain-last [A1 ==> ((c o n f i g (c r e a t e T id ’ new-id new-ls)) =

s0 ++ (a c t o r id0 ls0)) [B1a]

==> (exists ?s ?ls .

(c o n f i g (c r e a t e T id ’ new-id new-ls)) =

?s ++ (a c t o r id0 ?ls))

[existence]])

assume B1b := (T0 -- >>+ (c r e a t e T id ’ new-id new-ls))

l e t {goal := (exists ?s ?ls .

(c o n f i g (c r e a t e T id ’ new-id new-ls)) =

?s ++ (a c t o r id0 ?ls));

LTC := (! lemma leads-to-create);

B := (! chain-last

[B1b ==> (T0 -- >>∗ T &

(Enab led (c r e a t e T id ’ new-id new-ls)))

[LTC]

==> (Enab led (c r e a t e T id ’ new-id new-ls))

[right-and]

==>

((Enab led T) &

(exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r id ’ ?ls) &

(r e a d y - t o (c r e a t e T id ’ new-id new-ls)) &

(u n i q u e - i d s (c o n f i g T) ++

(a c t o r new-id new-ls))))

[enabled-create]])}

pick-witnesses s ls for (! right-and B) w

l e t {w1 := ((c o n f i g T) = s ++ (a c t o r id ’ ls));

w2 := (r e a d y - t o (c r e a t e T id ’ new-id new-ls));

w3 := (u n i q u e - i d s (c o n f i g T) ++ (a c t o r new-id new-ls))}

(! two-cases

assume (id ’ = id0)

(! chain-last

[w ==> ((c o n f i g (c r e a t e T id ’ new-id new-ls)) =

s ++ (a c t o r id ’ (mak e - r e c e p t i v e ls)) ++

(a c t o r new-id new-ls))

[trans-create]

==> ((c o n f i g (c r e a t e T id ’ new-id new-ls)) =

xxviii

(s ++ (a c t o r new-id new-ls)) ++

(a c t o r id ’ (mak e - r e c e p t i v e ls)))

[++A ++C]

==> ((c o n f i g (c r e a t e T id ’ new-id new-ls)) =

(s ++ (a c t o r new-id new-ls)) ++

(a c t o r id0 (mak e - r e c e p t i v e ls)))

[(id ’ = id0)]

==> goal [existence]])

assume (id ’ =/= id0)

l e t {C := (! chain-last

[B1b

==>(T0 -- >>∗ T &

(Enab led (c r e a t e T id ’ new-id new-ls)))

[LTC]

==> (T0 -- >>∗ T) [left-and]

==> (A1 & T0 -- >>∗ T & A3) [augment]

==> (exists ?s1 ?ls1 .

(c o n f i g T) = ?s1 ++ (a c t o r id0 ?ls1))

[ind-hyp]])}

pick-witnesses s1 ls1 for C C-w

l e t {D1 := (! chain-last

[(id ’ =/= id0)

==> (id0 =/= id ’) [sym]

==> ((a c t o r ’ id0 ls1) =/=

(a c t o r ’ id ’ ls))

[unique-ids2]]);

IST := (! lemma Together);

D3 := (! chain-last

[(C-w & w1 & D1)

==> (exists ?s2 .

(c o n f i g T) =

?s2 ++ (a c t o r id0 ls1) ++

(a c t o r id ’ ls)) [IST]])}

pick-witness s2 for D3 D3-w

l e t {E1 := (! chain

[(c o n f i g T)

= (s2 ++ (a c t o r id0 ls1) ++

(a c t o r id ’ ls)) [D3-w]

= ((s2 ++ (a c t o r id0 ls1)) ++

(a c t o r id ’ ls)) [++A]])}

(! chain-last

[(E1 & w2 & w3)

==> ((c o n f i g (c r e a t e T id ’ new-id new-ls))

= (s2 ++ (a c t o r id0 ls1)) ++

(a c t o r id ’ (mak e - r e c e p t i v e ls)) ++

(a c t o r new-id new-ls))

[trans-create]

==> ((c o n f i g (c r e a t e T id ’ new-id new-ls))

= (s2 ++

(a c t o r id ’ (mak e - r e c e p t i v e ls))

++ (a c t o r new-id new-ls)) ++

(a c t o r id0 ls1)) [++A ++C]

==> goal [existence]])))

| (compute T:(TP ’Id ’LS) id ’ ls new-ls) =>

l e t {ind-hyp := (forall ?T0 ?s0 ?id0 ?ls0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r ?id0 ?ls0) &

(?T0 -- >>∗ T) &

(u n i q u e - i d s (c o n f i g ?T0))

==> (exists ?s ?ls .

(c o n f i g T) = ?s ++ (a c t o r ?id0 ?ls)))}

pick-any T0:(TP ’Id ’LS) s0 id0 ls0

l e t {A1 := ((c o n f i g T0) = s0 ++ (a c t o r id0 ls0));

A2 := (T0 -- >>∗ (compute T id ’ ls new-ls));

A3 := (u n i q u e - i d s (c o n f i g T0))}

assume (A1 & A2 & A3)

l e t {B1 := (! chain-last

[A2 ==> (T0 = (compute T id ’ ls new-ls) |

T0 -- >>+ (compute T id ’ ls new-ls))

[(given [’-- >> R*-definition])]])}

(! cases B1

assume B1a := (T0 = (compute T id ’ ls new-ls))

(! chain-last [A1 ==> ((c o n f i g (compute T id ’ ls new-ls)) =

s0 ++ (a c t o r id0 ls0)) [B1a]

==> (exists ?s ?ls .

(c o n f i g (compute T id ’ ls new-ls)) =

?s ++ (a c t o r id0 ?ls)) [existence]])

assume B1b := (T0 -- >>+ (compute T id ’ ls new-ls))

l e t {goal := (exists ?s ?ls .

(c o n f i g (compute T id ’ ls new-ls)) =

?s ++ (a c t o r id0 ?ls));

LTC := (! lemma leads-to-compute);

B := (! chain-last

[B1b ==> (T0 -- >>∗ T &

(Enab led (compute T id ’ ls new-ls)))

[LTC]

==> (Enab led (compute T id ’ ls new-ls))

[right-and]

==> ((Enab led T) &

(exists ?s .

(c o n f i g T) = ?s ++ (a c t o r id ’ ls) &

(r e a d y - t o (compute T id ’ ls new-ls))))

[enabled-compute]])}

pick-witness s for (! right-and B) w

l e t {w1 := ((c o n f i g T) = s ++ (a c t o r id ’ ls));

w2 := (r e a d y - t o (compute T id ’ ls new-ls))}

(! two-cases

assume (id ’ = id0)

(! chain-last

[w ==> ((c o n f i g (compute T id ’ ls new-ls)) =

s ++ (a c t o r id ’ new-ls))

xxx

[trans-compute]

==> ((c o n f i g (compute T id ’ ls new-ls)) =

s ++ (a c t o r id0 new-ls))

[(id ’ = id0)]

==> goal [existence]])

assume (id ’ =/= id0)

l e t {C := (! chain-last

[B1b ==> (T0 -- >>∗ T &

(Enab led (compute T id ’ ls new-ls)))

[leads-to-compute]

==> (T0 -- >>∗ T) [left-and]

==> (A1 & T0 -- >>∗ T & A3) [augment]

==> (exists ?s1 ?ls1 .

(c o n f i g T) =

?s1 ++ (a c t o r id0 ?ls1))

[ind-hyp]])}

pick-witnesses s1 ls1 for C C-w

l e t {D1 := (! chain-last

[(id ’ =/= id0)

==> (id0 =/= id ’) [sym]

==> ((a c t o r ’ id0 ls1) =/=

(a c t o r ’ id ’ ls))

[unique-ids2]]);

IST := (! lemma Together);

D3 := (! chain-last

[(C-w & w1 & D1)

==> (exists ?s2 .

(c o n f i g T) =

?s2 ++ (a c t o r id0 ls1) ++

(a c t o r id ’ ls)) [IST]])}

pick-witness s2 for D3 D3-w

l e t {E1 := (! chain

[(c o n f i g T)

= (s2 ++ (a c t o r id0 ls1) ++

(a c t o r id ’ ls)) [D3-w]

= ((s2 ++ (a c t o r id0 ls1))

++ (a c t o r id ’ ls)) [++A]])}

(! chain-last

[(E1 & w2)

==> ((c o n f i g (compute T id ’ ls new-ls)) =

(s2 ++ (a c t o r id0 ls1)) ++

(a c t o r id ’ new-ls))

[trans-compute]

==> ((c o n f i g (compute T id ’ ls new-ls)) =

(s2 ++ (a c t o r id ’ new-ls)) ++

(a c t o r id0 ls1))

[++A ++C]

==> goal [existence]])))

} # by-induction

(evolve Theory [[actor-persistence] actor-persistence-proof])}

D.6 Fairness

First, the full definition of Transition-Sequence, which includes a theorem about connectivity
of the reflexive transitive closure, -->>∗, of -->>.

module Transition-Sequence {

open-module Transition-Path-Relation

open-module N

declare t s : (Id , State) [(TP Id State) N] - > (TP Id State)

define ts-initial := (forall ?T . (t s ?T z e r o) = ?T)

define ts-directly-connected :=

(forall ?T ?n . (t s ?T ?n) -- >> (t s ?T (S ?n)))

define Theory :=

(theory [Transition-Path-Relation.Theory]

[ts-initial ts-directly-connected]

’Transition-Sequence)

define ts-connected :=

(forall ?m ?n ?T . ?m >= ?n ==> (t s ?T ?n) -- >>∗ (t s ?T ?m))

define proof :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

L1 := (! lemma [’-- >> R*-Reflexive]);

L2 := (! lemma [’-- >> RR+ -inclusion]);

L3 := (! lemma [’-- >> R+ R*-inclusion]);

L4 := (! lemma [’-- >> TC-Transitivity3])}

match theorem {

(val-of ts-connected) =>

by-induction theorem {

z e r o =>

pick-any n T

assume A := (z e r o >= n)

l e t {B := (! chain-last [A ==> (n = z e r o)

[N. Le s s =. zero2]])}

(! chain-last

[t r u e

==> ((t s T z e r o) -- >>∗ (t s T z e r o)) [L1]

==> ((t s T n) -- >>∗ (t s T z e r o)) [B]])

| (S m) =>

l e t {ind-hyp :=

(forall ?n ?T . m >= ?n ==> (t s ?T ?n) -- >>∗ (t s ?T m))}

pick-any n T

assume A := ((S m) >= n)

(! two-cases

assume A1 := ((S m) = n)

xxxii

(! chain-last

[t r u e ==> ((t s T n) -- >>∗ (t s T n)) [L1]

==> ((t s T n) -- >>∗ (t s T (S m))) [A1]])

assume A2 := ((S m) =/= n)

l e t {B1 := (! chain-last

[A2 ==> (n =/= (S m)) [sym]

==> (A & n =/= (S m)) [augment]

==> (m >= n) [N. Le s s =.S5]

==> ((t s T n) -- >>∗ (t s T m)) [ind-hyp]])}

(! chain-last

[t r u e

==> ((t s T m) -- >> (t s T (S m)))

[ts-directly-connected]

==> ((t s T m) -- >>+ (t s T (S m))) [L2]

==> ((t s T m) -- >>∗ (t s T (S m))) [L3]

==> (B1 & (t s T m) -- >>∗ (t s T (S m))) [augment]

==> ((t s T n) -- >>∗ (t s T (S m))) [L4]]))

}

}

(evolve Theory [[ts-connected] proof])

}

The receive axiom for infinitely-often-enabled sequences was given in Section 4.

extend-module Infinitely-Often-Enabled {

define ioe-send :=

(forall ?T ?n ?s ?ls ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r < s ende r > ?ls) &

(r e a d y - t o (send (t s ?T ?n) < s ende r > ?to ?c))

==>

(t s ?T (S ?n)) = (send (t s ?T ?n) < s ende r > ?to ?c) |

(exists ?k ? s ’ ? ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r < s ende r > ? ls ’) &

(r e a d y - t o (send (t s ?T ?k) < s ende r > ?to ?c))))

define ioe-create :=

(forall ?T ?n ?s ?ls ?new-id ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r c r e a t o r ?ls) &

(r e a d y - t o (c r e a t e (t s ?T ?n) c r e a t o r ?new-id ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?n)) ++ (a c t o r ?new-id ?new-ls))

==>

(t s ?T (S ?n)) =

(c r e a t e (t s ?T ?n) c r e a t o r ?new-id ?new-ls) |

(exists ?k ? s ’ ? ls ’ ? new-id ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r c r e a t o r ? ls ’) &

(r e a d y - t o (c r e a t e (t s ?T ?k) c r e a t o r ? new-id ’ ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?k)) ++ (a c t o r ? new-id ’ ?new-ls))))

define ioe-compute :=

(forall ?T ?n ?s ?ls ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r computer ?ls) &

(r e a d y - t o (compute (t s ?T ?n) computer ?ls ?new-ls))

==>

(t s ?T (S ?n)) = (compute (t s ?T ?n) computer ?ls ?new-ls) |

(exists ?k ? s ’ ? ls ’ ? new-ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r computer ? ls ’) &

(r e a d y - t o (compute (t s ?T ?k) computer ? ls ’ ? new-ls ’))))

define Theory :=

(theory [Transition-Sequence.Theory]

[ioe-receive ioe-send ioe-create ioe-compute]

’Infinitely-Often-Enabled)}

The fair-receive axiom of Fair-Transition-Sequence theory was given in Section 4.

extend-module Fair-Transition-Sequence {

define fair-send :=

(forall ?id ?T ?n ?s ?ls ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (send (t s ?T ?n) ?id ?to ?c))

==>

(exists ?k ? s ’ ? ls ’ .

?k >= ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (send (t s ?T ?k) ?id ?to ?c)) &

(t s ?T (S ?k)) = (send (t s ?T ?k) ?id ?to ?c)) |

~ (exists ?k ? s ’ ? ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (send (t s ?T ?k) ?id ?to ?c))))

define fair-create :=

(forall ?id ?T ?n ?s ?ls ?new-id ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (c r e a t e (t s ?T ?n) ?id ?new-id ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?n)) ++ (a c t o r ?new-id ?new-ls))

==>

(exists ?k ? s ’ ? ls ’ ? new-id ’ .

?k >= ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (c r e a t e (t s ?T ?k) ?id ? new-id ’ ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?k)) ++ (a c t o r ? new-id ’ ?new-ls)) &

(t s ?T (S ?k)) = (c r e a t e (t s ?T ?k) ?id ? new-id ’ ?new-ls)) |

~ (exists ?k ? s ’ ? ls ’ ? new-id ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (c r e a t e (t s ?T ?k) ?id ? new-id ’ ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?k)) ++ (a c t o r ? new-id ’ ?new-ls))))

define fair-compute :=

xxxiv

(forall ?id ?T ?n ?s ?ls ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r ?id ?ls) &

(r e a d y - t o (compute (t s ?T ?n) ?id ?ls ?new-ls))

==>

(exists ?k ? s ’ ? ls ’ ? new-ls ’ .

?k >= ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (compute (t s ?T ?k) ?id ? ls ’ ? new-ls ’)) &

(t s ?T (S ?k)) = (compute (t s ?T ?k) ?id ? ls ’ ? new-ls ’)) |

~ (exists ?k ? s ’ ? ls ’ ? new-ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r ?id ? ls ’) &

(r e a d y - t o (compute (t s ?T ?k) ?id ? ls ’ ? new-ls ’))))

define Theory :=

(theory [Transition-Sequence.Theory]

[fair-receive fair-send fair-create fair-compute]

’Fair-Transition-Sequence)}

The combination of these two theories gives us the basis for proving that progress occurs in
an actor system, as illustrated in the clock example.

module IOE-Fair-Transition-Sequence {

open-module Infinitely-Often-Enabled

open-module Fair-Transition-Sequence

define Theory :=

(theory [Infinitely-Often-Enabled.Theory Fair-Transition-Sequence.Theory]

[] ’IOE-Fair-Transition-Sequence)}

D.7 Fairness Theorems

In Section 4 we stated the fairness theorem for the receive transition. Here we state the corre-
sponding theorems for the other transitions and give the proofs for all transitions.

extend-module IOE-Fair-Transition-Sequence {

define fair-send-theorem :=

(forall ?T ?n ?s ?ls ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r < s ende r > ?ls) &

(r e a d y - t o (send (t s ?T ?n) < s ende r > ?to ?c))

==>

(exists ?m ? s ’ ? ls ’ .

?m >= ?n &

(c o n f i g (t s ?T ?m)) = ? s ’ ++ (a c t o r < s ende r > ? ls ’) &

(r e a d y - t o (send (t s ?T ?m) < s ende r > ?to ?c)) &

(t s ?T (S ?m)) = (send (t s ?T ?m) < s ende r > ?to ?c)))

define fair-create-theorem :=

(forall ?T ?n ?s ?ls ?new-id ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r c r e a t o r ?ls) &

(r e a d y - t o (c r e a t e (t s ?T ?n) c r e a t o r ?new-id ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?n)) ++ (a c t o r ?new-id ?new-ls))

==>

(exists ?m ? s ’ ? ls ’ ? new-id ’ .

?m >= ?n &

(c o n f i g (t s ?T ?m)) = ? s ’ ++ (a c t o r c r e a t o r ? ls ’) &

(r e a d y - t o (c r e a t e (t s ?T ?m) c r e a t o r ? new-id ’ ?new-ls)) &

(u n i q u e - i d s (c o n f i g (t s ?T ?m)) ++ (a c t o r ? new-id ’ ?new-ls)) &

(t s ?T (S ?m)) = (c r e a t e (t s ?T ?m) c r e a t o r ? new-id ’ ?new-ls)))

define fair-compute-theorem :=

(forall ?T ?n ?s ?ls ?new-ls .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r computer ?ls) &

(r e a d y - t o (compute (t s ?T ?n) computer ?ls ?new-ls))

==>

(exists ?m ? s ’ ? ls ’ ? new-ls ’ .

?m >= ?n &

(c o n f i g (t s ?T ?m)) = ? s ’ ++ (a c t o r computer ? ls ’) &

(r e a d y - t o (compute (t s ?T ?m) computer ? ls ’ ? new-ls ’)) &

(t s ?T (S ?m)) = (compute (t s ?T ?m) computer ? ls ’ ? new-ls ’)))

define theorems :=

[fair-receive-theorem fair-send-theorem fair-create-theorem

fair-compute-theorem]

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

[t s r e c e i v e r s e n d e r c r e a t o r computer] :=

(adapt [t s r e c e i v e r s e n d e r c r e a t o r computer])}

match theorem {

(val-of fair-receive-theorem) =>

pick-any T n s ls fr c

l e t {A1 := ((c o n f i g (t s T n)) =

s ++ (a c t o r r e c e i v e r ls) ++

(message fr r e c e i v e r c));

A2 := (r e a d y - t o (r e c e i v e (t s T n) r e c e i v e r ls fr c))}

assume A := (A1 & A2)

l e t {B1 := ((t s T (S n)) =

(r e c e i v e (t s T n) r e c e i v e r ls fr c));

B2 := (exists ?k ? s ’ ? ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r r e c e i v e r ? ls ’) ++

(message fr r e c e i v e r c) &

(r e a d y - t o (r e c e i v e (t s T ?k) r e c e i v e r ? ls ’

xxxvi

fr c)));

goal := (exists ?k ? s ’ ? ls ’ .

?k >= n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r r e c e i v e r ? ls ’) ++

(message fr r e c e i v e r c) &

(r e a d y - t o (r e c e i v e (t s T ?k) r e c e i v e r ? ls ’

fr c)) &

(t s T (S ?k)) =

(r e c e i v e (t s T ?k) r e c e i v e r ? ls ’ fr c));

B3 := (! chain-last [A ==> (B1 | B2) [ioe-receive]])}

(! cases B3

assume B1

(! chain-last

[t r u e ==> (n >= n) [N.lessEqual . reflexive]

==> (n >= n & A1 & A2 & B1) [augment]

==> goal [existence]])

assume B2

l e t {C := (! chain-last [A ==> (goal | ~ B2)

[fair-receive]])}

(! cases C

assume goal

(! claim goal)

assume (~ B2)

(! from-complements goal B2 (~ B2))))

| (val-of fair-send-theorem) =>

pick-any T n s ls to c

l e t {A1 := ((c o n f i g (t s T n)) = s ++ (a c t o r s e n d e r ls));

A2 := (r e a d y - t o (send (t s T n) s e n d e r to c))}

assume A := (A1 & A2)

l e t {B1 := ((t s T (S n)) =

(send (t s T n) s e n d e r to c));

B2 := (exists ?k ? s ’ ? ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s T ?k) s e n d e r to c)));

goal := (exists ?k ? s ’ ? ls ’ .

?k >= n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s T ?k) s e n d e r to c)) &

(t s T (S ?k)) =

(send (t s T ?k) s e n d e r to c));

B3 := (! chain-last [A ==> (B1 | B2) [ioe-send]])}

(! cases B3

assume B1

(! chain-last

[t r u e

==> (n >= n) [N.lessEqual . reflexive]

==> (n >= n & A1 & A2 & B1) [augment]

==> goal [existence]])

assume B2

l e t {C := (! chain-last [A ==> (goal | ~ B2)

[fair-send]])}

(! cases C

assume goal

(! claim goal)

assume (~ B2)

(! from-complements goal B2 (~ B2))))

| (val-of fair-create-theorem) =>

pick-any T n s ls new-id new-ls

l e t {A1 := ((c o n f i g (t s T n)) = s ++ (a c t o r c r e a t o r ls));

A2 := (r e a d y - t o (c r e a t e (t s T n) c r e a t o r

new-id new-ls));

A3 := (u n i q u e - i d s (c o n f i g (t s T n)) ++

(a c t o r new-id new-ls))}

assume A := (A1 & A2 & A3)

l e t {B1 := ((t s T (S n)) =

(c r e a t e (t s T n) c r e a t o r new-id new-ls));

B2 := (exists ?k ? s ’ ? ls ’ ? new-id ’ .

?k > n &

(c o n f i g (t s T ?k)) = ? s ’ ++

(a c t o r c r e a t o r ? ls ’) &

(r e a d y - t o (c r e a t e (t s T ?k) c r e a t o r

? new-id ’ new-ls)) &

(u n i q u e - i d s (c o n f i g (t s T ?k)) ++

(a c t o r ? new-id ’ new-ls)));

goal := (exists ?k ? s ’ ? ls ’ ? new-id ’ .

?k >= n &

(c o n f i g (t s T ?k)) = ? s ’ ++

(a c t o r c r e a t o r ? ls ’) &

(r e a d y - t o (c r e a t e (t s T ?k) c r e a t o r

? new-id ’ new-ls)) &

(u n i q u e - i d s (c o n f i g (t s T ?k)) ++

(a c t o r ? new-id ’ new-ls)) &

(t s T (S ?k)) =

(c r e a t e (t s T ?k) c r e a t o r

? new-id ’ new-ls));

B3 := (! chain-last [A ==> (B1 | B2) [ioe-create]])}

(! cases B3

assume B1

(! chain-last

[t r u e

==> (n >= n) [N.lessEqual . reflexive]

==> (n >= n & A1 & A2 & A3 & B1) [augment]

==> goal [existence]])

assume B2

l e t {C := (! chain-last [A ==> (goal | ~ B2)

[fair-create]])}

xxxviii

(! cases C

assume goal

(! claim goal)

assume (~ B2)

(! from-complements goal B2 (~ B2))))

| (val-of fair-compute-theorem) =>

pick-any T n s ls new-ls

l e t {A1 := ((c o n f i g (t s T n)) = s ++ (a c t o r computer ls));

A2 := (r e a d y - t o (compute (t s T n) computer ls new-ls))}

assume A := (A1 & A2)

l e t {B1 := ((t s T (S n)) =

(compute (t s T n) computer ls new-ls));

B2 := (exists ?k ? s ’ ? ls ’ ? new-ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r computer ? ls ’) &

(r e a d y - t o (compute (t s T ?k) computer

? ls ’ ? new-ls ’)));

goal := (exists ?k ? s ’ ? ls ’ ? new-ls ’ .

?k >= n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r computer ? ls ’) &

(r e a d y - t o (compute (t s T ?k) computer

? ls ’ ? new-ls ’)) &

(t s T (S ?k)) =

(compute (t s T ?k) computer

? ls ’ ? new-ls ’));

B3 := (! chain-last [A ==> (B1 | B2) [ioe-compute]])}

(! cases B3

assume B1

(! chain-last

[t r u e

==> (n >= n) [N.lessEqual . reflexive]

==> (n >= n & A1 & A2 & B1) [augment]

==> goal [existence]])

assume B2

l e t {C := (! chain-last [A ==> (goal | ~ B2)

[fair-compute]])}

(! cases C

assume goal

(! claim goal)

assume (~ B2)

(! from-complements goal B2 (~ B2))))

}

(evolve Theory [theorems proofs])

} # module IOE-Fair-Transition-Sequence

E Clock system specification

Ticker can send tick messages to Clock1; it can do nothing else.

extend-module Clock-Actors {

module Ti c k e r {

assert not-ready-to-receive :=

(forall ?T ?ls ?fr ?c .

~ (r e a d y - t o (r e c e i v e ?T Ti c k e r ?ls ?fr ?c)))

assert ready-to-send :=

(forall ?T ?to ?c . (r e a d y - t o (send ?T Ti c k e r ?to ?c)))

assert not-ready-to-create :=

(forall ?T ?ls ?new-id ?new-ls .

~ (r e a d y - t o (c r e a t e ?T Ti c k e r ?new-id ?new-ls)))

assert not-ready-to-compute :=

(forall ?T ?ls ?new-ls .

~ (r e a d y - t o (compute ?T Ti c k e r ?ls ?new-ls)))

assert mak e - r e c e p t i v e :=

(forall ?ls . (mak e - r e c e p t i v e ?ls) = empty)}}

(! sym (Ti c k e r =/= Clock1))

The Clock1 axioms are as follows:

extend-module Clock-Actors {

module Clock1 {

assert a c c ep t :=

(forall ?t .

(a c c ep t C lock1 (c l o c a l C lock1 ?t) Ti c k e r ’tick) =

(c l o c a l C lock1 (S ?t)))

assert mak e - r e c e p t i v e :=

(forall ?ls . (mak e - r e c e p t i v e ?ls) = ?ls)

assert ready-to-receive :=

(forall ?T ?ls ?fr ?c .

(r e a d y - t o (r e c e i v e ?T Clock1 ?ls ?fr ?c)))

assert not-ready-to-send :=

(forall ?T ?to ?c . ~ (r e a d y - t o (send ?T Clock1 ?to ?c)))

assert ready-to-create :=

(forall ?T ?new-id ?new-ls .

(r e a d y - t o (c r e a t e ?T Clock1 ?new-id ?new-ls)))

assert not-ready-to-compute :=

(forall ?T ?ls ?new-ls .

~ (r e a d y - t o (compute ?T Clock1 ?ls ?new-ls)))}}

declare Time : [Actor-Name (Cfg (Actor Actor-Name CLS))] - > N

module Time {

assert read :=

(forall ?id ?s ?t .

(Time ?id (?s ++ (a c t o r ?id (c l o c a l ?id ?t)))) = ?t)}}

xl

E.1 Proving infinitely-often-enabled

While we have presented fair transitions and infinitely-often-enabled (IOE) transitions in terms of
axioms, our clock progress proofs ultimately should not rely on assuming these axioms, but rather
we should prove that they hold based on the clock system implementation. We omit this exercise
for the fair transition axioms, but we now show how to derive the needed IOE properties from the
axioms given in the Ticker , Clock1, and Time modules. Rather than carry out these proofs just
for this clock system, however, let us return to the abstract level to formulate a couple of small
abstract theories, Simple-Sender and Simple-Receiver, in which (a) the axioms are satisfied
by the Ticker and Clock1 implementations, and from which (b) the needed IOE properties can
be proved. Here we show only axioms and theorems for Simple-Sender.

module Simple-Sender {

open-module Infinitely-Often-Enabled

define never-ready-to-receive :=

(forall ?T ?ls ?fr ?c .

~ (r e a d y - t o (r e c e i v e ?T s e n d e r ?ls ?fr ?c)))

define ready-to-send :=

(forall ?T ?to ?c .

(r e a d y - t o (send ?T s e n d e r ?to ?c)))

define never-ready-to-create :=

(forall ?T ?new-id ?new-ls .

~ (r e a d y - t o (c r e a t e ?T s e n d e r ?new-id ?new-ls)))

define never-ready-to-compute :=

(forall ?T ?ls ?new-ls .

~ (r e a d y - t o (compute ?T s e n d e r ?ls ?new-ls)))

define Theory :=

(theory [Transition-Sequence.Theory]

[never-ready-to-receive ready-to-send

never-ready-to-create never-ready-to-compute]

’Simple-Sender)

define ioe-send :=

(forall ?T ?n ?s ?ls ?to ?c .

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r s e n d e r ?ls) &

(r e a d y - t o (send (t s ?T ?n) s e n d e r ?to ?c))

==>

(t s ?T (S ?n)) = (send (t s ?T ?n) s e n d e r ?to ?c) |

(exists ?k ? s ’ ? ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s ?T ?k) s e n d e r ?to ?c))))

define ioe-send-lemma :=

(forall ? T ’ :(TP ’Id ’LS) ?T ?n ?s ?ls: ’LS ?to ?c .

(t s ?T ?n) -- >> ? T ’ & ? T ’ = (t s ?T (S ?n)) &

(c o n f i g (t s ?T ?n)) = ?s ++ (a c t o r s e n d e r ?ls) &

(r e a d y - t o (send (t s ?T ?n) s e n d e r ?to ?c))

==>

(t s ?T (S ?n)) = (send (t s ?T ?n) s e n d e r ?to ?c) |

(exists ?k ? s ’ ? ls ’ .

?k > ?n &

(c o n f i g (t s ?T ?k)) = ? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s ?T ?k) s e n d e r ?to ?c))))

define proofs :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

t s := (adapt t s);

s e n d e r := (adapt s e n d e r);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative])}

match theorem {

(val-of ioe-send) =>

pick-any T:(TP ’Id ’LS) n s ls: ’LS to: ’Id c

l e t {A1 := ((c o n f i g (t s T n)) = s ++ (a c t o r s e n d e r ls));

A2 := (r e a d y - t o (send (t s T n) s e n d e r to c))}

assume (A1 & A2)

l e t {B1 := (! chain-last

[t r u e ==> ((t s T n) -- >> (t s T S n))

[ts-directly-connected]]);

B2 := (! reflex (t s T S n));

ISL := (! lemma ioe-send-lemma)}

(! chain-last

[(B1 & B2 & A1 & A2) ==>

((t s T (S n)) =

(send (t s T n) s e n d e r to c) |

(exists ?k ? s ’ ? ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s T ?k) s e n d e r to c)))) [ISL]])

| (val-of ioe-send-lemma) =>

datatype-cases (adapt theorem) {

Initial =>

pick-any T n s ls to c

l e t {A1 := ((t s T n) -- >> Initial);

A2 := (Initial = (t s T S n));

A3 := ((c o n f i g (t s T n)) = s ++ (a c t o r s e n d e r ls));

A4 := (r e a d y - t o (send (t s T n) s e n d e r to c));

RRI := (! lemma [’-- >> RR+-inclusion])}

xlii

assume (A1 & A2 & A3 & A4)

(! from-complements

((t s T S n) = (send (t s T n) s e n d e r to c) |

(exists ?k ? s ’ ? ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s T ?k) s e n d e r to c))))

(! chain-last [A1 ==> ((t s T n) -- >>+ Initial)

[RRI]])

(! chain-last [t r u e ==> (~ ((t s T n) -- >>+ Initial))

[nothing-leads-to-Initial]]))

| (r e c e i v e T ’ id ’ ls ’ fr ’ c ’) =>

pick-any T n s ls to c

l e t {A1 := ((t s T n) -- >> (r e c e i v e T ’ id ’ ls ’ fr ’ c ’));

A2 := ((r e c e i v e T ’ id ’ ls ’ fr ’ c ’) = (t s T S n));

A3 := ((c o n f i g (t s T n)) = s ++ (a c t o r s e n d e r ls));

A4 := (r e a d y - t o (send (t s T n) s e n d e r to c))}

assume (A1 & A2 & A3 & A4)

l e t {

goal ’ := (exists ?k ? s ’ ? ls ’ .

?k > n &

(c o n f i g (t s T ?k)) =

? s ’ ++ (a c t o r s e n d e r ? ls ’) &

(r e a d y - t o (send (t s T ?k) s e n d e r to c)));

goal := ((t s T (S n)) =

(send (t s T n) s e n d e r to c) | goal ’);

(and C1 C2) :=

(! chain-last

[A1 ==> ((t s T n) = T ’ &

(Enab led (r e c e i v e (t s T n) id ’ ls ’ fr ’ c ’)))

[directly-leads-to-receive]]);

C3 := (! chain-last

[C2 ==> ((Enab led (t s T n)) &

(exists ?s .

(c o n f i g (t s T n)) =

?s ++ (a c t o r id ’ ls ’) ++

(message fr ’ id ’ c ’) &

(r e a d y - t o (r e c e i v e (t s T n)

id ’ ls ’ fr ’ c ’))))

[enabled-receive]])}

pick-witness s1 for (! right-and C3) C3-w

l e t {C3-w1 := ((c o n f i g (t s T n)) =

s1 ++ (a c t o r id ’ ls ’) ++

(message fr ’ id ’ c ’));

C3-w2 := (r e a d y - t o (r e c e i v e (t s T n)

id ’ ls ’ fr ’ c ’))}

(! two-cases

assume (s e n d e r = id ’)

(! from-complements goal

C3-w2

(! chain-last

[t r u e ==>

(~ (r e a d y - t o

(r e c e i v e (t s T n) s e n d e r

ls ’ fr ’ c ’)))

[never-ready-to-receive]

==> (~ (r e a d y - t o

(r e c e i v e (t s T n) id ’

ls ’ fr ’ c ’)))

[(s e n d e r = id ’)]]))

assume (s e n d e r =/= id ’)

l e t {UI2 := (! lemma unique-ids2);

D0 := (! chain-last

[(s e n d e r =/= id ’)

==> ((a c t o r ’ s e n d e r ls) =/=

(a c t o r ’ id ’ ls ’)) [UI2]]);

D1 := (! chain-last

[t r u e ==> ((a c t o r ’ s e n d e r ls) =/=

(message ’ fr ’ id ’ c ’))

[(exclusive-constructors

"Actor-Cfg .Actor")]]);

MT := (! lemma More-Together);

D2 := (!mp (! uspec* MT

[(c o n f i g (t s T n)) s s1

(a c t o r ’ s e n d e r ls)

(a c t o r ’ id ’ ls ’)

(message ’ fr ’ id ’ c ’)])

(! both A3 (! both C3-w1

(! both D0 D1))))}

pick-witness s2 for D2 D2-w

l e t {E1 :=

(! chain-last

[D2-w

==> ((c o n f i g (t s T n))

= ((s2 ++ (a c t o r s e n d e r ls))

++ (a c t o r id ’ ls ’) ++

(message fr ’ id ’ c ’)))

[++A]]);

E2 :=

(! chain-last

[(E1 & C3-w2)

==> ((c o n f i g (r e c e i v e (t s T n)

id ’ ls ’ fr ’ c ’))

= ((s2 ++ (a c t o r s e n d e r ls)) ++

(a c t o r

id ’ (a c c ep t id ’ ls ’ fr ’ c ’))))

[trans-receive]]);

E3 := (! chain-last [t r u e ==> ((S n) > n)

[N.less .<S]]);

xliv

E4 :=

(! chain

[(c o n f i g (t s T (S n)))

= (c o n f i g (r e c e i v e T ’ id ’ ls ’ fr ’ c ’))

[A2]

= (c o n f i g (r e c e i v e (t s T n)

id ’ ls ’ fr ’ c ’)) [C1]

= ((s2 ++ (a c t o r s e n d e r ls)) ++

(a c t o r id ’ (a c c ep t id ’ ls ’ fr ’ c ’)))

[E2]

= ((s2 ++ (a c t o r

id ’ (a c c ep t id ’ ls ’ fr ’ c ’)))

++ (a c t o r s e n d e r ls))

[++A ++C]]);

E5 := (! chain-last

[t r u e

==> (r e a d y - t o (send (t s T (S n))

s e n d e r to c))

[ready-to-send]])}

(! chain-last

[(E3 & E4 & E5) ==> goal ’ [existence]

==> goal [augment]]))

| (send T ’ fr ’ to ’ c ’) =>

(! force (urep (rename (adapt theorem))

[(send T ’ fr ’ to ’ c ’)]))

| (c r e a t e T ’ id ’ new-id ’ new-ls ’) =>

(! force (urep (rename (adapt theorem))

[(c r e a t e T ’ id ’ new-id ’ new-ls ’)]))

| (compute T ’ id ’ new-id ’ new-ls ’) =>

(! force (urep (rename (adapt theorem))

[(compute T ’ id ’ new-id ’ new-ls ’)]))

}

} # match theorem

(evolve Theory [[ioe-send ioe-send-lemma] proofs])

} # module Simple-Sender

We have omitted the proof of the send, create, and compute cases by using Athena’s force

method, which anoints its sentence argument as a theorem without requiring any proof.5

define Clock1-persistence :=

(forall ?T ?T0 ?s0 ?t0 .

(c o n f i g ?T0) = ?s0 ++ (a c t o r C lock1 (c l o c a l C lock1 ?t0)) &

?T0 -- >>∗ ?T &

(u n i q u e - i d s (c o n f i g ?T0))

5 Using force is obviously unsound, and all uses of force must be eliminated before proofs can be
considered complete. On the other hand, using force during proof development enables one to proceed
top-down, expressing first the gross structure of a proof, then filling in details later, by replacing uses
of force with actual proofs.

==>

(exists ?s ?t .

(c o n f i g ?T) = ?s ++ (a c t o r C lock1 (c l o c a l C lock1 ?t)) &

?t >= ?t0))

define Clock1-persistence-1 :=

(forall ?T ?s ?T0 ?s0 ?t0 ?ls .

(c o n f i g ?T0) = ?s0 ++ (a c t o r C lock1 (c l o c a l C lock1 ?t0)) &

?T0 -- >>∗ ?T &

(c o n f i g ?T) = ?s ++ (a c t o r C lock1 ?ls) &

(u n i q u e - i d s (c o n f i g ?T0))

==>

(exists ?t . ?ls = (c l o c a l C lock1 ?t) & ?t >= ?t0))

define Clock1-persistence-theorems :=

[Clock1-persistence Clock1-persistence-1]

E.2 Proofs of the clock progress theorems

extend-module Fair-Clock-System {

define Clock1-progress-proof :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’Clock [’ ++ Associative]]);

++C := (given [’Clock [’ ++ Commutative]])}

by-induction theorem {

z e r o =>

pick-any T:(TP Actor-Name CLS) n0 s0 ls0 t0

l e t {A1 := ((c o n f i g (c t s T n0)) =

s0 ++ (a c t o r T i c k e r ls0) ++

(a c t o r C lock1 (c l o c a l C lock1 t0)));

A2 := (u n i q u e - i d s (c o n f i g (c t s T n0)))}

assume (A1 & A2)

conclude goal :=

(exists ?n ?s ?ls:CLS ?u .

?n >= n0 &

(c o n f i g (c t s T ?n)) =

?s ++ (a c t o r T i c k e r ?ls) ++

(a c t o r C lock1 (c l o c a l C lock1 ?u)) &

?u >= z e r o)

l e t {C := (! chain-last

[t r u e ==> (n0 >= n0)

[N.lessEqual . reflexive]])}

(! chain-last

[t r u e ==> (t0 >= z e r o) [N.lessEqual . zero <=]

==> (C & A1 & t0 >= z e r o) [augment]

xlvi

==> goal [existence]])

| (S t) =>

l e t {ind-hyp :=

(forall ?T ?n0 ?s0 ?ls0 ?t0 .

(c o n f i g (c t s ?T ?n0)) =

?s0 ++ (a c t o r T i c k e r ?ls0) ++

(a c t o r C lock1 (c l o c a l C lock1 ?t0)) &

(u n i q u e - i d s (c o n f i g (c t s ?T ?n0)))

==>

(exists ?n ?s ?ls ?u .

?n >= ?n0 &

(c o n f i g (c t s ?T ?n)) =

?s ++ (a c t o r T i c k e r ?ls) ++

(a c t o r C lock1 (c l o c a l C lock1 ?u)) &

?u >= t))}

pick-any T:(TP

Actor-Name CLS)

n0 s0 ls0:CLS t0

l e t {A1 := ((c o n f i g (c t s T n0)) =

s0 ++ (a c t o r T i c k e r ls0) ++

(a c t o r C lock1 (c l o c a l C lock1 t0)));

A2 := (u n i q u e - i d s (c o n f i g (c t s T n0)))}

assume (A1 & A2)

l e t {goal := (exists ?n ?s ?ls:CLS ?u .

?n >= n0 &

(c o n f i g (c t s T ?n)) =

?s ++ (a c t o r T i c k e r ?ls) ++

(a c t o r C lock1 (c l o c a l C lock1 ?u)) &

?u >= (S t));

B := (! chain-last

[(A1 & A2) ==>

(exists ?n1 ?s1 ?ls1 ?t1 .

?n1 >= n0 &

(c o n f i g (c t s T ?n1)) =

?s1 ++ (a c t o r T i c k e r ?ls1) ++

(a c t o r C lock1 (c l o c a l C lock1 ?t1)) &

?t1 >= t) [ind-hyp]])}

pick-witnesses n1 s1 ls1 t1 for B

l e t {B-w0 := (n1 >= n0);

B-w1 :=

((c o n f i g (c t s T n1)) =

s1 ++ (a c t o r T i c k e r ls1) ++

(a c t o r C lock1 (c l o c a l C lock1 t1)));

B-w2 := (t1 >= t);

C1 := (! chain-last

[t r u e

==>

(r e a d y - t o (send (c t s T n1) Ti c k e r

C lock1 ’tick))

[Ti c k e r .ready-to-send]]);

C2 :=

(! chain

[(c o n f i g (c t s T n1))

= (s1 ++ (a c t o r T i c k e r ls1) ++

(a c t o r C lock1 (c l o c a l C lock1 t1)))

[B-w1]

= ((s1 ++ (a c t o r C lock1 (c l o c a l C lock1 t1)))

++ (a c t o r T i c k e r ls1))

[++A ++C]]);

FST := (! lemma [’Clock fair-send-theorem]);

C3 := (! chain-last

[(C2 & C1)

==>

(exists ?n2 ?s2 ?ls2 .

?n2 >= n1 &

(c o n f i g (c t s T ?n2)) =

?s2 ++ (a c t o r T i c k e r ?ls2) &

(r e a d y - t o (send (c t s T ?n2) Ti c k e r

C lock1 ’tick)) &

(c t s T (S ?n2)) =

(send (c t s T ?n2) Ti c k e r C lock1 ’tick))

[FST]])}

pick-witnesses n2 s2 ls2 for C3

l e t {

C3-w1 := (n2 >= n1);

C3-w2 :=

((c o n f i g (c t s T n2)) = s2 ++ (a c t o r T i c k e r ls2));

C3-w3 := (r e a d y - t o (send (c t s T n2) Ti c k e r

C lock1 ’tick));

C3-w4 := ((c t s T (S n2)) =

(send (c t s T n2) Ti c k e r

C lock1 ’tick));

D1 := (! chain-last

[C3-w1 ==> ((c t s T n1) -- >>∗ (c t s T n2))

[(given [’Clock ts-connected])]]);

D2 := (! chain-last

[B-w0 ==> ((c t s T n0) -- >>∗ (c t s T n1))

[(given [’Clock ts-connected])]]);

TCT3 := (! lemma [’Clock [’-- >> TC-Transitivity3]]);

D3 := (! chain-last

[(D2 & D1) ==> ((c t s T n0) -- >>∗ (c t s T n2))

[TCT3]]);

D4 := (! chain-last

[t r u e ==> ((S n2) >= n2) [N.lessEqual .S3]

==> ((c t s T n2) -- >>∗ (c t s T (S n2)))

[(given [’Clock ts-connected])]]);

UIP := (! lemma [’Clock unique-ids-persistence]);

D5 := (! chain-last

[(A2 & D2)

==> (u n i q u e - i d s (c o n f i g (c t s T n1))) [UIP]]);

xlviii

D6 := (! chain

[(c o n f i g (c t s T n1))

= (s1 ++ (a c t o r T i c k e r ls1)

++ (a c t o r C lock1 (c l o c a l C lock1 t1)))

[B-w1]

= ((s1 ++ (a c t o r T i c k e r ls1))

++ (a c t o r C lock1 (c l o c a l C lock1 t1)))

[++A ++C]]);

CP := (! lemma Clock1-persistence);

D7 := (! chain-last

[(D6 & D1 & D5) ==>

(exists ?s3 ?t2 .

(c o n f i g (c t s T n2)) =

?s3 ++ (a c t o r C lock1

(c l o c a l C lock1 ?t2)) &

?t2 >= t1) [CP]])}

pick-witnesses s3 t2 for D7

l e t {D7-w1 :=

((c o n f i g (c t s T n2)) =

s3 ++ (a c t o r C lock1 (c l o c a l C lock1 t2)));

D7-w2 := (t2 >= t1);

IST := (! lemma [’Clock Together]);

UI2 := (! lemma [’Clock unique-ids2]);

E1 := (! chain-last

[(Clock1 =/= Ti c k e r)

==> ((a c t o r ’ C lock1 (c l o c a l C lock1 t2))

=/= (a c t o r ’ T i c k e r ls2)) [UI2]

==> (D7-w1 & C3-w2 &

(a c t o r ’ C lock1 (c l o c a l C lock1 t2))

=/= (a c t o r ’ T i c k e r ls2))

[augment]

==> (exists ?s4 .

(c o n f i g (c t s T n2)) =

?s4 ++ (a c t o r C lock1

(c l o c a l C lock1 t2))

++ (a c t o r T i c k e r ls2)) [IST]])}

pick-witness s4 for E1 E1-w

l e t {F1 :=

(! chain-last

[(c o n f i g (c t s T n2))

= (s4 ++ (a c t o r C lock1 (c l o c a l C lock1 t2)) ++

(a c t o r T i c k e r ls2))

[E1-w]

= ((s4 ++ (a c t o r C lock1 (c l o c a l C lock1 t2))) ++

(a c t o r T i c k e r ls2))

[++A ++C]

==> ((c o n f i g (c t s T n2)) =

(s4 ++ (a c t o r C lock1 (c l o c a l C lock1 t2)))

++ (a c t o r T i c k e r ls2) & C3-w3)

[augment]

==> ((c o n f i g (send (c t s T n2) Ti c k e r

C lock1 ’tick))

= (s4 ++ (a c t o r C lock1

(c l o c a l C lock1 t2)))

++ (a c t o r T i c k e r (mak e - r e c e p t i v e ls2))

++ (message T i c k e r C lock1 ’tick))

[(given [’Clock trans-send])]

==> ((c o n f i g (c t s T (S n2))) =

(s4 ++ (a c t o r C lock1 (c l o c a l C lock1 t2)))

++ (a c t o r T i c k e r (mak e - r e c e p t i v e ls2))

++ (message T i c k e r C lock1 ’tick))

[C3-w4]

==> ((c o n f i g (c t s T (S n2))) =

(s4 ++ (a c t o r C lock1 (c l o c a l C lock1 t2)))

++ (a c t o r T i c k e r empty)

++ (message T i c k e r C lock1 ’tick))

[Ti c k e r .mak e - r e c e p t i v e]

==> ((c o n f i g (c t s T (S n2))) =

((s4 ++ (a c t o r T i c k e r empty))

++ (a c t o r C lock1 (c l o c a l C lock1 t2))

++ (message T i c k e r C lock1 ’tick)))

[++A ++C]]);

F2 := (! chain-last

[t r u e

==>

(r e a d y - t o (r e c e i v e (c t s T (S n2))

Clock1

(c l o c a l C lock1 t2)

Ti c k e r ’tick))

[Clock1. ready-to-receive]]);

FRT := (! lemma [’Clock fair-receive-theorem]);

F4 :=

(! chain-last

[(F1 & F2)

==>

(exists ?n3 ?s5 ?ls5 .

?n3 >= (S n2) &

(c o n f i g (c t s T ?n3)) =

?s5 ++ (a c t o r C lock1 ?ls5) ++

(message T i c k e r C lock1 ’tick) &

(r e a d y - t o (r e c e i v e (c t s T ?n3) Clock1

?ls5 Ti c k e r ’tick)) &

(c t s T (S ?n3)) =

(r e c e i v e (c t s T ?n3) Clock1 ?ls5

Ti c k e r ’tick))

[FRT]])}

pick-witnesses n3 s5 ls5 for F4

l e t {F4-w1 := (n3 >= (S n2));

F4-w2a :=

((c o n f i g (c t s T n3)) =

l

s5 ++ (a c t o r C lock1 ls5)

++ (message T i c k e r C lock1 ’tick));

F4-w2b := (r e a d y - t o (r e c e i v e (c t s T n3)

Clock1 ls5

Ti c k e r ’tick));

F4-w3 :=

((c t s T (S n3)) =

(r e c e i v e (c t s T n3) Clock1 ls5

Ti c k e r ’tick));

G1 := (! chain-last

[F4-w1 ==> ((S n3) >= (S n2))

[N.lessEqual .S2]]);

G2 := (! chain-last

[G1 ==> ((c t s T (S n2)) -- >>∗
(c t s T (S n3)))

[(given [’Clock ts-connected])]]);

G3 := (! chain-last

[(c o n f i g (c t s T n2))

= (s4 ++ (a c t o r C lock1

(c l o c a l C lock1 t2))

++ (a c t o r T i c k e r ls2))

[E1-w]

= ((s4 ++ (a c t o r T i c k e r ls2))

++ (a c t o r C lock1

(c l o c a l C lock1 t2)))

[++A ++C]]);

G4 := (! chain-last

[t r u e ==> ((S n2) >= n2)

[N.lessEqual .S3]]);

G5 := (! chain-last

[t r u e ==> (F4-w1 & (S n2) >= n2)

[augment]

==> (n3 >= n2)

[N.lessEqual .transitive]]);

G6 := (! chain-last

[G5

==> ((c t s T n2) -- >>∗ (c t s T n3))

[(given [’Clock ts-connected])]]);

G7 := (! chain-last

[(c o n f i g (c t s T n3))

= (s5 ++ (a c t o r C lock1 ls5)

++ (message T i c k e r

C lock1 ’tick))

[F4-w2a]

= ((s5 ++ (message T i c k e r C lock1

’tick))

++ (a c t o r C lock1 ls5))

[++A ++C]]);

UIP := (! lemma [’Clock

unique-ids-persistence]);

G8 := (! chain-last

[(A2 & D3) ==>

(u n i q u e - i d s (c o n f i g (c t s T n2)))

[UIP]]);

CP1 := (! lemma Clock1-persistence-1);

G9 := (! chain-last

[(G3 & G6 & G7 & G8)

==> (exists ?t .

ls5 = (c l o c a l C lock1 ?t) &

?t >= t2)

[CP1]])}

pick-witness t3 for G9

l e t

{G9-w1 := (ls5 = (c l o c a l C lock1 t3));

G9-w2 := (t3 >= t2);

H1 := (! chain-last

[(F4-w2a & F4-w2b)

==> ((c o n f i g (r e c e i v e (c t s T n3)

Clock1 ls5

Ti c k e r ’tick))

=

s5 ++

(a c t o r C lock1

(a c c ep t C lock1 ls5

Ti c k e r ’tick)))

[(given [’Clock trans-receive])]

==> ((c o n f i g (r e c e i v e (c t s T n3)

Clock1 ls5

Ti c k e r ’tick))

=

s5 ++

(a c t o r C lock1

(c l o c a l C lock1 (S t3))))

[G9-w1 Clock1. a c c ep t]

==> ((c o n f i g (c t s T (S n3))) =

s5 ++

(a c t o r C lock1

(c l o c a l C lock1 (S t3))))

[F4-w3]]);

H2 := (! chain

[(c o n f i g (c t s T (S n2)))

= ((s4 ++ (a c t o r T i c k e r empty))

++ (a c t o r C lock1

(c l o c a l C lock1 t2))

++ (message T i c k e r C lock1 ’tick))

[F1]

= ((s4 ++ (a c t o r C lock1

(c l o c a l C lock1 t2))

++ (message T i c k e r

C lock1 ’tick))

lii

++ (a c t o r T i c k e r empty))

[++A ++C]]);

H3 := (! chain-last

[G8 ==> (G8 & D4) [augment]

==> (u n i q u e - i d s

(c o n f i g (c t s T (S n2))))

[UIP]]);

AP := (! lemma [’Clock actor-persistence]);

H4 := (! chain-last

[(H2 & G2 & H3) ==>

(exists ?s6 ?ls6 .

(c o n f i g (c t s T (S n3))) =

?s6 ++ (a c t o r T i c k e r ?ls6))[AP]])}

pick-witnesses s6 ls6 for H4 H4-w

l e t {I1 :=

(! chain-last

[(Ti c k e r =/= Clock1)

==> ((a c t o r ’ T i c k e r ls6) =/=

(a c t o r ’ C lock1 (c l o c a l C lock1

(S t3))))

[UI2]

==> (H4-w & H1 &

(a c t o r ’ T i c k e r ls6) =/=

(a c t o r ’ C lock1 (c l o c a l C lock1

(S t3))))

[augment]

==> (exists ?s7 .

(c o n f i g (c t s T (S n3)))

= ?s7 ++ (a c t o r T i c k e r ls6)

++ (a c t o r C lock1

(c l o c a l C lock1 (S t3))))

[IST]])}

pick-witness s7 for I1 I1-w

l e t {J1 := (! chain-last

[t r u e ==> ((S n2) >= n2)

[N.lessEqual .S3]]);

J2 := (! chain-last

[t r u e ==> ((S n3) >= n3)

[N.lessEqual .S3]]);

J3 := (! combine-inequalities

[(n1 >= n0) # B-w0

(n2 >= n1) # C3-w1

((S n2) >= n2) # J1

(n3 >= (S n2)) # F4-w1

((S n3) >= n3)]); # J2

J4 := (! combine-inequalities

[(t1 >= t) # B2-w

(t2 >= t1) # D7-w2

(t3 >= t2)])} # G9-w2

(! chain-last

[J4 ==> ((S t3) >= (S t))

[N.lessEqual . i n j e c t i v e]

==> (J3 & I1-w & (S t3) >= (S t))

[augment]

==> goal [existence]])

} # by-induction

(evolve Theory

[[Clock1-progress] Clock1-progress-proof])

define Clock1-Time-progress :=

(forall ?t ?T:(TP Actor-Name CLS) ?n0 ?s0 ?ls0 ?t0 .

(c o n f i g (c t s ?T ?n0) = ?s0 ++ (a c t o r T i c k e r ?ls0)

++ (a c t o r C lock1 (c l o c a l C lock1 ?t0)) &

(u n i q u e - i d s (c o n f i g (c t s ?T ?n0)))

==>

(exists ?n . ?n >= ?n0 &

(Time Clock1 (c o n f i g (c t s ?T ?n))) >= ?t)))

define Clock1-Time-progress-proof :=

method (theorem adapt)

l e t {given := lambda (P) (get-property P adapt Theory);

lemma := method (P) (! property P adapt Theory);

chain := method (L) (! chain-help given L ’none);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’Clock [’ ++ Associative]]);

++C := (given [’Clock [’ ++ Commutative]])}

pick-any t T:(TP Actor-Name CLS) n0 s0 ls0 t0

assume A := ((c o n f i g (c t s T n0)) = s0 ++ (a c t o r T i c k e r ls0) ++

(a c t o r C lock1 (c l o c a l C lock1 t0)) &

(u n i q u e - i d s (c o n f i g (c t s T n0))))

l e t {CPD := (! lemma Clock1-progress);

B := (! chain-last

[A ==> (exists ?n ?s ?ls ?u .

?n >= n0 &

(c o n f i g (c t s T ?n)) =

?s ++ (a c t o r T i c k e r ?ls)

++ (a c t o r C lock1 (c l o c a l C lock1 ?u)) &

?u >= t)

[CPD]])}

pick-witnesses n s ls u for B

l e t {w0 := (n >= n0);

w1 := ((c o n f i g (c t s T n)) =

s ++ (a c t o r T i c k e r ls) ++

(a c t o r C lock1 (c l o c a l C lock1 u)));

w2 := (u >= t);

C := (! chain

[(Time Clock1 (c o n f i g (c t s T n)))

= (Time Clock1

(s ++ (a c t o r T i c k e r ls)

liv

++ (a c t o r C lock1 (c l o c a l C lock1 u))))

[w1]

= (Time Clock1

((s ++ (a c t o r T i c k e r ls))

++ (a c t o r C lock1 (c l o c a l C lock1 u))))

[++A ++C]

= u [Time .read]])}

(! chain-last

[w2

==> ((Time Clock1 (c o n f i g (c t s T n))) >= t) [C]

==> (w0 & (Time Clock1 (c o n f i g (c t s T n))) >= t)

[augment]

==> (exists ?n .

?n >= n0 &

(Time Clock1 (c o n f i g (c t s T ?n))) >= t)

[existence]])

(evolve Theory [[Clock1-Time-progress] Clock1-Time-progress-proof])

} # module Fair-Clock-System

E.3 Proofs of the clock persistence theorems

The proofs of the Clock1-persistence-theorems is by induction on transition paths. We have
not done these proofs yet; we would like to first try to identify patterns in the proofs of the
transition induction proofs we have previously done in order to develop methods encapsulating
the patterns. A simple example of this approach was used in proving the four “leads-to” theorems
in Appendix D.4. Using such methods will allow significantly shortening the existing proofs and
easing the development of new ones.

E.4 Testing the proofs

To set up and test the proofs of the clock progress theorems, we first assert the Fair-Transition-Sequence

axioms, adapted for Clock-Actors:

open-module Fair-Clock-System

assert (theory-axioms [Fair-Transition-Sequence.Theory ’Clock CA])

Next, we define a clock adaptation of the Simple-Sender theory:

define Ticker-Is-Simple := (theory [[Simple-Sender .Theory ’SS CA]]

[] ’Ticker-Is-Simple)

But we don’t need to assert the Ticker-Is-Simple axioms since they are consequences of the
Ticker implementation.

Now we can prove the ioe-send property for Ticker :

(! property-test [’SS ioe-send] no-renaming Ticker-Is-Simple)

Here we just assert the ioe-receive property for Clock1 receiving; its proof would be similar to
that of ioe-send.

assert (get-property [’Clock ioe-receive] no-renaming Theory)

We now have all we need to prove the Clock progress theorems:

(! property-test Clock1-progress no-renaming Fair-Clock-System)

(! property-test Clock1-Time-progress no-renaming Fair-Clock-System)

F Exercising the clock system: a sample sequence of transitions

Before attempting general proofs, it’s useful to exercise a specification with symbolic execution to
gain assurance that the system behaves as expected, in at least a few sample execution sequences.
Here we show one such sample sequence of transitions of the Ticker-Clock system. The complexity
of the specification does not permit automatic symbolic execution, but we can manually step
through the transition sequence using simple proof steps.

We begin with setting up a sample sequence of transitions:

open-module Clock-Actors

open-module Transition-Path

assert (theory-axioms Transition-Path.Theory)

define T0 := Initial :(TP Actor-Name CLS)

define T1 := (c r e a t e T0 Clock1 T i c k e r empty)

define T2 := (send T1 Ti c k e r C lock1 ’tick)

define T3 := (r e c e i v e T2 Clock1 (c l o c a l C lock1 z e r o) Ti c k e r ’tick)

define T4 := (send T3 Ti c k e r C lock1 ’tick)

define T5 := (send T4 Ti c k e r C lock1 ’tick)

define T6 := (r e c e i v e T5 Clock1 (c l o c a l C lock1 (S ze r o)) Ti c k e r ’tick)

Next we declare an arbitrary configuration s0 and state as a theorem the implication we expect
to hold about the relation between (config T0) and (config T6):

declare s0: (Cfg (Actor Actor-Name CLS));

define T0- >T6 :=

((c o n f i g T0) = s0 ++ (a c t o r C lock1 (c l o c a l C lock1 z e r o)) &

(r e a d y - t o (c r e a t e T0 Clock1 T i c k e r empty)) &

(u n i q u e - i d s (c o n f i g T0) ++ (a c t o r T i c k e r empty))

==> ((c o n f i g T6) =

s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S (S ze r o)))) ++

(a c t o r T i c k e r empty) ++

(message T i c k e r C lock1 ’tick)))

The following function takes a transition T and returns a method that can compute a justification
in an implication chain (for applying a transition implication in a link in the chain).

define trans :=

lambda (T)

method (premise goal)

lvi

l e t {given := lambda (P)

(get-property P no-renaming Transition-Path.Theory);

chain-last := method (L) (! chain-help given L ’last);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative])}

match T {

(send T0 fr to c) =>

l e t {R := (! chain-last

[t r u e ==> (r e a d y - t o (send T0 fr to c))

[Ti c k e r . ready-to-send]])}

(! chain-last

[(premise & R) ==> goal [trans-send]])

| (r e c e i v e T0 id ls fr c) =>

match premise {

(= (c o n f i g T0)

(++ s (++ (Single (a c t o r ’ to ls))

(Single (message ’ fr id c))))) =>

l e t {R := (! chain-last

[t r u e ==> (r e a d y - t o (r e c e i v e T0 id ls fr c))

[Clock1.ready-to-receive]])}

(! chain-last

[(premise & R) ==> goal [trans-receive]])

}

}

Now we can step through the transition sequence in an implication chain:

conclude T0- >T6

l e t {given := lambda (P)

(get-property P no-renaming Transition-Path.Theory);

chain := method (L) (! chain-help given L ’none);

++A := (given [’ ++ Associative]);

++C := (given [’ ++ Commutative]);

A1 := ((c o n f i g T0) = s0 ++ (a c t o r C lock1 (c l o c a l C lock1 z e r o)));

A2 := (r e a d y - t o (c r e a t e T0 Clock1 T i c k e r empty));

A3 := (u n i q u e - i d s (c o n f i g T0) ++ (a c t o r T i c k e r empty))}

(! chain

[(A1 & A2 & A3)

==> ((c o n f i g T1) =

s0 ++ (a c t o r C lock1 (mak e - r e c e p t i v e (c l o c a l C lock1 z e r o))) ++

(a c t o r T i c k e r empty))

[trans-create]

==> ((c o n f i g T1) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 z e r o))) ++

(a c t o r T i c k e r empty))

[Clock1.mak e - r e c e p t i v e ++A]

==> ((c o n f i g T2) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 z e r o))) ++

(a c t o r T i c k e r (mak e - r e c e p t i v e empty)) ++

(message T i c k e r C lock1 ’tick))

[(trans T2)]

==> ((c o n f i g T2) =

(s0 ++ (a c t o r T i c k e r empty)) ++

(a c t o r C lock1 (c l o c a l C lock1 z e r o)) ++

(message T i c k e r C lock1 ’tick))

[Ti c k e r .mak e - r e c e p t i v e ++A ++C]

==> ((c o n f i g T3) =

(s0 ++ (a c t o r T i c k e r empty)) ++

(a c t o r C lock1 (a c c ep t C lock1 (c l o c a l C lock1 z e r o)

Ti c k e r ’tick)))

[(trans T3)]

==> ((c o n f i g T3) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S ze r o)))) ++

(a c t o r T i c k e r empty))

[Clock1. a c c ep t ++A ++C]

==> ((c o n f i g T4) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S ze r o)))) ++

(a c t o r T i c k e r (mak e - r e c e p t i v e empty)) ++

(message T i c k e r C lock1 ’tick))

[(trans T4)]

==> ((c o n f i g T4) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S ze r o))) ++

(message T i c k e r C lock1 ’tick)) ++

(a c t o r T i c k e r empty))

[Ti c k e r .mak e - r e c e p t i v e ++A ++C]

==> ((c o n f i g T5) =

(s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S ze r o))) ++

(message T i c k e r C lock1 ’tick)) ++

(a c t o r T i c k e r (mak e - r e c e p t i v e empty)) ++

(message T i c k e r C lock1 ’tick))

[(trans T5)]

==> ((c o n f i g T5) =

(s0 ++ (a c t o r T i c k e r empty) ++

(message T i c k e r C lock1 ’tick)) ++

(a c t o r C lock1 (c l o c a l C lock1 (S ze r o))) ++

(message T i c k e r C lock1 ’tick))

[Ti c k e r .mak e - r e c e p t i v e ++A ++C]

==> ((c o n f i g T6) =

(s0 ++ (a c t o r T i c k e r empty) ++

(message T i c k e r C lock1 ’tick)) ++

(a c t o r C lock1 (a c c ep t C lock1 (c l o c a l C lock1 (S ze r o))

Ti c k e r ’tick)))

[(trans T6)]

==> ((c o n f i g T6) =

s0 ++ (a c t o r C lock1 (c l o c a l C lock1 (S (S ze r o)))) ++

(a c t o r T i c k e r empty) ++ (message T i c k e r C lock1 ’tick))

[Clock1. a c c ep t ++A ++C]])

