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Abstract. In this paper we focus on the following constrained reachability
problem over edge-labeled graphs like RDF — given source node z, destination
node y, and a sequence of edge labels (a, b, ¢, d), is there a path between the
two nodes such that the edge labels on the path satisfy a regular expression
“Fa.*p. *c.*d.*”. A “*” before “a” allows any other edge label to appear on
the path before edge “a”. “a.*” forces at least one edge with label “a”.
“*7 after “a” allows zero or more edge labels after “a” and before “b”.
Our query processing algorithm uses simple divide-and-conquer and greedy
pruning procedures to limit the search space. However, our graph indexing
technique — based on compressed bit-vectors — allows indexing large graphs
which otherwise would have been infeasible. We have evaluated our approach
on graphs with more than 22 million edges and 6 million nodes — much larger
compared to the datasets used in the contemporary work on path queries.

1 Introduction

With the advent of Semantic Web and RDF, graphs have become richer where edge
labels represent the type of relationship between two nodes which are connected by
that edge. Exploring paths in the graphs has been a well studied problem. Typically
a path query problem either simply asks for existence of any path between two non-
adjacent nodes in the graph (reachability queries), or provides a regular expression
for the path, and asks for all pairs of nodes that have at least one path between
them which satisfies the given regular expression (regular path queries). Constrained
reachability queries ask if the given destination node is reachable from the source
node through a path which satisfies the constraints given in the query. The definition
of constraints depends on the targeted problem, e.g., number of hops, type of edge
labels, or a regular expression etc. Constrained reachability queries find their appli-
cations in a variety of graph databases. Application of label-constrained-reachability
(LCR) queries have been outlined by Jin et al. in [16]. In our work, we have focused
on a different type of constrained reachability problem — label-order-constrained-
reachability (LOCR). Section 2 gives a broad level overview of the prior work done
in these three categories of path queries.
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Motivating Example: Consider a graph database of KEGG* metabolic path-
ways. KEGG dataset has huge directed graphs with nodes as the metabolic com-
pounds, and edge labels as the enzymes which carry out that metabolic process.
Metabolic pathways, compounds, and enzymes among different species are not ex-
actly same. Consider a metabolic path between two compounds (C00267, alpha-D-
Glucose and C00074, Phosphoenolpyruvate) in humans, which is invoked by a series
of enzymes (which are the edge labels on the pathway between the two compounds).
We are interested in finding — (1) if an evidence of a pathway exists between those
two compounds in some other animal, say dog — this is a simple reachability query,
and (2) if one or more of the enzymes on the path between C00267 and C00074
in humans also exist on a path in a dog. Since the pathways may not be exactly
same, we want to know if an enzyme ‘K12407" appears on the path, followed by
enzyme ‘K01810" somewhere on the path, followed by enzyme ‘K00134’ etc. This
constrained reachability query can be expressed as — does there exist any path from
node ‘C00267 to ‘C0007}’, such that the edge labels on the path satisfy a regu-
lar expression “*K12407.* K01810.* K00134.%”? Note that expression “*K12407.*
K01810.* K00134.% is written according to the Perl regular expression syntax. The
“*’ before ‘K12407" allows zero or more other edge labels (enzymes) to appear on
the path before edge label ‘K12407’. ‘K12407 .*’ means, at least one edge with label
‘K12407’ should be present followed by zero or more other edges, before an edge
with label ‘K01810’ appears. Since we are interested in the order in which the edge
labels appear, we call these as label-order-constrained-reachability (LOCR) queries.

Fig. 1. Example Edge-labeled Graph

To explain further, consider a sample graph given in Fig. 1. A regular path query
may ask “what all pairs of nodes have at least one path between them which satisfies
edge-label expression “*a.*b.*c.*72”. The answer to this query is pairs (1, 8), (1,
11), (2, 8), (2, 11), (3, 8), (3, 11), (4, 11), and (4, 8). Note that (4, 8) pair has a
path satisfying “*a.*b.*c.* due to the cycle among nodes 3, 4, 9, and 10. An LOCR
query asks — does there exist any path between nodes 3 and 8 such that the edge-labels
on the path satisfy reqular expression “*a.*b.*c.*”? — answer is Yes. But answer to
another LOCR query — does there exist any path between nodes 3 and 8 such that
the edge labels on the path satisfy reqular expression “*a.*c.*b.*”? —is No.

Path queries and indexing mechanisms have been well studies in the context of
XML data, but each XML document — represented as an XML graph — has smaller
size thereby limiting the number of paths in each graph. For smaller number of nodes
and paths, it is possible to index the paths for path queries. But for other graphs,

4 Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/



specifically like RDF, the number of paths in the graph can be prohibitively large,
which can preclude any path indexing methods. E.g., the RDF graph of DBLP data
with 13 million edges and 5 million nodes has more than 10?° distinct paths. Unlike
previously used path indexing methods, our BitPath indexing and LOCR query
algorithm focuses mainly on building simple but space and time efficient indexes
using compressed bit-vectors. Further, we make use of these compact indexes to
greedily prune the search space and use a divide-and-conquer algorithm to evaluate
the given LOCR query. Section 5 has given details about how compressed bit-vectors
can save significant amount of space for indexing large graphs.
Our main contributions in this work are:

1. A light-weight graph indexing scheme based on compressed bit-vectors — BitPath.

2. A divide-and-conquer query algorithm using greedy-pruning strategy for efficient
pruning of the search space using the aforementioned indexes.

3. Experiments on large graphs — more than 22 million edges and 253 distinct edge
labels. To the best of our knowledge these graphs are the largest amongst the
published literature on path queries.

2 Related Work

We have divided the previous literature on path queries into three main categories.

Reachability Queries: Reachability queries just ask if a source node has any
path to the destination node. By definition, the problem of LOCR queries is not same
as pure reachability queries and hence we do not cover the literature of reachability
queries here. For interested reader, some of the recent work by Yildirim et al [23] and
Schaik et al [22] on reachability queries give an extensive overview of the previous
literature.

Regular Path Queries: The indexing schemes on graphs for evaluating path
queries can be grouped into the following three categories: (1) P-indexes (path
indexes which typically index paths) — Index Fabric [11], APEX index [10], building
equivalence classes of nodes [20,4,17,8,15] etc. Path indexing cannot be used for
RDF graphs as the number of distinct paths are prohibitively large. (2) D-indexes
[18] (node index — used for determining in constant time ancestor-descendant rela-
tionship). (3) T-indexes (for path-pattern queries such as twig in case of XML) [25,
5,6,19,9]. D-indexes and T-indexes can only be used in the context of XML graphs
as it is non-trivial to decide ancestor-descendant relationship in constant time on a
directed graph which does not assume acyclic structure [23]. Bitmapped Path Index
(BPI) [12] and BitCube [24] use bit-vector based indexes. But note that BPI and
BitCube use the bitmapped indexes to index paths in the XML graphs, whereas
BitPath uses compressed bit-vectors to only index the unique edges in the graph.
While a vast number of techniques have been proposed for path indexing in XML
graphs, those approaches cannot be used for general edge-labeled graphs since XML
is widely viewed as tree structured data.

Constrained-Reachability Queries: Jin et al. [16] propose a method for eval-
uating label constrained reachability (LCR) queries. Given a source and destination
node, and a set of edge labels S, does there exist any path between them, such that
each edge label on that path is in S? No labels other than those in S can appear



on that path. This problem is different from LOCR queries in the respect that it
does not impose any order among the edge labels, and it does not allow any edge
labels other than the ones in S to appear on the path. Jin et al. have evaluated their
algorithm on synthetic and real graphs of up to 100,000 nodes and up to 150,000
edges and have compared with DFS and focused-DFS as the baseline methods. Fan
et al [13] have addressed the problem of adding regular expressions and patterns to
the reachability queries. They have evaluated their algorithm on the graphs of up to
1 million nodes and 4 million edges (synthetic). Gubichev and Neumann [14] have
implemented a technique of evaluating path queries over RDF graphs using purely
database style indexing and efficient join processing techniques. Although Gubichev
and Neumann have shown experiments on very large RDF graphs, their queries use
more join-like expressions than rich path-patterns.

3 BitPath Indexes

Let G = (V,E, L, f) be a directed edge labeled graph, where V is the set of nodes,
FE is the set of edges, L is the set of unique edge labels, and f is a edge-labeling
function f : E — L, for each edge (v;, v;).

Before building the BitPath indexes, we transform the given graph into a directed
acyclic graph by collapsing the strongly connected components (SCCs). Since the
LOCR queries specify constraints on the edge labels on the path, it is imperative to
capture the edges (and their labels) that get collapsed in a SCC. First, SCCs in a
graph are identified using Tarjan’s algorithm®. Let z be a new node to represent the
SCC ‘C"’ after collapsing it. For each edge e in C that gets removed as a result of
collapsing the SCC, add a self-edge (z, z) with label f(e) in the graph. The purpose
of adding self-edges with same edge-labels is to keep track of the edge labels that
appear in a given SCC. These edges help in determining paths going through an
SCC without having to traverse the entire SCC subgraph at query time.

:the_thirteenth_floor

Node N-SUCC-E  N-PRED-E
weleasedin the_thiteenth floor 111111 oooooo | Edge Label  EL-ID
1999" 000000 110100 releasedin 100100
‘the_matrix 001110 010000 :similar_to 011000
‘the_matrix_reloaded 000000 011000 rdf:type 000011
‘movie 000000 010011

:the_matrix_reloaded

Fig. 2. BitPath Indexes using Compressed Bit-vectors

A label-order-constrained-reachability (LOCR) query requires knowledge of the
relative order of edge labels occurring on a given path. As pointed out in Section 1
and 2 previously, it is computationally infeasible to index paths of the order of 10%°
or more due to time and space constraints. We solve the problem of LOCR queries
by creating four types of indexes on a graph, and using a query answering algorithm,
based on a combination of greedy-pruning and divide-and-conquer method. The four
types of indexes are as follows:

2 http://en.wikipedia.org/wiki/Tarjan’s_strongly_connected_components_algorithm



1. EID (edge-to-ID): Each edge ¢ € E is mapped to a unique integer ID. For
instance, for the graph shown in Fig. 2, edge (:the_matriz, :movie) with label
rdf:type is mapped to ID 5.

2. N-SUCC-E (node’s successor edges): For each node, we index IDs of all the
successor edges, i.e., edges that will get visited if we traverse the subgraph under
the given node. The self edges added to the graph as a result of collapsing an
SCC can be handled trivially by examining the head and tail of the given edge.
In Fig. 2, node :the_thirteenth_floor will have edge IDs 1, 2, 3, 4, 5, 6 in its
successor list.

3. N-PRED-E (node’s predecessor edges): Similarly, for each node we index the
predecessor edges, i.e., edges that will get visited if we make a backward traversal
on the entire subgraph above the given node. In Fig. 2, node :mowvie will have
edge IDs 2, 5, 6 in its predecessor list.

4. EL-ID (edge label to edge ID): For each unique edge label I € L, we index IDs
of all the edges in E which have edge label [. In Fig. 2, edge label rdf:type will
have IDs 5 and 6 in its list.

In practice, we use bit-vectors of length |E| (total number of edges in the graph),
for building N-SUCC-E, N-PRED-E, and EL-ID indexes. Each bit position in the
bit-vector corresponds to the unique ID assigned to an edge as per the EID index.
Fig. 2 shows the indexes for the given example graph. We apply run-length-encoding
on N-SUCC-E and N-PRED-E indexes of each node depending on the compression
ratio. Typically the unique edge labels in the graph are much fewer compared to
the number of nodes. Hence in an EL-ID index of an edge label, there are many
more interleaved 0s and 1s as compared to an N-SUCC-E or N-PRED-E index,
which precludes the benefit of run-length-encoding. Hence we do not apply run-
length encoding on the EL-ID index. Note that at the time of querying we do not
uncompress any compressed indexes. All the algorithms are implemented to perform
bitwise operations on both the gap-compressed indexes as well as non-compressed
indexes.

3.1 BitPath Index Creation Procedure

We create EID, N-SUCC-E, and EL-ID indexes in one depth-first-search (DFS) pass
over the DAG generated after collapsing the SCCs as outlined previously. N-PRED-
E index is created by making one backward DFS pass on the graph and using the
EID mapping generated in the first pass.

Bit-vector Compression: In the first pass, we find all the nodes with 0 in-
degree (the root nodes). For each root node, we make a DFS pass over the en-
tire subgraph below it. Starting with ID 1, every new edge encountered in the
DFS pass is given a new ID sequentially. For instance, in Fig. 2, starting at root
node :the_thirteenth_floor, we visit edge (:the_thirteenth_floor, “1999”) with label :re-
leasedIn first and assign ID “1” to it. Next when we visit edge (:the_thirteenth_floor,
‘the_matriz) with label :similar_to it is given ID “2”. Since this is a DFS traver-
sal, we continue traversing the subgraph below node :the_matriz, and sequentially
assign ID “3” to next edge visited. While assigning IDs to the edges, we maintain
N-SUCC-E list for each node encountered on the DFS path as well as a stack of
DFS nodes visited on the given path. When an “unvisited” node is encountered, we



add all the outgoing edges of that node in the N-SUCC-E list of each node in the
DFS stack. Once a node is marked “visited”, we build a bit-vector of N-SUCC-E
list. Note that we have already collapsed any strongly connected components in the
graph, hence the current graph is acyclic. If a “visited” node is encountered again in
the DFS walk, we simply add all the edge IDs corresponding to the 1-bit positions
in its N-SUCC-E bit-vector to the N-SUCC-E list of all the nodes in the DFS stack.

Since IDs to the edges are assigned as they are visited, this scheme generates N-
SUCC-E bit-vectors with large gaps for most nodes. A bit-vector with large-gaps is
the one where a lot of Os or 1s appear together, e.g., a bit-vector “111111000001111111”
has large-gaps as opposed “11001010101010” which has small gaps. We make use of
this fact to apply run-length encoding on N-SUCC-E bit-vectors. Note that this was
a heuristic observed for many real-life graphs, and it is possible to generate a patho-
logical graph where run-length encoding does not fetch the desired benefit. Since
for a typical RDF or any edge-labeled graph, |L| is much smaller than |V|, EL-ID
index is typically smaller than EID and N-SUCC-E indexes (and even N-PRED-E
discussed below). At the end of the first DFS pass, we get EID, N-SUCC-E, and
EL-ID indexes.

In the second pass, we start from the leaf nodes — nodes with 0 out-degree — and
make a backward DFS traversal on the graph. N-PRED-E index for each node is
built in the same way as the N-SUCC-E index. The only difference is that in the
second pass, we utilize the EID index that was populated in the first pass. Hence
every time we encounter an edge, we simply look up its ID in the EID index and use
it to construct the N-PRED-E index. When a node is marked “backward-visited”
in this pass, we generate its bit-vector N-PRED-E index in the same manner as
N-SUCC-E index. At the end of the second pass, all the indexes are written to the
disk.

4 BitPath Query Algorithm

In an LOCR query (z, y, (a.*b.*c.*....1.*)) — we want to find if there exists any
path between source x and destination y, such that labels (a, b, c,...l) appear on
that path in the given order (other edge labels can appear on this path as well, ref.
Section 1). The “...” denotes that there can be any number of labels specified in the
order-constraint.

m Greedy-pruning

Split on 'b’

Greedy—pruning m Greedy-pruning

-
- N -
i N -

Fig. 3. Divide-and-conquer with Greedy pruning

The evaluation of an LOCR query can be broken down into following steps:

1. Is y is reachable from z?



2. If yes, we want to find if there exists any path between x and y, such that all of
the labels a, b, ¢ ... [ appear somewhere on that path in that order.

3. Suppose there exist more than one paths where label b appears somewhere on
the path. We find an edge (m,n) with label b on one of those paths.

4. Next, we find if there exists any path between x and m, such that label a appears
somewhere on it. If not, go back to Step 3 and choose another edge (s,t) with
label b on another path between z and y.

5. Next we find if there exists a path between n and y, such that labels ¢ ... [ appear
somewhere on it in the given order. If not, go back to Step 3, and choose another
edge (p,q) with label b on a path between x and y and so on.

6. We recursively go through above steps by dividing the query into smaller sub-
queries, until the available search space is exhausted or a satisfying path is found.

Now let us see how we can use the BitPath indexes to carry out above steps in
an efficient manner. N-SUCC-E index of a node gives us all the edges that can be
reached from that node and N-PRED-E index gives the edges that can eventually
lead to a node. If the intersection of N-SUCC-E index of node z and N-PRED-E
index of node y is non-empty, node y is reachable from z. This answers the first step
above. If {N-SUCC-E(z)NN-PRED-E(y)NEL-ID(b)} # ¢, i.e., the intersection of
successor index of x, predecessor index of 4y and EL-ID index of label b is non-empty,
there is at least one path from z to y, where edge label b appears somewhere on
the path. This solves our second step. N-SUCC-E(x), N-PRED-E(y), and EL-ID(b)
are bit-vectors and their intersection requires two bitwise AND operations. Let the
result of this bitwise AND operation be INTSECT.

Position of a 1 bit in INTSECT bit-vector gives EID of an edge with label b. A
reverse look up in the EID index gives us an edge, say (m,n), with label b. This
satisfies the third step above. If {N-SUCC-E(z)NN-PRED-E(m)NEL-ID(a)} #
¢, it means that there exists at least one path between x and m where edge label a
appears somewhere on the path. This addresses the forth step. If we put the earlier
result and this result together, it tells us that there exists at least one path between
x and y, such that edge label a appears somewhere before label b. Recursively, we
solve our fifth step to find if there exists any path between n and y such that edge
labels c...l appear somewhere on it. This procedure is depicted in Fig. 3. This is a
divide-and-conquer binary tree. Note that any subquery (node) in this tree, which
has only one edge label in its sequence is a leaf-node. The total number of nodes
in this tree are 2 x |[{a,b,c,...l}| — 1, where [{a,b, ¢, ...l}| denotes the total number
of edge labels in the LOCR query. The query processing stops when either all the
edges at every subquery in the tree are exhausted, or if a “Yes” answer is found at
all the leaf nodes — which is propagated back to their respective parents recursively.

In the example above, we chose to split the edge label order “a, b, c,...l” on label
b first for the ease of understanding. But for further optimization, we can choose
the split-point depending on the selectivity of the intersection of N-SUCC-E(z), N-
PRED-E(y), and EL-ID for each label in the query®. We will always choose to split
on the edge label with high selectivity. This is the greedy-pruning step, which is
outlined in Algorithm 1.

6 Selectivity is inversely proportional to the number of edges in the intersection — high selectivity means
fewer edges and low selectivity means more edges.



Algorithm 1 greedy_pruning(z, y, label_seq)

1: min_label = 0

2: min_edges = oo

3: for each [ in label_seq do

4: intsect = N-SUCC-E(z) N N-PRED-E(y) N EL-ID(l)
5: if |intsect| < |min_edges| then

6: min_edges = intsect

7 min_label =1

8: return pair(min_edges, min_label)

In Algorithm 1, label_seq is the order of edge labels in the query. If at any given
sub-query node in the divide-and-conquer tree (see Fig. 3) there are more than one
edge labels in the given label_seq, the greedy-pruning strategy takes intersection of
(N-SUCC-E(x) N N-PRED-E(y) N EL-1D(1)) for each label [ (lines 3-7). The
edge label which generates the smallest edge intersection set is denoted as min_label,
and the set of edges as min_edges. The greedy-pruning method returns min_label and
min_edges (Line 8) which are subsequently used to partition the initial query into
two sub-queries.

For typical real life graphs like RDF, there are few distinct edge labels (L is very
small) as compared to the total number of edges E. For instance, the UniProt RDF
graph of 22 million edges has only 91 distinct edge labels. Moreover, the distribution
of these edge labels is not uniform, a large number of edges have few distinct edge
labels. In the UniProt dataset, the edge label “rdf:type” appears on ~5 million edges,
about 10 edge labels appear on 1 million edges each and about 20 edge labels occupy
~100,000-200,000 edges each. We exploit this skewed label distribution to effectively
prune the potentially large search space of edges. The skewed edge distribution
holds true for most real life graphs, but it is possible to synthetically build graphs
where there is one root node, one sink node, and a set of edge labels that follow
uniform distribution. For such a graph, given the root and sink nodes and a list of
edge labels in an LOCR query, the first step of greedy_selection will not be able to
achieve any pruning because every edge will be in the N-SUCC-E index of source
node and N-PRED-E index of the sink node. However, as the divide-and-conquer
tree grows deeper, further sub-queries can exploit the BitPath indexes to prune the
search space, which will preclude exploring all the paths. Algorithm 2 describes the
divide-and-conquer strategy.

For the sake of illustration, let us assume an LOCR query over nodes = and y
and a label order (s, t, u, v, w). To evaluate this query, first Algorithm 2 is called on
2 and y nodes with label_seq containing all the edge labels(s, t, u, v, w). Although
this example considers a sequence for length five, the algorithm is invariant to the
length of the query. Also, an edge label can be repeated any number of times in the
sequence, e.g., (a, b, a, ¢, a,) or (a, a, a, a, b, b). The label_seq can as well be empty,
in which case it simply boils down to a reachability query.

The topological order of nodes gives a hint about the longest incoming path to
any node. If the difference between the topological order of x and y is lesser than the
length of label_seq, it means that there is no path from = to y of length |label_seq|
or more. Divide-and-conquer uses this property to preclude exploring paths shorter
than |label_seq| (Line 2). Using greedy_pruning (line 4) we first get the minimal set
of EIDs (min_edges) such that they are common between the successor edges of z,
predecessor edges of y, and also contain a label min_label € label_seq.



Algorithm 2 divide-and-conquer(z, y, label_seq)

. res = FAIL

if topo_order[y] - topo_order[z] < label_seq.size() then
return FAIL

pair(min_edges, min_label) = greedy_pruning(z, y, label_seq)

if min_edges == ¢ then
return FAIL

if label_seq.size() <= 1 then
return SUCCESS

11: Iseql = get_seq(label_seq.begin(), min_label-1);
12: 1seq2 = get_seq(min_label+1, label_seq.end());

14: for each eid in min_edges do
15: edge e = eid_to_edge(eid) // for edge (k,l), k is the tail, and [ is the head of the edge

16: res = divide-and-conquer(z, e.tail, Iseql)
17: if res == SUCCESS then

18: res = divide-and-conquer(e.head, y, lseq2)
19: if res == SUCCESS then

20: break

21: return res

Let min_label be u. Each edge e in min_edges, has same edge label u on it. Let
e be an edge over nodes (k,!) such that e.tail = k, e.head = [ (line 15). Now the
original query is divided into 2 parts — (1) is there any path from node z to e.tail
such that it satisfies a label order (s, t)?, (2) is there any path from node e.head to
y such that it satisfies a label order (v, w)? If the label_seq is split over s or w, one
of the sub-queries will have an empty label_seq. A sub-query with empty label_seq is
just a reachability query. Such sub-query is skipped as the reachability of the nodes
is previously evaluated in the greedy-pruning step. If the minimum set of edges for
any label in label_seq is empty, it clearly implies that nodes x and y do not have any
path with label [ between them. In this case, we stop exploring the path further and
return (line 7).

Asymptotic Analysis: With respect to the runtime complexity, the in-memory
program stack of the divide-and-conquer algorithm is at most the size of original label
sequence of the query. That is because this is the size of the divide-and-conquer query
tree as shown in Fig. 3.

|E|
Notes: e = ——
1Ll

E = #of edges in graph
L = # distinct edge labels

edges (m p ) have label "a’

edges (s;t;) have label 'b’ Solid arrows indicate edges

edges (u;v ;) have label 'c’ Dotted lines/arcs indicate paths
. edges (p;q ) have label 'd’

EY o
uf’ 2 ﬁé o Each node n, has a path to each of nodes ~ s; and P;
¢ dlq d’l Each node t; has a path to each of nodes uj and P;
Vi V3, 2 3.¥0, None of the nodes Uj has a path to any of nodes B

Fig. 4. Pathological Example for Exponential Behavior
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If we assume a uniform distribution of edge labels in the graph, in the worst
case the divide-and-conquer algorithm can get called as many as (2 x |E|/|L|) times
(Lines 14-20 in Algorithm(2)) for a given call to the divide-and-conquer method. The
worst case complexity of the entire algorithm is O((|E|/|L|)I!et¢!-5¢4l) considering the
recursive calls to the for-loop (Line 14). But this worst case complexity will arise only
when the graph and the paths have a structure as shown Fig. 4. Fig. 4 exemplifies
an LOCR query over nodes = and y and label_seq is (a,b,c,d). The dotted lines
denote a path and solid lines denote an edge. In this graph, all nodes of type n;
(1 <4i<e, e=|E|/|L]) have a path to all nodes s; and p;. All t; nodes have a
path to nodes u; as well as to p;. Since we do not index paths in the graph, the
algorithm cannot know beforehand if edges with labels ¢ and d in the successor list
of nodes n; or t; are on the same path. As shown in the figure, it is possible to
generate such a graph synthetically where the worst case exponential behavior can
be observed. But for all practical purposes, the runtime complexity of the algorithm
is not O((|E|/|L|)!"e*¢!->¢al) due to the skewed distribution of edge labels in the real
world graphs.

The complexity of greedy-pruning is O(|label_seq| * |E|). But since we use bit-
vectors for storing N-SUCC-E, N-PRED-E, and EL-ID indexes, for all practical
purposes greedy-pruning does not imply traversing the entire graph |label_seq| times.

Handling Nodes and Paths in Strongly Connected Components: Since
every node in an SCC can reach every other node in the same SCC, it is difficult to
decide the start and end of a path going through SCC and the order of the edge-
labels on that path — which is required in LOCR query processing. Hence presently we
process the paths going through SCCs by simply checking the self-edges introduced
while merging the SCCs (ref. Section 3).

Let an LOCR query be (z, y, (*a.*b.*c.*d.*e.*)), such that = and y are part of
the same SCC in the original graph. They are represented by node z in the graph
obtained by merging SCCs. For such a query, we simply check if there exist 5 self-
edges (z, z) with labels a, b, ¢, d, and e.

We use this same technique for BitPath as well as the baseline methods used for
performance evaluation, hence for all practical purposes we have sampled queries
from the directed acyclic graph (with self-edges) obtained after merging the SCCs
for the experimental evaluation.

5 Evaluation

BitPath indexing and query processing algorithm is developed in C and compiled
using g++ (v4.4) with -O3 optimization flag. We used an OpenSUSE 11.2 machine
with Intel Xenon X5650 2.67GHz processor, 48 GB RAM with 64 bit Linux kernel
2.6.31.5 for our experiments. Although we used a desktop with 48 GB memory, the
BitPath index size for the datasets is much smaller than that (refer Section 5.4).

5.1 Competitive Methods

Since every RDF graph can be expressed in RDF/XML format, we explored the
options of evaluating LOCR, queries on XML representation of an RDF graph, but
concluded that an LOCR query cannot be faithfully translated into an XPath query.
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As outlined in Section 2, path indexing approaches suggested in the context of
XML/XPath query processing cannot be used to evaluate LOCR queries on general
graphs. RDF graphs can be represented in XML format”, hence we explored the
options of evaluating LOCR This requires translating the given LOCR query into
equivalent XML path query. A faithful translation of an LOCR query into equivalent
query on the XML graph of RDF does not represent a path query. It often has to
be processed using iterative join of two or more tree patterns (twig) queries. Native
XQuery specifications do not support recursive joins of tree pattern queries, where
the number of recursions are not known at the query time. An example of this is
given in Appendix-A. Also the BitPath method of indexing and processing LOCR
queries can be applied to any other edge-labeled directed graph. But any edge-labeled
directed graph — which does not satisfy RDF constraints — cannot be represented
as an XML graph. Hence for competitive evaluation, we used optimized versions of
DFS and BFS as the baseline methods.

1. Optimized DFS (DFS): Given an LOCR query between nodes = and y,
if the out-degree of x is lesser than in-degree of y, we start the DFS walk from =z
and continue until y is reached and the given path satisfies LOCR label_seq. If y’s
in-degree is lesser, we start a reverse-DFS walk from y with reversed order of labels
and continue up to x. This method is referred to as “DFS” in the rest of the text.

2. Optimized-Focused DFS (F-DFS): This method is same as optimized
DFS, but additionally at every node we check the reachability of the destination node
y, (or reachability from node z if we perform reverse DFS), using the intersection
of N-SUCC-E and N-PRED-E BitPath indexes. If y is not reachable from the given
node n, N-SUCC-E(n) N N-PRED-E(y) = ¢. This method is further enhanced
as follows: Maintain a reachability array. The very first time node n is explored,
update reachability[n] to note if y is reachable from n. If node n is visited again
through a different path, next time just look up reachability[n] to decide if the
paths below n should be explored or discontinued.

3. Optimized-Bidirectional-BF'S (B-BFS): In bidirectional BF'S, we traverse
down the subgraph below x and above y one step at a time, maintaining forward and
reverse BFS queues. Each node enqueued in the BFS queue has its own label_seq,
associated with it, which tells which labels in the original sequence have been seen
on a path to node n.

We further optimize bidirectional-BFS as follows: if a node in the BFS queue
is reached through another “better” path (a path is “better” if it has seen more
labels in the LOCR label_seq, before being taken out of the BFS queue, that node’s
label _seq,, is updated with the label_seq seen on the “better” path. In our experience,
the optimized bidirectional BFS performed better than the naive bidirectional BFS
by an order of magnitude. For simplicity the optimized-bidirectional-BFS method is
referred to as “B-BFS” in the rest of the text.

5.2 Datasets and Queries

We used 2 real RDF datasets: RDFized DBLP dataset by LSDIS lab — SwetoDBLP
[2] and a smaller subset of UniProt protein dataset [3]. We also used a synthetically
generated dataset using the R-Mat algorithm [7,1]. R-Mat graph is assigned edge

7 http://www.w3.org/TR/rdf-syntax-grammar/
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labels using Zipf [21] distribution with distribution parameter (s) as 2.95. The sta-
tistical characteristics of these datasets are given in Table 1. “Largest depth” is the
largest depth of a node in the topological sort. Note that edge and node counts given
here are after collapsing the strongly connected components. The original edge and
node counts are only slightly higher. These graphs are much larger as compared to
the previous published results related to path query processing.

Table 1. Datasets Characteristics

#Edges | #Nodes |#Edge labels|Max-indeg|Max-outdeg|Avg-in/outdeg|Largest [SCCs
depth
R-Mat 14,951,226(4,085,180 253 19 13,053 3.65 12 0
UniProt [22,589,927(6,634,185 91 800,127 1046 3.35 10 423
SwetoDBLP|13,378,152(5,458,220 145 907,731 9245 2.44 66 146

We generated two types of queries — (1) those which have a path satisfying
the given LOCR query — positive queries, (2) those which do not have any path
satisfying the LOCR query but the destination node is reachable from the source
node — negative queries.

In all we generated 50K positive and 50K negative queries on the three datasets
using the following procedure: First, 100K paths are generated through a “backward”
traversal over the directed acyclic graph, starting from the leaf nodes. At each node
during the backward traversal, a parent node is selected with either 1) uniform
probability, or 2) probability proportional to the topological order of the node. The
second strategy is incorporated specifically to discover longer paths in the graph.
Subsequently, these paths are used to generate both positive and negative queries.

For positive queries, each edge label appearing on a path is removed with uniform
probability. To generate negative queries, we introduce an extra edge label which
does not appear on the given path and shuffle the edge labels to generate a random
order. Note that this method can still result in incorrect negative queries. Without
the knowledge of all paths between a pair of nodes, it is possible that a randomly
generated negative LOCR query might be satisfied by some other path between the
same pair of nodes. In such cases, we simply discard the query. As outlined previously
in Section 4, most real-life graphs follow a non-uniform the edge-label distribution,
which benefits in the evaluation of LOCR queries using the greedy-pruning strategy.
The plots of edge-label frequencies for each dataset are given in Fig. 5.

Evaluation Metrics: (1) Average time to run queries of the same query-length,
i.e., we grouped queries of same query-length, and computed average query process-
ing time and standard deviation for those queries. Length of the query is |label_seq]|,
e.g., an LOCR query (z, y, (*a.*a.*b.#b. *c. *d. *)) has query-length 6. Since we chose
each label on randomly generated paths with uniform probability, typically an LOCR
query of length 6 was generated from a randomly generated path of length 12.
Observe that the query length does not indicate the length of the actual path in
the graph which satisfies that query. (2) BitPath index construction time for each
dataset. (3) Cumulative size of BitPath indexes for each dataset.

Since we generated the queries with random walks, for the interested reader we
have given the distribution of queries by query length in Appendix-B.
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Fig. 5. Edge Label Frequencies
5.3 Query Performance

We ran the 50K positive and negative queries each on all four methods — BitPath,
DFS, F-DFS, and B-BFS. For long running queries, we set a threshold of 15 min-
utes/query, i.e., if a query ran for more than 15 minutes, it is abandoned. Note the
following:

— For SwetoDBLP’s positive as well as negative queries, DFS as well as F-DFS
methods took significant time to finish on most queries. Hence we abandoned eval-
uating the queries using the two DFS methods on SwetoDBLP.

— For SwetoDBLP’s negative queries, B-BFS was taking significantly longer time
to finish (more than 24 hours for 15K queries), hence we have shown results on only
15K queries.

— For R-Mat’s positive queries, B-BFS was taking long time to finish, hence after
running the process for 24 hours, we abandoned further query processing and have
shown results on 43K queries.

— For R-Mat’s negative queries, B-BFS was extremely slow taking more than 15
minutes for most queries, hence we have shown results only on 980 queries.

Figures 6, 7, and 8 show summarized results of Evaluation Metric (1) as outlined
in the previous subsection. Each graph shows the average runtime (by the tick on
the vertical line) for a group of queries with same query length along with the
standard deviation for that specific group. For example, row 1 column 1 shows
BitPath’s performance on R-Mat dataset for positive queries. It shows that for a
group of queries of length 9, the average query runtime is 0.0003 sec and the standard
deviation for this group of queries is 0.0005 sec. Note that the scale of Y-azis on
each graph is different, e.g., the Y-azis for graph in row 5 column 1 for BitPath’s
performance over SwetoDBLP is from 0-0.1 whereas for graph in row 5 column 2
for B-BFS’ performance on SwetoDBLP is from 0-5.

Further analysis of the results shows: B-BFS has inferior performance on
the R-Mat graphs. This can be attributed to the flatter structure with not many
long paths in R-Mat graphs (refer to Table 1 which shows that the “largest depth”
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of a node is 12), whereas SwetoDBLP graph of similar size and number of nodes
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has deeper structure with a lot of interleaved paths (“largest depth” of a node in
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SwetoDBLP is 66). The flatter structure of R-Mat favors DFS method over B-BFS
while on the other hand DFS method is inferior on SwetoDBLP due to its deeper
structure. Analysis of UniProt graphs shows that it contains many disconnected
subgraphs, as a result of which B-BFS, F-DFS, as well as DFS fair well on this
graph.

B-BFS method delivers acceptable performance on SwetoDBLP graph on positive
queries. Note that this was possible due to our optimized version of B-BFS (ref.
Section 5.1). The naive bidirectional BFS method was not able to deliver same
performance. But as it can be noted, the performance of B-BFS method deteriorates
as the length of the query increases. For negative queries, B-BFS method suffers on
SwetoDBLP graph as it has to explore the entire subgraph between source and
destination node. Note that on all 3 datasets with varying characteristics, BitPath
delivers uniform performance on positive as well as negative queries. On average
BitPath’s performance is 50 to 1000 times better for positive queries, and 1000 to
100k times better for negative queries compared to the baseline methods.

5.4 BitPath Index Size and Construction Time

The BitPath index construction time for R-Mat, UniProt, and SwetoDBLP datasets
is 933 sec, 292 sec, and 809 sec respectively. Since the procedure of merging strongly
connected components (SCCs) is same across all methods, the index construction
time here does not include identification and merging of SCCs.
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The cumulative on-disk size of N-SUCC-E, N-PRED-E, EL-ID and EID indexes
for R-Mat, UniProt, and SwetoDBLP datasets are 3.7 GB, 5 GB, and 3 GB, whereas
the on-disk size of these graphs is 243 MB, 394 MB, and 232 MB respectively.
The uncompressed size of N-SUCC-E and N-PRED-E bit-vector indexes for R-Mat,
UniProt, and SwetoDBLP graphs would have been 15,269 GB, 37,466 GB and 18,255
GB respectively (since each node has a bit-vector index of successor and predecessor
edges, uncompressed size of these indexes in bytes would be #nodes x Fedges x 2
/ 8). Also, if N-SUCC-E and N-PRED-E indexes were stored as pure integer arrays
instead of compressed bit-vectors, they would have taken 2130 GB, 738 GB, and 20
GB for R-Mat, UniProt, and SwetoDBLP graphs respectively. Note that this size is
excluding the size of EL-ID and EID indexes, whereas the cumulative BitPath index
sizes given above include size of all 4 indexes (N-SUCC-E, N-PRED-E, EL-ID, EID).

Thus we have shown that our approach of numbering the edges and applying run-
length-encoding on the N-SUCC-E and N-PRED-E indexes (ref. Section 3) reduces
the on-disk size of indexes by a factor of 7-1000 over naive indexing and storage
methods.

6 Conclusion

In this paper we have addressed label-order constrained reachability queries. This
problem is of specific interest for large graphs with diverse relationships (i.e., large
number of edge labels in the graph). Path indexing methods for the constrained
reachability or regular path queries work well on smaller graphs, but they often face
scalability issues for large real life graphs. Similarly, the complexity of indexing all
paths prohibits its use in practice for graphs which do not assume tree-structure.

We propose a method of building light-weight indexes on graphs using com-
pressed bit-vectors. As shown in our evaluation, compressed bit-vectors reduce the
total size of the indexes significantly. Our divide-and-conquer algorithm along with
greedy-pruning strategy delivers more uniform performance across graphs of different
structural characteristics. We have evaluated our method over graphs of more than 6
million nodes and 22 million edges — to the best of our knowledge, the largest among
the published literature in the context of path queries on graphs. In the future, we
plan to improve this method to process a wider range of path expressions and also
to incorporate ways of enumerating actual path description.
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A LOCR Query for XML representation of RDF

Consider the following RDF /XML representation of a DBLP dataset®. For simplicity
we have three sample entries — “Book1”, “Article2”, and “Article1000”, although the
dataset can contain several such entries, denoted by “......” in the example. The XML
tree representation of this dataset with the three entries is shown in Figure 10. Note
that by default RDF to XML conversion tools do not add ID/IDREFs to cross
reference same URIs in the XML data. The corresponding RDF graph is shown in
Figure 9. The cloud shown in the figure represents many more edges and nodes in
between the citations.

Suppose the RDF graph has a transitive path with edges labeled “cites” from
element “Book1” to element “Article1000”. We are interested in the following LOCR

8 http://www.w3.org/TR/rdf-syntax-grammar/
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query, (Bookl, Article1000, (cites)). Looking at the XML representation of the RDF
graph in Figure 10, there is no such path between element “Bookl” and “Arti-
cle1000”, although such a path may exist between corresponding nodes in the RDF
graph. This example shows that an LOCR query cannot always be translated into
an equivalent path query over XML graph.

Book “Introduction”

) / Wpe
section

Chapter
"Sectionl"

rdf:t}yV \cites figure

Section
"Article2" “Example RDF graph"

rdf:typ \wction

Article
"Section2"

rdf:type wi\les figure

Section
: "Book3" ‘Example XML graph"

section
"Technical"
rdf:type \ﬁguri
Section  CiteS "Example Path Queries"
"Article99"

Fig. 9. Example RDF graph of DBLP data

<DBLP>
<Book rdf:about="Bookl1">
<chapter>
<Chapter rdf:about="Introduction">
<section>

<Section rdf:about="Sectioni">
<cites rdf:resource="Article2"/>
<figure>"Example RDF graph"</figure>
</Section>
</section>
</Chapter>
</chapter>
</Book>
<Article rdf:about="Article2">
<section>
<Section rdf:about="Sectionl">
<cites rdf:resource="Book3"/>
<figure>"Example XML graph"</figure>
</Section>
</section>
</Article>
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<Article rdf:about="Article1000">
<section>
<Section rdf:about="Conclusion">
<cites rdf:resource="Article99"/>
<figure>"Example Path Queries"</figure>

</Section>
</section>
</Article>
</DBLP>
DBLP
Book
Article o
chapter @rdf:about Article
-
Chapt section
rdf:about
@rdr-ahﬁm/ \ e section @rdtabout
section Section
“Article2" Secfion
r
“Introduction” "Article1000"
f: i figure .
@it cigs ¥ @dfabout  gos  figure
Section
"Section2" ~ @rdfresource  “Example XML graph* . .
@rdf:about Section2 ¢ P grap “Technical” @rdf:resource ‘Example Path Queries
cites figure
"Book3"

T T N ———————— “Articleg9"
"Sectionl”  @rdf:resource

"Example RDF graph"

"Article2"

Fig. 10. Example XML representation of RDF graph of DBLP data
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