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1 Introduction

Tuberculosis (TB) is an airborne disease which is a leading cause of death worldwide. According to World
Health Organization, one third of the human population is infected either latently or actively with TB [1].
Mycobacterium tuberculosis complex (MTBC) is the set of species which causes TB. MTBC isolates from TB
patients are genotyped using multiple biomarkers for tracking TB transmission, TB control, and examining
host-pathogen relationships.

Earlier studies have found associations between TB patients and the MTBC strains which infected them.
Hirsh et al. showed that a TB patient’s place of birth can be used to predict the geographic origin of the
MTBC isolate [2]. Gagneux et al. defined the population structure of MTBC strains using six phylogeographic
lineages and showed that these lineages are adapted to particular human populations defined by place of birth
or risk factor [3]. Visual inspection via host-pathogen maps enable making inferences from patient data and
strain lineages [4]. Although names of phylogeographic lineages imply an association between MTBC isolates
and patients’ place of birth, none of these studies combine genetic proximity between MTBC strains and
spatial proximity between TB patients together. In this study, in addition to the distribution of MTBC
isolates to their host’s country of birth, we add genetic proximity, spatial proximity and time into domain
knowledge of host-pathogen association analysis.

Multiple sources of information can be incorporated into data analysis via data fusion [5]. Recently, there
has been considerable work on genomic data fusion [6–8]. In the TB context, Ozcaglar et al. built the tensor
clustering framework (TCF) to cluster MTBC strains using multiple biomarkers simultaneously through
genomic data fusion [9]. Genomic and phenomic data sources are also combined in earlier studies [10] via
genome-phenome data fusion. However, there is no significant work on genome-phenome interactions of
MTBC isolates and TB patients.

In this study, we present host-pathogen associations of tuberculosis by incorporating genetic proximity be-
tween MTBC strains, spatial proximity between TB patients, and time into domain knowledge via Unified
Biclustering Framework (UBF). We simultaneously factorize multiple sources of information in various forms
and obtain biclusters which represent host-pathogen pairs, while keeping pathogens genetically close in order
to estimate most likely mutation events, and keeping hosts spatially close in order to estimate most likely
transmission events. Based on factor matrices of hosts and pathogens, we generate the feature pattern sim-
ilarity matrix of host-pathogen pairs, and find density-invariant biclusters. Finally, we select statistically
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significant biclusters among them and find the most stable host-pathogen associations. We also find host-
pathogen associations within each major lineage. We evaluate biological relevance of statistically significant
biclusters, confirm known host-pathogen associations, and propose new ones.

2 Background

In order to find relationships between MTBC isolates and TB patients, we uniquely identified them by
their characteristics. We represented MTBC strains with a commonly used biomarker, spoligotype, and
represented each patient with their country of birth. Finally, we stated the host-pathogen association analysis
as a biclustering problem. Next, we give a brief background on spoligotyping, biclustering, and explain host-
pathogen association analysis as a biclustering problem.

2.1 Spoligotyping

Spoligotyping is a DNA fingerprinting method of MTBC which exploits the polymorphism in the DR region
consisting of 36 bp of direct repeats separated by 36 to 41 bp of spacers [11]. A spoligotype consists of 43
spacers, and it is represented as a 43-bit binary vector, where zeros represent absence of spacers and ones
represent presence of spacers. Mutations in the DR region can result in loss of spacers, but not gain. This
rule of irreversible mutation of spoligotypes is also known as contiguous deletion assumption [12,13].

2.2 Biclustering

Biclustering is a class of clustering algorithms which perform simultaneous clustering of rows and columns of
a matrix. The term was first coined by Cheng and Church for gene expression data analysis [14]. Following
them, many biclustering algorithms motivated mostly by bioinformatics applications are developed. These
biclustering algorithms include spectral biclustering algorithm by Dhillon et al. [15] and Kluger et al. [16],
Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) by Tanay et al. [17], Coupled Two-Way
Clustering (CTWC) by Getz et al. [18], Binary Inclusion-Maximal biclustering algorithm (BiMax) by Prelic
et al. [19], and densely-connected biclustering (DECOB) by Colak et al. [20]. A great survey by Madeira et
al. details biclustering and existing biclustering algorithms for biological data analysis [21].

2.3 Host-pathogen association analysis: a biclustering problem

Biclustering was initially motivated by gene expression data analysis in order to group genes into subsets of
genes which are coexpressed under certain subsets of conditions. This is equivalent to finding submatrices in
a gene expression matrix such that the submatrix entries follows a cohesive pattern under investigation. In
the TB context, the genes of microarray data maps to spoligotypes of MTBC strains, and the conditions of
microarray data maps to country of birth of TB patients. The resulting host-pathogen matrix of tuberculosis
expresses the association level of a spoligotype to a country.

In the case where the original host-pathogen matrix is extended or concatenated with other matrices via
data fusion, we use feature patterns for spoligotypes and countries. We first extract feature patterns for
each spoligotype of MTBC strains and for each country of birth for TB patients. The association level of a
spoligotype and a country is calculated as the cosine similarity of their feature pattern vectors. This final
form of host-pathogen matrix of tuberculosis expresses association level of host-pathogen pairs, and is in the
correct form to be analyzed via biclustering.
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Figure 1: Host-pathogen tensor (HPT). The first mode represents spoligotypes, the second
mode represents countries, and the third mode represents time. This HPT is of the
form Spoligotypes × Countries × Time.

In the next section, we present the methods used for host-pathogen association analysis. We first give details
about the patient dataset. Then, we present the calculation of genetic proximity matrix and spatial proximity
matrix used in data fusion. Finally, we present the steps of Unified Biclustering Framework (UBF).

3 Methods

3.1 The dataset

The NYC dataset consists of 4876 patients in the United States diagnosed between 2001 and 2007. The
spoligotype of MTBC strains and their host’s country of birth are available in the dataset, along with the date
of diagnosis. There are 858 unique spoligotypes in the original dataset. MTBC strains are labeled by major
lineages based on their spoligotypes using Conformal Bayesian Network (CBN) model [22], and by KBBN
sublineages using the Knowledge-based Bayesian Network (KBBN) model [23]. We refer to spoligotypes using
shared type numbers, or SIT numbers using SITVITWEB database [24]. If the spoligotype is not assigned
to an ST number by SITVITWEB, then we assign a unique UST number, where U denotes unknown ST.
We first filter this data such that there are at least 2 patients from each country, and at least two patients
infected with each strain. After filtering the dataset, there remains 4301 patients, 311 spoligotypes, and 104
countries. Using this filtered dataset, we construct the host-pathogen tensor (HPT) of the form Spoligotypes
× Countries × Time. The final HPT is denoted as X ∈ R(I=311)×(J=104)×(K=7). The host-pathogen tensor
(HPT) is shown in Figure 1.

3.2 Distance matrices

In the host-pathogen tensor, the first mode represents pathogen attributes, in this case spoligotypes. Genetic
proximity of spoligotypes can be found using genetic distance measures. Hosts with genetically close spolig-
otypes are more likely to be involved in the same mutation event. Similarly, the second mode represents
host attributes, in this case country of birth. Proximity of countries can be found based on neighbour-
hood. Patients from close countries based on the proximity values are more likely to be involved in the same
transmission event.
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3.2.1 Genetic proximity matrix

Given 311 distinct spoligotypes, we define a genetic proximity measure between them. Mutation of spolig-
otypes is based on the Contiguous Deletion Assumption (CDA), which states that one or more contiguous
spacers can be deleted in a mutation event, but not gained. Let si represent spoligotype i, and let si → sj rep-
resent the mutation of spoligotype si into spoligotype sj . Then, we define the CDA matrix, which summarizes
contiguous deletion assumption, as follows:

CDA(si, sj) =

{
true, if si → sj or sj → si

false, otherwise.

Let H(si, sj) be the Hamming distance between spoligotypes si and sj , as defined in [12]:

H (si, sj) =

43∑
r=1

| sir − sjr |

where sir represents the value of r−th spacer of spoligotype si. Then, we define the genetic proximity matrix
PG as follows:

PG(si, sj) =


1

1 +H(si, sj)
, if i 6= j, CDA(si, sj), H(si, sj) ≤ 10

1, if i = j

0, otherwise.

Genetic proximity matrix PG has values inversely proportional to the Hamming distance between two spoligo-
types, as long as the Hamming distance between them is at most 10. For spoligotype pairs with H(si, sj) > 10,
the genetic proximity is set to zero. As a result, genetic proximity matrix reflects the likelihood of two different
pathogens being involved in the same mutation event.

3.2.2 Spatial proximity matrix

Given 104 countries, we first define the Country Neighbourhood Matrix (CNM). Given two countries Ci and
Cj , the CNM is defined as follows:

CNM(Ci, Cj) =

{
1, if Ci and Cj are neighbours

0, otherwise.

Let L(Ci, Cj) be the length of shortest path from Ci to Cj based on Dijkstra’s shortest path algorithm on
CNM [25]. Then, we define the spatial proximity matrix PS as follows:

PS(Ci, Cj) =


1

1 + L(Ci, Cj)
, if i 6= j, L(Ci, Cj) ≤ 3

1, if i = j

0, otherwise.

Spatial proximity matrix PS has values inversely proportional to the length of shortest path between two
countries, as long as the shortest-path length is at most 3. For country pairs with shortest-path length
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Figure 2: Unified Biclustering Framework (UBF). In the first step, the data is generated as a
matrix, a tensor, a coupled matrix-matrix, or a coupled matrix-tensor. In the second
step, the data in various forms are factorized. In the third step, feature pattern
similarity matrix is generated using the factor matrices of the decomposition. In the
fourth step, we bicluster data points using density-invariant biclustering algorithm.
In the final step, we find the most stable biclusters using average best-match score.

L(Ci, Cj) > 3, the proximity between two countries is set to zero. As a result, spatial proximity matrix
reflects the likelihood of patients from two countries being involved in the same transmission event.

3.3 UBF: Unified Biclustering Framework

In order to analyze host-pathogen associations using various forms of the raw dataset, we propose the Unified
Biclustering Framework (UBF). Based on this framework, we generate the data in the first step, which can be
a matrix, a tensor, a coupled matrix-matrix, or a coupled matrix-tensor. In the second step, we decompose
the dataset according to its form. In the third step, we generate the feature pattern similarity matrix. In
the fourth step, we run the density-invariant biclustering (DIB) algorithm on the feature pattern similarity
matrix. Finally, we find statistically significant biclusters and evaluate their biological relevance. Figure 2
shows the steps of UBF. The software for UBF is available at http://sourceforge.net/projects/ubf/. Next,
we give the details of each step.

3.3.1 Data generation

The host-pathogen tensor X ∈ RI×J×K can be coupled with genetic proximity matrix Y ∈ RI×M and spatial
proximity matrix Z ∈ RJ×N . This flexibility leads to different data configurations which allows simultaneous
factorization of different data blocks. Possible data configurations are shown in Figure 3. In data configuration
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1, the host-pathogen tensor X is summed and contracted along the time mode, and X̂ ∈ RI×J is obtained
and used without factorization. In data configuration 2, the original host-pathogen tensor X is used. In
data configuration 3, genetic proximity matrix Y is coupled with the host-pathogen tensor X in the first
mode, incorporating the genetic distance into domain knowledge. In data configuration 4, spatial proximity
matrix Z is coupled with the host-pathogen tensor X in the second mode, incorporating the spatial distance
into domain knowledge. In data configuration 5, genetic proximity matrix Y and spatial proximity matrix Z
are coupled with the host-pathogen tensor X in the first and second mode respectively, incorporating both
the genetic distance and spatial distance into domain knowledge. In data configuration 6, the host-pathogen
tensor X is contracted and summed along the time mode, keeping the genetic proximity matrix Y and spatial
proximity matrix Z coupled with the contracted host-pathogen tensor, which is now the matrix X̂. We use
all six configurations to find biclusters to associate spoligotypes and country of birth of tuberculosis patients,
and test the effect of distance measures and time on detected groups.

3.3.2 Data factorization

In the second step of UBF, we factorize the dataset according to its form. If the data is a matrix, we use it
as is. If it is a tensor, we use tensor decomposition methods, PARAFAC and Tucker3, and find the factor
matrices for each mode. When the dataset is a coupled matrix-matrix or matrix-tensor, then we need to
simultaneously factorize multiple matrices and/or tensors. We adopt the alternating least squares approach
to solve coupled data factorizations. Next, we briefly outline the algorithms we use for coupled matrix-matrix
factorization and coupled matrix-tensor factorization.

3.3.2.1 Coupled matrix-matrix factorization (CMMF): Coupled matrices are simultaneously fac-
torized using the CMMF ALS algorithm, which we outline next.

CMMF ALS: The host-pathogen tensor contracted along the time mode becomes the matrix X̂ ∈ RI×J .
Genetic proximity matrix Y ∈ RI×I and spatial proximity matrix Z ∈ RJ×J are approximated as in the
system of equations (1).

X̂ ≈ AB′

Y ≈ AV′

Z ≈ BW′ . (1)

We want to minimize the following loss function L1, the sum of Frobenius norm of residuals for each data
block:

L1 = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F . (2)

To minimize L1, we first initialize the factor matrices A,B,V,W using truncated SVD, and then alternately
minimize the loss function by fixing one of them at a time.
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Figure 3: Data configurations. The mode name S represents spoligotypes, C represents coun-
tries, and T represents time in years. The first configuration is a raw Spoligotypes×
Countries matrix decomposed using Matrix Biclustering Framework (MBF) as part
of UBF. The second data configuration includes time information as the third mode
of the tensor decomposed using Tensor Biclustering Framework (TBF) as part of
UBF. Third, fourth and fifth data configurations are the results of concatenating
the genetic proximity matrix, spatial proximity matrix, and both respectively, to the
host-pathogen tensor. They are decomposed using Coupled Matrix-Tensor Biclus-
tering Framework (CMTBF) as part of UBF. Finally, in data configuration 6, we
exclude time information and decompose the resulting data using coupled matrix-
matrix biclustering framework (CMMBF) as part of UBF.
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min
A,B,V,W

||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F

min
A,B,V,W

tr
((

X̂−AB′
)(

X̂′ −BA′
))

+ tr ((Y −AV′) (Y′ −VA′))

+ tr ((Z−BW′) (Z′ −WB′))

min
A,B,V,W

tr
(
X̂X̂′

)
− 2tr

(
BA′X̂

)
+ tr (AB′BA′) + tr (YY′)− 2tr (VA′Y) +

tr (AV′VA′) + tr (ZZ′)− 2tr (WB′Z) + tr (BW′WB′)

min
A,B,V,W

− 2tr
(
BA′X̂

)
− 2tr (VA′Y)− 2tr (WB′Z) + tr (AB′BA′) + tr (AV′VA′)

+ tr (BW′WB′) (3)

Therefore, the objective function (3) is:

L = −2tr
(
BA′X̂

)
− 2tr (VA′Y)− 2tr (WB′Z) + tr (AB′BA′) + tr (AV′VA′)

+tr (BW′WB′) . (4)

To minimize the loss function for A,B,V,W after fixing other factor matrices, we take the derivative of
objective function L in Equation (4), and set it to zero for each factor matrix, which gives the following
update rules of matrices in CMMF ALS:

Update for A:

∂L

∂A
= −2X̂B− 2YV + 2AB′B + 2AV′V = 0

=⇒AB′B + AV′V = X̂B + YV

A =
(
X̂B + YV

)
\ (B′B + V′V)

Update for B:

∂L

∂B
= −2X̂′A− 2ZW + 2BA′A + 2BW′W = 0

=⇒BA′A + BW′W = X̂′A + ZW

B =
(
X̂′A + ZW

)
\ (A′A + W′W)

Update for V:

∂L

∂V
= −2Y′A + 2VA′A = 0

=⇒VA′A = Y′A

V = (Y′A) \ (A′A)

Update for W:

∂L

∂W
= −2Z′B + 2WB′B = 0

=⇒WB′B = Z′B

W = (Z′B) \ (B′B)
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where \ represents right matrix division. The complete CMMF ALS procedure is summarized in Algorithm 1.
In this algorithm, the function svd mmf(X̂, Y, Z) initializes the factor matrices A,B,V,W using truncated
SVD with min(J,M,N) components.

Algorithm 1 CMMF ALS(X̂ ∈ RI×J,Y ∈ RI×M,Z ∈ RJ×N)

1: [A, B, V, W] = svd mmf(X̂, Y, Z)
2: loss(current) = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F
3: loss(prev) = loss(current)
4: count = 0
5: while ((count == 0) || (0 < count ≤ 103 && |loss(current)−loss(prev)|

loss(prev) > 10−8)) do
6: count+ +
7: // Solve for A

8: A =
(
X̂B + YV

)
\ (B′B + V′V)

9: // Solve for B

10: B =
(
X̂′A + ZW

)
\ (A′A + W′W)

11: // Solve for V
12: V = (Y′A) \ (A′A)
13: // Solve for W
14: W = (Z′B) \ (B′B)
15: loss(prev) = loss(current)
16: loss(current) = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F
17: end while

3.3.2.2 Coupled matrix-tensor factorization (CMTF): Coupled matrices and tensors can be si-
multaneously factorized. For this purpose, we used modifications of PARAFAC and Tucker3 methods.
CMTF PARAFAC ALS decomposes the tensor using PARAFAC while factorizing the coupled matrices si-
multaneously. CMTF PARAFAC ALS algorithm and its variations exist in the literature. We built another
algorithm, extension of Tucker3 to coupled matrix-tensor factorization. CMTF Tucker ALS algorithm de-
composes the tensor using Tucker3, while simultaneously factorizing the coupled matrices. In the next section,
we give the details of these algorithms.

CMTF PARAFAC ALS: Given the host-pathogen tensor X ∈ RI×J×K coupled with genetic proximity
matrix Y ∈ RI×I and spatial proximity matrix Z ∈ RJ×J , we approximate them as follows:

X(1) ≈ A (C�B)
′

Y ≈ AV′

Z ≈ BW′ (5)

where � denotes the Khatri-Rao product. We want to minimize the following loss function which is the sum
of squared Frobenius norm of residuals for each data block:

L2 = ||X(1) −A (C�B)
′ ||2F + ||Y −AV′||2F + ||Z−BW′||2F . (6)

CMTF PARAFAC ALS is also known as CMTF ALS algorithm in the literature, which is detailed in earlier
studies [26]. Therefore, we skip the details of the algorithm, and only focus on the update step for each
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factor matrix. Minimization for A,B,C,V,W alternately returns the following updates at each step of
CMTF PARAFAC ALS:

Update for A:

min
A
||X(1) −A (C�B)

′ ||2F + ||Y −AV′||2F

min
A
|| [X(1) Y]︸ ︷︷ ︸

T

−A
[
(C�B)

′
V′
]︸ ︷︷ ︸

K

||2F

=⇒A = (TK′) / (KK′)

Update for B:

min
B
||X(2) −B (C�A)

′ ||2F + ||Z−BW′||2F

min
B
|| [X(2) Z]︸ ︷︷ ︸

T

−B
[
(C�A)

′
W′]︸ ︷︷ ︸

K

||2F

=⇒B = (TK′) / (KK′)

Update for C:

min
C
||X(3)︸︷︷︸

T

−C (B�A)
′︸ ︷︷ ︸

K

||2F

=⇒C = (TK′) / (KK′)

Update for V:

min
V
||Y −AV′||2F

=⇒V = ((A′A) \ (A′Y))
′

Update for W:

min
W
||Z−BW′||2F

=⇒W = ((B′B) \ (B′Z))
′

CMTF Tucker ALS: Next, we extend Tucker3 method to CMTF Tucker ALS for coupled matrix-tensor
decomposition. This algorithm comes with the flexibility of factorizing the tensor using different number of
components for each mode, while simultaneously factorizing the coupled matrices. The host-pathogen tensor
X ∈ RI×J×K , genetic proximity matrix Y ∈ RI×I and spatial proximity matrix Z ∈ RJ×J are approximated
as in the system of equations (7).

X(1) ≈ AG(1) (C′ ⊗B′)

Y ≈ AV′

Z ≈ BW′ (7)

where ⊗ denotes the Kronecker product. Note that in the Tucker3 model, the factor matrices A ∈ RI×P ,
B ∈ RJ×Q, C ∈ RK×R are orthogonal. Then, tensor X ∈ RI×J×K can be decomposed using a (P,Q,R)-
component Tucker3 model, while simultaneously factorizing Y ∈ RI×I and Z ∈ RJ×J with the factor matrices
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of the shared mode. We want to minimize the loss function L3 in Equation (8), which is the sum of squared
Frobenius norm of residuals for each data block.

L3 = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F . (8)

To minimize L3, we first initialize the factor matrices A,B,V,W using truncated SVD, and then alternately
minimize the loss function for one of the variables at a time, while fixing the other variables. The following
steps in Equation (9) reformulate the minimization of the loss function.

min
A
||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F

min
A
||
[
X(1) Y

]
−
[
AG(1) (C′ ⊗B′) AV′

]
||2F

min
A
||
[
X(1) Y

]
−

AA′X(1) (CC′ ⊗BB′)︸ ︷︷ ︸
M1

AV′

 ||2F
min
A
||
[
X(1) Y

]
− [AA′M1 AV′] ||2F

min
A

+ tr
(([

X(1) Y
]
− [AA′M1 AV′]

) ([
X(1) Y

]′ − [AA′M1 AV′]
′
))

min
A

+ tr
([

X(1) Y
] [

X(1) Y
]′)− 2tr

([
X(1) Y

]
[M′

1AA′ ; VA′]
)

+ tr ([AA′M1 AV′] [M1AA′ ; VA′])

min
A
− 2tr

([
X(1) Y

]
[M′

1AA′ ; VA′]
)

+ tr (AA′M1M
′
1AA′ + AV′VA′)

min
A
− 2tr

(
X(1)M

′
1AA′ + YVA′

)
+ tr (AA′M1M

′
1AA′ + AV′VA′)

min
A
− 2tr

(
X(1)M

′
1AA′

)
− 2tr (YVA′) + tr (AA′M1M

′
1AA′) + tr (AV′VA′)

min
A
− 2tr (M1M

′
1AA′)− 2tr (YY′AA′) + tr (A′M1M

′
1A) + tr (AA′YY′AA′)

min
A
− 2tr (A′M1M

′
1A)− 2tr (A′YY′A) + tr (A′M1M

′
1A) + tr (A′YY′A)

min
A
− tr (A′M1M

′
1A)− tr (A′YY′A) (9)

s.t. A′A = I

where M1 = X(1) (CC′ ⊗BB′). The Lagrangian of this function is:

LA = −tr (A′M1M
′
1A)− tr (A′YY′A) + tr (λ (A′A− I))

where λ are the Lagrangian multipliers for the orthogonality constraint A′A = I. The derivative of LA with
respect to A set to zero returns the following equation:

∂LA

∂A
= −2M1M

′
1A− 2YY′A + λ (2A) = 0

=⇒ (M1M
′
1 + YY′) A = λA (10)

The optimal solution of (9) must satisfy Equation (10). Thus, A is composed of first P largest eigenvectors
of (M1M

′
1 + YY′). We denote it as follows:
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A = EVD (M1M
′
1 + YY′, P ) . (11)

Similarly, for the second mode, we write the loss function L3 in Equation (8) by matricizing the tensor along
the second mode. Then, the objective function is:

min
B
− tr (B′M2M

′
2B)− tr (B′ZZ′B) (12)

s.t. B′B = I

where M2 = X(2) (CC′ ⊗AA′). The Lagrangian of this objective function is:

LB = −tr (B′M2M
′
2B)− tr (B′ZZ′B) + tr (λ (B′B− I))

where λ are the Lagrangian multipliers for the orthogonality constraint B′B = I. The derivative of LB with
respect to B set to zero returns the following equation:

∂LB

∂B
= −2M2M

′
2B− 2ZZ′B + λ (2B) = 0

=⇒ (M2M
′
2 + ZZ′) B = λB

which means that B is composed of first Q largest eigenvectors of (M2M
′
2 + ZZ′). We denote it as follows:

B = EVD
(
M2M2

′ + ZZ′, Q
)

. (13)

For the uncoupled third mode, we write the objective function L3 in Equation (8) by matricizing the tensor
along the third mode. The objective function is as follows:

min
C
− tr (C′M3M

′
3C) (14)

s.t. C′C = I

where M3 = X(3) (BB′ ⊗AA′). The Lagrangian of this function is:

LC = −tr (C′M3M
′
3C) + λ (tr (C′C− I)) .

The derivative of LC with respect to C set to zero returns the following equation:

∂LC

∂C
= −2M3M

′
3C + λ (2C) = 0

=⇒M3M
′
3C = λC

which means that C is composed of first R largest eigenvectors of M3M
′
3, or equivalently, first R left singular

vectors of M3. We denote it as follows:
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C = SVD (M3, R) . (15)

The complete CMTF Tucker ALS procedure using these update rules is summarized in Algorithm 2. Note
that the function call hosvd Tucker(X, [P,Q,R]) at the beginning of the algorithm initializes factor matrices
via truncated SVD using P,Q,R components respectively for each mode. The function unfoldall(X)

matricizes the tensor along each mode.

Algorithm 2 CMTF Tucker ALS(X ∈ RI×J×K,Y ∈ RI×M,Z ∈ RJ×N, [P,Q,R])

1: [A, B, C, G] = hosvd Tucker(X, [P,Q,R]);
2: V = ((A′A)\(A′Y))′

3: W = ((B′B)\(B′Z))′

4: [X(1),X(2),X(3)] = unfoldall(X)

5: [G(1),G(2),G(3)] = unfoldall(G)

6: loss(current) = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F
7: loss(prev) = loss(current)
8: count = 0
9: while ((count == 0) || (0 < count ≤ 103 && |loss(current)−loss(prev)|

loss(prev) > 10−8)) do
10: count+ +
11: // Solve for A
12: M1 = X(1) (CC′ ⊗BB′)

13: A = EVD
(
M1M1

′ + YY′, P
)

14: // Solve for B
15: M2 = X(2) (CC′ ⊗AA′)

16: B = EVD
(
M2M2

′ + ZZ′, Q
)

17: // Solve for C
18: M3 = X(3) (BB′ ⊗AA′)
19: C = SVD (M3, R)
20: // Solve for V
21: V = ((A′A)\(A′Y))′

22: // Solve for W
23: W = ((B′B)\(B′Z))′

24: loss(prev) = loss(current)
25: loss(current) = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F
26: end while

3.3.3 Feature pattern similarity matrix generation

We calculate the similarity of feature patterns of a spoligotype s and country c by calculating cosine similarity
between feature pattern vectors of them. This is calculated in different ways for different forms of input data.
If the input data is a matrix, then the matrix itself is used as the feature pattern similarity matrix (FPSM).
If the data is in tensor form, then FPSM is calculated for PARAFAC as follows. Assume that R-component
PARAFAC model on the data matrix returns factor matrix A ∈ RI×R for the first mode and factor matrix
B ∈ RJ×R for the second mode. Then, we first normalize the rows of A and B, and calculate the feature
pattern similarity matrix FPSM as follows:

FPSMij =


Ai. B′j.

||Ai.|| ||Bj.||
, if N(i, j) > 0

0, otherwise.

(16)
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where N(i, j) represents the number of patients from country j infected with strain i, and Ai. represents
the i-th row of A. This calculation is equivalent to cosine similarity of feature vector of i-th sample of A
and feature vector of j-th sample of B, only if there is at least one patient from country j infected with
strain i. Calculation of feature pattern matrix after applying Tucker3 model is slightly different. Assume
that (P,Q,R)-component Tucker3 model on the data matrix returns factor matrix A ∈ RI×P for the first
mode, factor matrix B ∈ RJ×Q for the second mode, and the core tensor G ∈ RP×Q×R. First, we contract
and sum the core tensor G along the third mode and obtain Ĝ matrix to calculate the level of interaction
between the factors of A and B. We normalize the rows of AĜ and B. Finally, we calculate the feature
pattern similarity matrix as the cosine similarity of AĜ and B, in Equation (17).

Ĝpq =

R∑
r=1

Gpqr

FPSMij =


Ai. Ĝ

||Ai. Ĝ||
B′j.
||Bj.||

, if N(i, j) > 0

0, otherwise.

(17)

For coupled factorizations, we use the same equations. After coupled matrix-matrix decomposition, we
use Equation (16) to find the feature pattern similarity matrix. For coupled matrix-tensor factorization, if
CMTF PARAFAC ALS is used for factorization, then FPSM is calculated using Equation (16). If CMTF Tucker -
ALS is used for factorization, then Equation (17) is used to calculate FPSM.

3.3.4 Density-invariant biclustering

In this section, we introduce a novel biclustering algorithm based on an existing algorithm and several graph
attributes. First, we discretize the input matrix and use it as input to BiMax algorithm to find inclusion-
maximal biclusters [19]. Then, we use these biclusters as seed, and find density and variance of these
biclusters, which are bicliques. Finally, we find the density-invariant biclusters among candidate inclusion-
maximal biclusters.

Given the feature pattern similarity matrix X ∈ RI×J , we use density-invariant biclustering to find coherent
biclusters. Let G = (U, V,E) represent a bipartite graph, where U represents the set of genes, or rows in X, V
represents the set of conditions, or columns in X, and E represents the weight of the edges connecting vertex
set U and vertex set V . The weights E are equivalent to values of matrix X. We want to find biclusters of
the following form:

Bi = (Ui, Vi, Ei) (18)

where B =

n⋃
i=1

Bi is a biclustering of rows and columns of X. Each bicluster associates a set of rows, in this

case spoligotypes, to a set of columns, in this case countries. Notice that each bicluster maps to a submatrix
of the original data matrix.

Density-invariant biclustering algorithm first discretizes edge weights using a weight threshold th, and converts
the input matrix into a binary matrix D. Then we use the binary inclusion-maximal biclustering algorithm
(BiMax) by Prelic et al. on this binary matrix and find a set of candidate biclusters [19]. These biclusters
are inclusion-maximal, because the submatrices corresponding to these biclusters are all 1’s, and there is
no other bicluster which is a superset of it. Output of BiMax algorithm after discretization returns a good
starting point for density-invariant biclustering algorithm. Next, we focus on these candidate biclusters. For
this purpose, we define the density and variance of a graph.
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Definition 1. Density of a graph: Density of a graph is the average weight of its edges. Given a graph
G = (V,E) where w(e) represents the weight of edge e ∈ E, the density of graph G is calculated as follows:

d(G) =

∑
e∈E

w(e)(|V |
2

) .

Definition 2. Variance of a graph: Variance of a graph is the standard deviation of its edge weights.
Given a graph G = (V,E) where w(e) represents the weight of edge e ∈ E, the variance of graph G is
calculated as follows:

v(G) =

√
1

|E| − 1

∑
e∈E

(w (e)− w̄)
2

.

Using the density and variance of graphs, we can define a new set of graphs which are bounded by their edge
weights. Next, we define the α-dense β-variant biclusters, or density-invariant biclusters, which are graphs of
the form B = (U, V,E) with density d(B) ≥ α and variance v(B) ≤ β, and similarly for all one-vertex-induced
subgraphs of B = (U, V,E).

Definition 3. Density-invariant bicluster: Let B = (U, V,E) be a bicluster, where edges in E connect
vertices in U to vertices in V . Bicluster B is an α-dense bicluster if d(B) ≥ α, and it is a β-variant bicluster
if v(B) ≤ β. Define B′ as an induced subgraph of B after removing one vertex, either from vertex set U or
vertex set V . Bicluster B = (U, V,E) is an (α, β)-density-invariant bicluster, or density-invariant bicluster, if
B and all its one-vertex-induced subgraphs are α-dense β-variant. In short, bicluster B is a density-invariant
bicluster if the following conditions hold:

1. d(B) ≥ α, v(B) ≤ β

2. d(B′) ≥ α, v(B′) ≤ β ∀B′ = B \ {m} where m ∈ U ∪ V , |B′| > 0 .

Notice that a density-invariant bicluster forms a biclique with average weight bounded from below, and
variance of weights bounded from above. All induced subgraphs obtained after removing one vertex from
a density-invariant bicluster are still α-dense and β-variant, but not necessarily density-invariant biclusters.
At this point, we define strong antimonotonicity of a graph, which was introduced in Pao et al. [27].

Definition 4. Strong antimonotonicity: A graph attribute is strong antimonotone if for each graph
G = (V,E) with the attribute, every induced subgraph G′ = G− {v} has the attribute, where v ∈ V .

According to the definition of strong antimonotonicity, the attribute of being a density-invariant graph or
bicluster is not strongly antimonotone. This is because the vertex-induced subgraphs of the original graph
are α-dense and β-variant, but their vertex-induced subgraphs need not be (α, β)-density-invariant biclusters.

Finally, we iterate over candidate biclusters found as output from BiMax algorithm and find density-invariant
biclusters among these candidate biclusters. This results in strongly connected and more homogeneous
biclusters. Algorithm 3 summarizes DensityInvariantBiclustering procedure.

In DensityInvariantBiclustering algorithm, discretize(X, th) function discretizes the input data matrix
as follows:

Dij =

{
1, if Xij ≥ th
0, otherwise.

BiMax algorithm is run on this binary matrix D, and inclusion-maximal biclusters are obtained. Then, among
these candidate biclusters, density-invariant biclusters are found.
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Algorithm 3 Biclusters = DensityInvariantBiclustering(X ∈ RI×J, th, α, β)

Input: Data matrix X ∈ RI×J , discretization threshold th, density threshold α, variance threshold β.

Output: Density-invariant biclusters Biclusters.
1: D = discretize(X, th)
2: CandidateBiclusters = BiMax(D)
3: Biclusters = ∅
4: for i=1:1:length(CandidateBiclusters) do
5: B(U, V,E) = CandidateBiclusters(i)
6: check1 = (d(B) ≥ α) && (v(B) ≤ β)
7: check2 = true
8: M = U ∪ V
9: for j=1:1:length(M) do

10: m = M(j)
11: B′ = B \ {m}
12: if ((B′ 6= ∅) && ! (d(B′) ≥ α && v(B′) ≤ β)) then
13: check2 = false
14: break
15: end if
16: end for
17: if (check1 && check2) then
18: Biclusters = Biclusters ∪{B}
19: end if
20: end for

3.3.5 Statistically significant bicluster selection

In order to find statistically significant biclusters, we sample 90% of the patients, and rerun the biclustering
algorithm, and obtain 20 new biclusterings. Then, we calculate the stability of each density-invariant bicluster
found in the previous step using average best-match score. First, we calculate the match score of two biclusters
B1 = (G1, C1), B2 = (G2, C2), where G1, G2 represent gene sets and C1, C2 represent condition sets. Similar
to Prelic et al. and Lie et al. [19,28], the match score of biclusters B1 = (G1, C1), B2 = (G2, C2) is calculated
as follows:

match(B1, B2) =
|G1 ∩G2|+ |C1 ∩ C2|
|G1 ∪G2|+ |C1 ∪ C2|

. (19)

Let M =

k⋃
i=1

B∗i be a biclustering of the subsample of the dataset. We compare a bicluster B = (G,C) to all

biclusters in B∗i ∈M , and assign the maximum match value as the best-match score:

best match(B,M =

k⋃
i=1

B∗i ) = max
B∗

i ∈M
match(B,B∗i ) . (20)

Finally, we take the average best-match score of each bicluster B by comparing them to each biclustering
Mi, and obtain the average best-match score of bicluster B as follows:
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# Configuration Method DIB parameters (th, α, β) # DIB

1 MBF 0.80, 0.80, 0.15 8

2
TBF (PARAFAC) 0.98, 0.89, 0.01 170
TBF (Tucker3) 0.60, 0.60, 0.40 5

3
CMTBFg (CMTF PARAFAC ALS) 0.60, 0.60, 0.40 0
CMTBFg (CMTF Tucker ALS) 0.70, 0.70, 0.30 4

4
CMTBFs (CMTF PARAFAC ALS) 0.80, 0.90, 0.10 21
CMTBFs (CMTF Tucker ALS) 0.80, 0.85, 0.15 6

5
CMTBFgs (CMTF PARAFAC ALS) 0.98, 0.99, 0.01 0
CMTBFgs (CMTF Tucker ALS) 0.60, 0.70,0.30 5

6 CMMBF 0.60, 0.60, 0.40 17

Table 1: Biclustering results for each data configuration, including density-invariant bicluster-
ing algorithm parameters and number of density-invariant biclusters (DIB). For TBF,
PARAFAC and Tucker3 model, results are listed separately. Similarly, for CMTBF,
CMTF PARAFAC ALS and CMTF Tucker ALS, results are listed separately. When
there are no stable biclusters with average best-match score ≥ 95%, five most stable
biclusters are picked as the stable biclusters.

average best match(B,

n⋃
i=1

Mi) =

n∑
i=1

best match(B,Mi)

n
. (21)

We pick the biclusters with ≥ 95% average best-match score as statistically significant biclusters, and evaluate
their biological relevance. If there are no significant biclusters, we report top 5 stable biclusters with their
average best-match scores.

4 Results

In order to find host-pathogen associations in tuberculosis patient dataset, we biclustered spoligotypes and
countries using six different data configurations shown in Figure 3. For each data configuration, we followed
the steps of Unified Biclustering Framework (UBF), and found the most stable biclusters. Table 1 shows
the parameters of DensityInvariantBiclustering (th, α, β) and number of density-invariant biclusters for
each data configuration. Note that PARAFAC and Tucker3 variants of TBF, CMTF PARAFAC ALS and
CMTF Tucker ALS variants of CMTBF are listed separately. Next, we evaluate the statistical significance
and biological relevance of biclusters for each data configuration, and find host-pathogen associations within
the whole patient dataset and within each major lineage.

4.1 Biclusters using spoligotypes and country of birth

We first contract and sum the host-pathogen tensor along the time mode and find biclusters based on the
distribution of spoligotypes to countries of birth, as in data configuration 1 in Figure 3. In this setting, no
distance measure or time is added to the domain knowledge. Table 2 shows the density-invariant biclusters.
Bicluster B1 suggests that patients from Haiti are infected with ST1162 strain, a Beijing strain, and ST398,
a LAM4 strain. Bicluster B12 is listed in the supplementary material due to its size: http://tbinsight.cs.
rpi.edu/UBFsupp.rar. This bicluster contains 848 patients from United States who are infected with 63
different strains. One of these strains is the transmissive Beijing strain ST1 which initiated many outbreaks
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Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B11 5
ST1162 East-Asian Beijing

Haiti Americas
ST398 Euro-American LAM4

B13 19

ST265 East-Asian Beijing

China East Asia

ST422 M. bovis BOV 1
ST89 Indo-Oceanic EAI5
ST287 Indo-Oceanic EAI2-Manila
ST1268 Euro-American T5
ST25 East-African Indian CAS1-Delhi
ST732 Euro-American T1

B14 6
ST1908 Euro-American H3

Ecuador Americas
ST58 Euro-American T5

B15 6
ST43 Indo-Oceanic EAI6-BGD1 Dominican

Americas
ST848 Euro-American T2 Republic
ST511 Euro-American H3

B16 2 ST897 Indo-Oceanic EAI2-Manila Philippines Southeast Asia
B17 2 ST447 Euro-American T1 Bangladesh Indian Subcontinent

B18 4
UST251 Euro-American S

Mexico Americas
ST1154 Euro-American LAM9

Table 2: Biclustering results on data configuration 1 using UBF. Biclusters associate spoligo-
types to country of birth of patients. For spoligotypes, SIT number, major lineage
based on CBN, and sublineage based on KBBN are listed. For countries, the name
and the TB continent are listed. Bicluster B16 represents the well-known association
between patients from Philippines and EAI2-Manila strains.

in United States [29,30]. Bicluster B13 shows that patients from China are infected with 7 different strains.
Bicluster B14 shows that ST1908 and ST58 are two Ecuadorian isolates belonging to Euro-American lineage.
Bicluster B16 is a well-known association, and suggests that patients from Philippines are infected with an
EAI2-Manila strain, ST897. Bicluster B18 suggests that Mexican patients, as neighbours of United States,
are infected with UST251 and ST1154, two Euro-American strains. The five most stable biclusters are B16,
B17, B18, B11, B14, and their average best-match scores are in the range [0.1667, 0.2]. One may argue
that biclusters with few patients does not constitute a strong host-pathogen association. This suggests that
TB detection rate should be increased to gather more patient data and make more accurate inferences on
host-pathogen association.

4.2 Incorporating time

The original host-pathogen tensor has time as the third mode. Therefore, when we found biclusters using the
host-pathogen tensor as in data configuration 2 of Figure 3, we account for distribution of spoligotypes to
countries of birth through time, in this case years from 2001 to 2007. When we use PARAFAC to decompose
the host-pathogen tensor, we found 170 density-invariant biclusters. Here, we focus on five most stable
biclusters when PARAFAC model is used. Average best-match scores of these five biclusters range from
0.6915 to 0.7295. The full list of these biclusters can be found in the supplementary material. Bicluster B211
associates Vietnamese patients to 11 strains belonging to Euro-American, East Asian, Indo-Oceanic and
East-African Indian lineages. Bicluster B212 suggests that patients from Peru are infected with 17 different
strains belonging to Euro-American, Indo-Oceanic, and East Asian lineages. Bicluster B214 is shown in
Table 3. There are 111 patients in bicluster B214 from India, Peru and Vietnam, which are infected with 6
Euro-American strains and one East Asian strain. Notice that this East Asian strain is ST1, which is the
transmissive Beijing strain. This suggests that some of the patients in this bicluster must be involved in the
outbreaks in United States initiated by ST1 Beijing strains.

When Tucker3 model is used to decompose the host-pathogen tensor, we find 5 density-invariant biclusters.
Their average-best match scores range from 0.04 to 0.18, which shows that biclusters found using Tucker3
model are less stable compared to the ones found using PARAFAC model. These five biclusters, bicluster
B221 to B225, are listed in the supplementary material. Bicluster B221 suggests that US patients are
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Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B214 111
ST53 Euro-American T1 India Indian Subcontinent
ST17 Euro-American LAM2 Peru Americas
ST1 East Asian Beijing Vietnam Southeast Asia

ST197 Euro-American X3
ST61 Euro-American LAM10-CAM
ST119 Euro-American X1
ST42 Euro-American LAM9

B225 4
ST294 Euro-American H3

Mexico AmericasST290 Euro-American LAM9
ST176 Euro-American LAM6

Table 3: Biclustering results on data configuration 2 using PARAFAC and Tucker3 models via
UBF on the host-pathogen tensor. Bicluster B214 associates patients from India, Peru
and Vietnam to 6 Euro-American strains and the transmissive East Asian Beijing
strain ST1. Bicluster B224 groups Mexican patients infected with three different
Euro-American strains.

infected with 31 different strains, and bicluster B222 suggests that Chinese patients are infected with 11
strains belonging to Euro-American, East-African Indian, and M. bovis lineages. Note that no East Asian
strain is associated with Chinese patients, which suggests that our biclustering analysis on the host-pathogen
tensor is introducing noise when time is added into domain knowledge. Bicluster B225, also listed in Table
3, has 4 patients and suggests that Mexican patients are infected with ST294, ST290 and ST176 strains, all
members of Euro-American lineage.

4.3 Incorporating time and distance measures

Next, we concatenate distance matrices one at a time, and finally both of them, to the host-pathogen tensor.
Concatenation of genetic proximity matrix results in data configuration 3, concatenation of spatial proximity
matrix results in data configuration 4, and concatenation of both matrices results in data configuration 5. We
factorize these matrices using coupled matrix-tensor factorization via CMTF PARAFAC ALS and CMTF -
Tucker ALS, and report statistically significant and biologically relevant biclusters. The full list of biclusters
can be found in the supplementary material.

If we use genetic distance matrix only, factorization via CMTF PARAFAC ALS results in no density-invariant
biclusters. When the coupled matrix-tensor is decomposed via CMTF Tucker ALS, 4 stable clusters are
found, the stability of which range from 0.08 to 0.19. Two of these biclusters, B321 and B323, are listed in
Table 4. Bicluster B321 groups 32 patients from Ecuador, infected with ST53, ST62, ST51, ST1908, which
are all Euro-American strains. Notice that ST53 and ST51 belong to T1 sublineage, which is a class of
ill-defined Euro-American strains. Bicluster B323 contains 4 patients from Mexico, all infected with ST52, a
Euro-American T2 strain.

If we use spatial distance matrix only, factorization via CMTF PARAFAC ALS results in 21 density-invariant
biclusters, and we picked 5 most stable biclusters among them. The stability values of these biclusters range
from 0.26 to 0.32. Table 4 shows 3 of these biclusters. Bicluster B411 suggests that Euro-American LAM2
strain ST908 infects patients from Dominican Republic, Puerto Rico, Trinidad Tobago, and Unites States,
all from Americas. Notice how geographically close countries are collected together in a bicluster in the host-
pathogen association analysis by incorporating spatial proximity into domain knowledge. Bicluster B412
suggests that Euro-American T5 strain ST904 infects patients from Ecuador, Haiti, Trinidad Tobago, and
United States, which are again all in Americas. Bicluster B414 includes strains of both Bicluster B411 and
B412, and combines the two common countries in these biclusters. It suggests that Euro-American T5 strain
ST904 and Euro-American LAM2 strain ST908 infect patients from Trinidad Tobago and United States.
When we factorize the coupled matrix-tensor via CMTF Tucker ALS in UBF, 6 density-invariant biclusters
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Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B321 32

ST53 Euro-American T1

Ecuador Americas
ST62 Euro-American H1
ST51 Euro-American T1

ST1908 Euro-American H3
B323 4 ST52 Euro-American T1 Mexico Americas

B411 6 ST908 Euro-American LAM2

Dominican Rep. Americas
Puerto Rico Americas

Trinidad and Tobago Americas
United States Americas

B412 6 ST904 Euro-American T5

Ecuador Americas
Haiti Americas

Trinidad and Tobago Americas
United States Americas

B414 6
ST904 Euro-American T5 Trinidad and Tobago Americas
ST908 Euro-American LAM2 United States Americas

B421 32 ST1 East Asian Beijing

Taiwan East Asia
Barbados Americas
Dominica Americas
Malaysia Southeast Asia
Myanmar Southeast Asia
Philippines Southeast Asia

B422 27
ST1 East Asian Beijing Malaysia Southeast Asia
ST38 Euro-American X2 Philippines Americas

B425 2 ST93 Euro-American LAM5 Honduras Americas

B525 11

ST167 Euro-American T1

Haiti Americas

ST42 Euro-American LAM9
ST57 Euro-American LAM10-CAM
ST904 Euro-American T5
ST187 M. africanum AFRI 1
ST1867 M. africanum AFRI 1

Table 4: Biclustering results on data configuration 3, 4, 5 using CMTF PARAFAC ALS and
CMTF Tucker ALS algorithms via UBF on the coupled matrix-tensor. Biclusters
B411 and B412 suggests that Euro-American strains ST908 and ST904 infects patients
from four spatially close countries in Americas respectively. Bicluster B421 suggests
that transmissive Beijing strain ST1 is wide-spread and infects patients from three
different TB continents. Bicluster B422 groups patients from two neighbour countries,
Malaysia and Philippines, who are infected with Beijing strain ST1 and X2 strain
ST38.

are found, and we picked 5 most stable biclusters among them, with average best-match score ranging from
0.09 to 0.50. Table 4 shows 3 of these biclusters. Bicluster B421 points out that transmissive ST1 Beijing
strain is wide-spread, and it infects patients from Taiwan, Barbados, Dominica, Malaysia, Myanmar, and
Philippines, which cover 3 different TB continents: East Asia, Americas, and Southeast Asia. This shows
that, even if we use spatial proximity matrix to narrow down transmission events, transmissive ST1 strain
is still associated with patients from multiple TB continents. Bicluster B422 contains 27 patients from
Philippines and Malaysia, both from Southeast Asia, which are infected with ST1 and ST38 strains. Notice
how these countries are grouped together using the spatial proximity matrix. Bicluster B425 consists of 2
patients from Honduras, both infected with Euro-American LAM5 strain ST93.

If we concatenate both genetic and spatial proximity matrices, factorization via CMTF PARAFAC ALS does
not assign any density-invariant biclusters. When the coupled matrix-tensor is decomposed via CMTF Tuc-
ker ALS, we find 5 density-invariant biclusters, with average best-match score values ranging from 0.11 to
0.30. Table 4 shows one of these biclusters. Bicluster B525 contains 11 patients from Haiti which are
infected with Euro-American strains ST167, ST42, ST57, ST904, and M. africanum AFRI 1 strains ST187
and ST1867. The full list of biclusters can be found in supplementary material. Notice that there is no order
in stability of biclusters found using CMTF PARAFAC ALS and CMTF Tucker ALS. However, biclusters
found using CMTF Tucker ALS are more biologically coherent. This shows that that high stability does not
imply biological relevance.
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Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B64 3
ST1391 Indo-Oceanic EAI5

Bangladesh Indian Subcontinent
ST58 Euro-American T1

B66 19

ST1162 East Asian Beijing

Haiti Americas

ST168 Euro-American H3
ST398 Euro-American LAM4
ST57 Euro-American LAM10-CAM
ST874 Euro-American S
UST256 Euro-American H1
ST541 East Asian Beijing
ST1867 M. africanum AFRI 1
ST822 Euro-American LAM9
ST546 Euro-American X3
ST3 Euro-American LAM2

Table 5: Biclustering results on data configuration 6 using CMMF ALS via UBF on the coupled
matrix-matrix. Bicluster B64 groups patients from Bangladesh who are infected with
two strains of ill-defined sublineages: Indo-Oceanic EAI5 strain ST1391 and Euro-
American T1 strain ST58.

4.4 Incorporating distance, but not time

Finally, in the last data configuration, we use genetic distance, spatial distance, but not time. This reduces
the mutation path length and transmission path length, which increases the likelihood of mutation between
the set of strains and transmission between the set of patients. To do so, we contract and sum the host-
pathogen tensor along the time mode, and concatenate the genetic proximity matrix and spatial proximity
matrix. We bicluster spoligotypes and countries using CMMF ALS on this dataset in UBF. There are 17
density-invariant biclusters, and we picked the ones with average best-match score of 90% and above. Full
list of these biclusters are in the supplementary material. Table 5 shows two of these biclusters, B64 and
B66. Bicluster B64 contains 3 patients from Bangladesh infected with Indo-Oceanic EAI5 strain ST1391 and
Euro-American T1 strain ST447. Notice that EAI5 is a generic sublineage of Indo-Oceanic lineage, and T1
is a generic sublineage of Euro-American lineage, and they are both ill-defined. Bicluster B66 contains 19
patients from Haiti infected with Euro-American, East Asian and M. africanum strains. Haiti is an island
next to Dominican Republic and immigrants of Haiti must have brought strains belonging to various lineages.

4.5 Host-pathogen association within each major lineage

The six phylogeographic major lineages determined by CBN are established. Therefore, we subdivide the
patient dataset based on six major lineages, and run UBF on each of them. We used data configuration 6,
since it resulted in both stable and biologically relevant biclusters in the complete patient dataset. We found
the most stable host-pathogen associations for each major lineage and reported their biological relevance.

Table 6 shows some of the most stable and biologically relevant biclusters. The full list of biclusters can be
found in the supplementary material. Bicluster B711 of Euro-American lineage in the list of supplementary
material contains 628 US patients infected with 61 different strains. Bicluster B712 listed in Table 6 suggests a
strong association between Mexican patients and pathogens of three Euro-American strains, S strain UST251,
X2 strain ST478, and LAM9 strain ST1154. Notice that all strains belong to different sublineages of Euro-
American lineage. The average best-match score of this bicluster is 0.7783. Bicluster B721 of Indo-Oceanic
lineage listed in the supplementary material suggests an association between 40 Chinese patients and 16
different Indo-Oceanic strains, belonging to various sublineages. The stability value of 0.9621 suggests that
this is a strong host-pathogen association.

Bicluster B732 listed in Table 6 contains 9 Chinese patients infected with CAS1-Delhi, CAS and EAI5 strains
of East-African Indian lineage. Similarly, bicluster B733 suggests that patients from China and Dominican
Republic are likely to be infected with the following East-African Indian strains: CAS1-Delhi strains ST381
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Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B712 5
UST251 Euro-American S

Mexico AmericasST478 Euro-American X2
ST1154 Euro-American LAM9

B732 9

ST471 East-African Indian CAS1-Delhi

China East Asia

ST25 East-African Indian CAS1-Delhi
ST381 East-African Indian CAS1-Delhi
ST21 East-African Indian CAS
ST203 East-African Indian CAS
UST167 East-African Indian EAI5

B733 11

ST381 East-African Indian CAS1-Delhi
ST25 East-African Indian CAS1-Delhi China East Asia
ST21 East-African Indian CAS Dominican Republic Americas

UST167 East-African Indian EAI5

B741 7

ST1162 East Asian Beijing

Haiti Americas
ST941 East Asian Beijing
ST541 East Asian Beijing
ST1168 East Asian Beijing

B742 212

UST1 East Asian Beijing

United States Americas

ST255 East Asian Beijing
ST260 East Asian Beijing
ST941 East Asian Beijing
ST265 East Asian Beijing
ST190 East Asian Beijing
ST1 East Asian Beijing

B743 291
ST260 East Asian Beijing

China East Asia
ST265 East Asian Beijing

United States Americas
ST1 East Asian Beijing

B751 17

ST325 M. africanum AFRI 1

United States Americas

ST326 M. africanum AFRI 1
ST187 M. africanum AFRI 1
ST181 M. africanum AFRI 1
ST319 M. africanum AFRI 2
ST331 M. africanum AFRI 2
UST229 M. africanum AFRI 2

B761 3
ST479 M. bovis BOV

Dominican Republic Americas
ST481 M. bovis BOV 1

B762 9
ST409 M. bovis BOV 2

United States Americas
ST683 M. bovis BOV 2

Table 6: Biclustering results on data configuration 6 using CMMF ALS via UBF on the coupled
matrix-matrix for each major lineage. Bicluster B712 suggests that Mexican patients
are likely to be infected with UST251, ST478, and ST1154 strains, given that the
pathogen is a Euro-American strain. Bicluster B742 groups 212 US patients and
shows that US patients are commonly infected with Beijing strains, including the
transmissive ST1 strain. 291 patients in bicluster B743 shows that Beijing strains
ST260, ST265 and the transmissive ST1 strain infects both Chinese and US patients.
Biclusters B761 and B762 suggest that, given that MTBC is an M. bovis strain, it
is more likely to infect a patient from Dominican Republic if it is a BOV or BOV 1
strain, and more likely to infect a US patient if it is a BOV 2 strain.
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and ST25, CAS strain ST21, and EAI5 strain UST167. Bicluster B741 suggests that Haitian patients are
infected with the following Beijing strains: ST1162, ST941, ST541, ST1168. Similarly, 212 US patients in
bicluster B742 suggests that US patients are infected commonly with the following Beijing strains: UST1,
ST255, ST260, ST941, ST265, ST190, and the transmissive ST1 strain. 291 patients in bicluster B743 suggest
that both Chinese and US patients are infected with the following Beijing strains very frequently: ST260,
ST265, and the transmissive ST1 strain. This shows that Beijing strains brought to the US by Chinese
immigrants infect both Chinese and US patients in the US.

Bicluster B751 shows that US patients are infected with AFRI 1 strains ST325, ST326, ST187, ST181 and
AFRI 2 strains ST319, ST331, UST229 of M. africanum lineage. Bicluster B761 suggests that patients from
Dominican Republic are likely to be infected with BOV strain ST479 and BOV 1 strain ST481 belonging to
M. bovis lineage. On the other hand, bicluster B762 suggests that US patients are infected BOV 2 strains
ST409 and ST683 belonging to M. bovis lineage. These two biclusters suggest that, given an M. bovis strain,
it is likely to infect a patient from Dominican Republic if it is a BOV or BOV 1 strain, whereas it is more
likely to have infected a US patient if the strain is a BOV 2 strain.

5 Discussion and Conclusion

We developed the Unified Biclustering Framework (UBF) to find host-pathogen associations in tuberculosis
patients. To our knowledge, this is the first study to restate host-pathogen association analysis as a biclus-
tering problem. UBF is flexible in the sense that distance and time can be added into domain knowledge
of data analysis via coupled matrix-matrix and matrix-tensor factorization. This enables genome-phenome
data fusion in one unsupervised learning framework.

Each bicluster refers to a possible host-pathogen association. We found statistically significant biclusters,
some of which represent well-known host-pathogen relationships and some of which reveal new associations.
For instance, bicluster B16 shows the well-known association of patients from Philippines and EAI2-Manila
strains. Similarly, biclusters B742 and B743 shows that many US patients are infected with Beijing strains
including ST1 strain, a well-known initiator of many outbreaks in the US. On the other hand, we also
found new patient-strain relationships via genome-phenome data fusion by adding genetic proximity, spatial
proximity and time into domain knowledge. For instance, bicluster B422 groups patients from two neighbour
countries, Malaysia and Philippines, who are infected with Beijing strain ST1 and X2 strain ST38. Biclusters
B761 and B762 suggest that patients from Dominican Republic are infected with BOV and BOV 1 strains of
M. bovis lineage, whereas US patients are infected with BOV 2 strains of M. bovis lineage. Note that although
we picked statistically significant biclusters, statistical significance does not imply biological relevance [31].
However, these new stable biclusters lead to new host-pathogen associations.

Host-pathogen association analysis can be extended by adding new patient and strain attributes. As future
work, we will add MIRU and RFLP, two biomarkers of MTBC, into this analysis. In addition, we will add
other patient attributes such as age group, ethnicity, homelessness and other risk factors of TB. We will also
speed up UBF using line search in ALS-based coupled factorization algorithms. This will enhance both the
speed and accuracy of coupled factorizations, which will lead to more accurate host-pathogen associations.
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