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Abstract— Mobile robots traversing disaster sites, extrater-
restrial landscapes, and other outdoor environments will en-
counter terrain covered with loose stones or rubble. When
traversing such granular terrain, it will be important for the
robot to have a model of available traction forces that can
be used to plan trajectories and control the robot’s gait as
it crosses the terrain. Interaction with granular terrain is
inherently difficult to model due to the enormous number of
dynamic interactions with and between the many small bodies
involved. In this paper, we explore two probabilistic models of
traction with data from experiments performed with a robotic
foot interacting with a bed of gravel. These models include
Tustin friction and Gaussian processes. We present the results
of these two independent models, as well as a third method
incorporating both.

I. INTRODUCTION

The motion of any mechanical device for which operation
causes contacts between bodies is affected by friction forces.
In some cases understanding the character of friction forces
and how to predict them is critical for high-performance op-
eration [8]. This fact has motivated research in actuators and
transmission [1] and in feedback controllers that minimize
the effects of friction on robot motion - especially stick-slip
transitions, which are mathematically nonsmooth [6], [8].

The focus of this paper is on characterizing the traction
available to mobile robots traversing granular terrain, where
“granular terrain” is ground covered by a layer of loose
stones, and “traction” is the force between the robot and
the ground in the direction that propels the robot. One
application that motivates our research is search-and-rescue
scenarios. For example, a robot must provide aid to people
as quickly as possible, but to do that, it must first traverse
granular terrain such as can be found in the bed of a shallow
river or a pile of rubble from a collapsed building. Another
important application is the control of autonomous vehicles
exploring extra-terrestrial frontiers, where the locomotion
controller should try to avoid foot slippage, since sliding
expends more energy than sticking/rolling contacts.

Future autonomous mobile robots will have non-contact
terrain sensors, such as lidar, and real-time access to a terrain
characteristics database containing a coarse description of
the characteristics of the terrain near the robot, that will be
useful for gait selection or driving speed. The work presented
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Fig. 1: Traction testbed with robotic foot.

here forms the basis of a method that will ultimately provide
a more detailed model of traction that can augment the
information in a terrain database and provide useful input
to a locomotion controller. The data needed to obtain the
traction model are measurements of the contact forces and
the relative contact velocities at the bottom of foot. This data
can be obtained by body pose and joint displacement sensors
and by force/torque sensors in the robot’s feet.

The main contribution of this paper is the investigation
of two methods for modeling friction and their applicability
to granular terrain. First, we consider a parametric model,
the Tustin model [10] for stick/slip friction. This model
is mathematically nonsmooth, but any model that captures
stick-slip phenomena must be nonsmooth. The second model
is a non-parametric Gaussian process (GP) model obtained
from the same data. We assess the ability of both these
models to predict traction forces while sticking or slipping
on various terrain. We also consider a combination of both
methods by using the Tustin model as mean function of the
GP model.

II. BACKGROUND

A. Contact Friction Modeling

Friction models relate forces and relative velocities at
contacts between bodies. Two classes of friction models are
known as viscous and dry friction. The former are best suited
for contacts with a viscous fluid, such as oil or mud, in the
contact interface, while the latter is best suited to contact
interfaces that are dry.

The main variables in friction models are the contact force
F and relative velocity v vectors. It is easiest to express
a friction model in terms of an effective tangent plane in
the contact interface and its normal. As shown in Figure 3,
corresponding components of force and velocity are: Fn, Ft,



vn, and vt, where the subscripts “n” and “t” connote normal
and tangential components, respectively.

In the field of tribology, friction models are motivated by
the fact that even if two hard contacting surfaces appear to
be smooth, they are not. What may appear to be a large
continuous contact patch between matched shapes is actually,
at the microscopic level, a set of very small contact patches
between tiny deformable peaks on the surfaces, called asper-
ities. The net friction force of the contact is the sum of the
friction forces generated over all the contact patches. At low
sliding speeds, this force is dominated by yield strengths of
the asperities, which at extremely low speeds can cold weld,
and therefore stick. At high sliding speeds, the effects of
fluid and particulate matter in the contact interface produces
a viscous force which is approximately proportional to the
sliding speed.

Fig. 2: Tustin Friction Model.

A commonly-used fric-
tion model is Tustin’s
model [10]. A typical
plot of friction force ver-
sus slip speed is shown
in Figure 2. The rapid
change in friction force as
sticking vt = 0 transi-
tions to slipping vt 6= 0
is known as the Streibeck
effect [2]. When the slip
speed is zero, then the
maximum friction force is Fs, which is proportional to
the normal force, Fn. As the sliding speed increases, the
maximum friction force approaches a linear asymptote that
crosses the vertical axis at the value µFn, where µ is the dry
friction coefficient, and is also known as the coefficient of
dynamic friction in the familiar Coulomb friction model.

Fig. 3: Robot foot on granular terrain.

As shown in Fig-
ure 3, contact be-
tween a robot foot
and granular ter-
rain is analogous
to the microscopic
description of con-
tact given above.
The many contact
points between the
foot and the stones
are like the asperities and the friction forces at those contacts
are like their yield strengths. If the foot digs into the stone
layer as it moves, the momentum transfer between the stones
and the foot will generate a net traction force of viscous
character. This is also expected to be the case if the stones
are mixed with mud. Because of these similarities, we have
adopted Tustin’s friction model [10] for characterization of
net traction forces.

The Tustin model is a two-part, set-valued map that
predicts or bounds the traction force, when given the normal
force, the slip speed, and values of five parameters. The first
part is an odd function that gives the traction force when the

contact is slipping, i.e., vt 6= 0:

Ft(Fn, vt) = µFn + (Fs − µFn)e−|vt/vs|
δs

+ bvt, (1)

where b is the viscous friction coefficient and vs and δs
are the Streibeck velocity and exponent, respectively. The
last parameter b is the slope of the linear asymptotes when
|vt| is large. The Streibeck parameters, vs and δs, determine
the shape of the curve connecting the extreme points on the
vertical axis with the asymptote. During sticking contact, the
Tustin model returns the set of possible friction values, not
a single value:

||Ft|| ≤ µFn. (2)

B. Gaussian Process Models

Gaussian process models (GPs) are a powerful framework
for non-parametric regression and are used to solve different
machine learning tasks [9]. The idea is to model an unknown
noisy function directly in terms of training data. More
formally, a Gaussian process is defined as a collection of
random variables, any subset of which is jointly Gaussian
distributed. It is completely specified by a mean function
m(x) and a covariance function k(xi,xj):

f ∼ N (m(x), k(xi,xj)). (3)

Intuitively, the covariance function specifies the similarity of
function values f(xi) and f(xj) depending on their inputs
xi and xj . A popular choice is the squared exponential
covariance function, which is given by

kSE (xi,xj) = σ2
f exp

(
−1

2
(xi − xj)

TΣ(xi − xj)

)
. (4)

Here, Σ = diag(`1, . . . , `d)
−2 is the length-scale matrix and

σ2
f the signal variance. These parameters together with the

global noise level σn are known as the hyperparameters of
the process.

We furthermore consider in our experiments the neural
network covariance function [7], [12], [11], which is known
to better adapt to non-smooth data and to account for
variable frequency content of the underlying function. This
covariance function is specified as

kNN (xi,xj) =

σ2
f arcsin

 β + 2xTi Σxj√
(β + 2xTi Σxi)(β + 2xTj Σxj)

 (5)

with a bias factor β and Σ, σf as defined above.
Learning a GP model is equivalent to determining the

hyperparameters of the covariance function that best explain
the training data points. This is formulated as an optimization
problem by maximizing the marginal log likelihood of the
data given the model. We use a standard gradient optimiza-
tion approach to find the best hyperparameters for a given
dataset. More details on the problem formulation can be
found in the work of Rasmussen and Williams [9].

In regression, we are interested in predicting the value y∗

for a new observation x∗ given a set of training points D =



{(xi, yi)}ni=1 with d-dimensional states xi ∈ Rd and target
values yi ∈ R. We obtain the predictive distribution p(y∗ |
x∗, X,y) for a new observation x∗ that is again Gaussian
with mean

f∗µ = m(x∗) + k(X,x∗)T (K + σ2
nI)−1(y −m(X)) (6)

and variance

f∗σ2 = k(x∗,x∗)−K(X,x∗)T (K + σ2
nI)−1k(X,x∗).

(7)

Here, I is the identity matrix, K refers to the covariance
matrix built by evaluating the covariance function k(·, ·) for
all pairs xi, xj of training points.

C. Related Work

Past research in compensation of friction effects in
robotics includes efforts in parameter identification for var-
ious friction models similar to the Tustin model. Represen-
tative examples can be found in the works by Marton and
Lantos [6] and Behmer [3]. The basic idea is to perform
experiments on one joint at a time, and to design these
experiments so that one can easily capture several of the
model parameters. For example, starting with zero velocity,
the joint torque is increased slowly until joint motion begins
(stiction is broken) and then continues until a target relative
velocity is achieved. The stiction breakage torques allow
direct estimation of Fs and motions with large velocities
are used to identify the viscous friction asymptote, thus
identifying b and µFn. Finally low velocity data can be used
with a nonlinear least squares approach to identify the two
Streibeck parameters, vs and δs.

Much of the research in traction makes use of Bekker’s
work [4] and pertains to very heavy wheeled and tracked
vehicles [13], [14], [15], [16], [17]. Though successful, these
models do not apply directly to legged robots. Previous work
also tends to focus on deformable soil, whereas rubble or
rocky terrain may benefit from rigid body mechanics.

Several groups have investigated using on-board sensors
for parameter estimation of deformable soil including Iag-
nemma et al.[16] and Hutangkabodee et al.[17]. Others have
looked at more general terrain classification [18]. Larson et
al. point out the importance of terrain classification with
regard to gait efficiency. Knowing terrain properties provides
for better control of gait parameters, increasing energy ef-
ficiency. We investigate a common friction model (Tustin)
and GP models as representations for characterization and
prediction of traction forces based on position and force data
from on-board sensors.

Caurin and Tschichold-Gürman developed a control sys-
tem for walking machines [5] that uses Bekker’s equation to
model sinkage, and a model satisfying the Mohr-Coulomb
equation to represent slipping: s/smax = 1 − exp(−j/kw).
Although their system has the ability to adapt to different
terrain, it is unclear if their system performs well on rocky
or course granular terrain.

The Tustin model is a deterministic representation of
friction that defines average behavior, but does not directly

give information about the variance. For different data sets,
one could estimate the five parameter values for the model
to obtain joint probability distribution over them, and in
this way obtain a stochastic model of traction. However,
as pointed out by [14], parameter models such as this
do not “explicitly consider uncertainty in terrain physical
parameters.”

Therefore, in this paper, we have chosen to learn Gaussian
process models to characterize traction forces for different
types of terrain. The advantage compared to a deterministic
model, such as the Tustin model, is that GPs are able to
model uncertainty in the data. In experiments, we investigate
how useful these models are in predicting the traction forces
for different terrain types.

Performing analogous experiments with a robot foot on a
bed of stones is difficult in part because the constant sliding
velocities cannot be held for long enough periods of time to
extract asymptotic behavior from a single experiment. As a
foot presses against the stones, the stones can suddenly give
way and then lock up, causing fast transitions between the
sticking and sliding regimes.

III. EXPERIMENT

A. Hardware & Setup

A foot constructed with a vinyl tred was attached to a
Barret 7-DOF WAM arm with integrated 6-axis force/torque
sensor in the wrist. In order to simulate a stepping motion,
the arm was used in a augmented gravity compensation mode
which applied an effective mass at the center of mass of the
foot. The seventh joint was locked in place to avoid rotation
of the foot below the sensor. The foot could then be placed
anywhere in the workspace of the arm with a force applied
above the sensor in any direction. A container with adjustable
incline was constructed to hold the granular terrain that was
positioned adjacent to the arm. The testbed is depicted in
Figure 1.

B. Experimental Procedure

Experiments were completed for each combination of
experimental parameters including two sizes of stones: small
(#2 gravel) and big (#3 gravel); three angles of incline: 0◦,
10◦, and 15◦. Two additional experiments were completed on
a flat surface for the foot with and without tred (relatively
high and low friction, respectively). The terrain was oriented
in the workspace of the arm such that the foot would be
“stepping” uphill for inclines greater than 0◦. For each
experiment, ten trials were performed where the foot was
placed at the far end of the terrain and then a force was
manually applied until the foot had displaced across the
container. Joint positions and force data from these trials
were recorded at 500 Hz.

IV. DATA ANALYSIS

Using forward kinematics on the joint position data, the
velocity of the foot was calculated at every time-step. Know-
ing the orientation of the foot, we determine the velocity vt
in the negative traction direction, and from the force data in



the reference frame of the foot, we transform to obtain the
normal force Fn and traction force Ft.

Fig. 4: Sample of traction force Ft and velocity vt from an
experiment.

The small sample in Figure 4 depicts the complexity of
the stick-slip behavior on granular terrain and a relationship
between Ft and vt. There are three regions of obvious
slipping where vt spikes before the foot quickly returns
to sticking. At these moments when slipping occurs, the
traction force drops to near zero. In two of these cases,
we see vt become negative immediately upon reestablishing
sticking, corresponding to opposing spikes in the traction
force. Dynamic effects such as this are possible in a large
number of scenarios due to the complexity of the terrain, but
effectively the foot is colliding with an object or dynamically
linked set of objects and experiencing some bounce-back.

Another interesting aspect observable in Figure 4 is the
variation in the value of Ft before slipping. In two examples,
it appears to decrease before slip occurs. This could be due to
a decrease in FN, but it is also distinctly possible that this was
cause by the slipping or rolling of terrain beneath the foot.
The values of vt in themselves are interesting, especially in
the second case where the foot seems to slip and stick rapidly
before and after the peak. These oscillations could be due to
stick-slip behavior between two or more stones not in direct
contact with the foot.

The data was smoothed by a simple moving average and
downsampled by a factor of five. Models were fit only to
data with velocities in the range 0.005 ≤ vt ≤ 0.2 (majority
of data). Data with negative velocities or too near zero are
filtered. We evaluate friction model learning in a 10-fold
cross-validation and compare the results of the Tustin model
and the GP models.

A. Tustin Model

Given the inputs Fn and vt, and the output Ft, a nonlinear
least squares curve fitting was done to estimate the five
parameters of the Tustin model.

For each type of terrain, the results of the ten cross-
validation fittings were used to determine a set of Tustin
parameters. The estimated parameters are summarized in
Table I.

TABLE I: Median Tustin parameters from sample of four
terrain datasets, all at 0◦ incline.

Small stones Large stones Flat Flat, low friction
µ 0.71 4.54 0.843 0.952

Fs (N) 13.52 7.70 0.534 0.6430
vs (m/s) -0.841 0.128 0.079 0.225

δt -0.017 0.011 420 2.60
b (kg/s) -23.4 -37.4 7.49 0.023

B. Gaussian Process Friction Models

In addition to the parametric Tustin model, we investigate
modeling the dependency of the friction forces Ft on the
sliding velocities vt and normal forces Fn using GPs. We
learned GP friction models for different terrain and compared
these models to the corresponding Tustin models. In our
experiments, we considered different covariance functions,
the squared exponential (Eq. 4) and the neural network
(Eq. 5) covariance function. Furthermore, we considered
using the Tustin model as mean function of the GP model.
Since the runtime for learning GP models is cubic in the
number of training points, we subsampled the considered
datasets and used 300 training points for learning a GP
model. Considering larger numbers of input points did not
increase the prediction accuracy in our experiments.

C. Model Comparison

To assess the ability of the considered friction models to
predict the traction forces, we performed a 10-fold cross-
validation using 10 independent datasets for each type of
terrain, learning the model on a combination of 9 datasets,
and evaluating the prediction error for the tenth dataset. This
was done for 8 different types of terrain that are described
in detail in Section III-B: small stones with an angle of 0
(S0), 10 (S10), and 15◦ (S15); big stones with an angle of 0
(B0), 10 (B10), and 15◦ (B15); a flat surface with high (TF)
and low friction (Tf).

Examples of learned models for the Tustin parameter
fittings are shown in Figure 5. The correspondence to the
Gaussian process models (shown in Figure 6 for the squared
exponential covariance function) is clearly visible. Addition-
ally, we show a 2d plot of the GP mean and variance in
Figure 7 and Figure 8, respectively. In our experiments, we
consider the mean absolute prediction error. A comparison of
the different models in terms of the prediction error is shown
in Figure 9. These experiments illustrate that the different
models we considered perform similarly for different types
of terrain. The non-parametric GP model is able to model
the friction behavior of the robot similar to the parametric
model. The prediction error is in general much higher for the
datasets recorded on the stones than for the flat surfaces. This
is due to the non-deterministic behavior of the foot on the
stones, which results in very “noisy” data. The GP models
this “noise” in the variance for the predicted datapoints. In
Figure 8, the variance of the GP models is illustrated for
different terrains, we observe that t for the. The variance is
much higher for the rocky terrains than for the flat surfaces.
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Fig. 5: Tustin models for different terrains: Small stones (left), Big stones (middle), flat surface (right).
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Fig. 6: GP models for different terrains: Small stones (left), Big stones (middle), flat surface (right).
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Fig. 7: GP predictive mean (2d) for different terrains: Small stones (left), Big stones (middle), flat surface (right).
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Fig. 8: GP predictive variance (2d) for different terrains: Small stones (left), Big stones (middle), flat surface (right).

D. Terrain Identification

One application of the learned friction models could be
to provide an estimate of the type of terrain that the robot
is dealing with for a given observation of vt, Fn, and Ft,
e.g. by determining the model that minimizes the distance
between predicted and measured Ft. In a second experiment,
we therefore evaluate, how well the models are able to
predict the friction forces for different terrains and whether
they allow to make this distinction. We evaluated, in another
10-fold cross-validation experiment, for each terrain dataset
the prediction error when applying the different available
terrain friction models. The results of this experiment are
summarized in Figure 10. This figure illustrates that the
models learned for different stone environments are not
very specific as the prediction errors are similar across
different stone datasets. However, we notice that the models
representing flat surfaces perform in general significantly
worse as predictors for traction on rocky surfaces and vice

versa. The distinction between flat and rocky surfaces is
therefore possible. Furthermore, the models representing the
flat surfaces are very accurate as mean error values on these
datasets were approximately equal to the mean error of the
force sensor (∼ 0.4 N).

This indicates, that the considered data allows to model
stick-slip behavior and characterize traction for smooth sur-
faces but does not fully capture the friction characteristics
of rocky surfaces. Other factors not modeled here might
influence slipping (e.g. relative position of stones to each
other).

V. CONCLUSIONS

An understanding of traction on various types of terrain
is essential for improving the performance of mobile robot
controllers. There has been significant research pertaining
to wheeled robots that use models of wheel-soil mechanics.
In this paper, we considered probabilistic models that might
be useful for improving traction control for a robotic foot



Fig. 9: Comparison of the prediction error for the Tustin
model, the GP models with squared exponential (SE) and
neural network (NN) covariance function, and the GP models
using the Tustin model as mean function. We evaluated the
mean absolute prediction errors for datasets recorded on
different terrain (horizontal axis).

Fig. 10: Cross-evaluation of traction models learned and
evaluated on different types of terrain: the horizontal axis
represents the terrain types tested on. Plotted is the mean
absolute prediction error for evaluating each of the learned
models on every terrain type.

on granular terrain. In particular, we discussed two models
for predicting traction force using an onboard force sensor:
the parametric Tustin model and the non-parametric Gaus-
sian process. In experiments, we showed that both models
perform similarly on different types of terrain. The benefit
of using Gaussian process models is that they are able to
take into account noise in the training data and additionally
provide a predictive variance. Considering the stochastic
nature of the stick-slip behavior on granular terrain, it might
be interesting to consider advanced GP models that are
able to deal with input-dependent noise. Depending on the
application, ideas for future work include considering the
dependency of control inputs on the movement of the robot
for different types of terrain and e.g. learn control policies
to avoid slipping.
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