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Abstract—Anti-virus (AV) programs have traditionally used
signature matching in order to detect malware. Malware authors
try to evade signature matching by encrypting and compressing
malware, also known as packing. Packed malware will be
unintelligible on disk, but will unpack itself at run-time to
return to its original form. AV’s attempt to exploit this by
emulating the malware. AV emulators step through the unpacking
portion of code, attaining the unpacked malware, which is
again susceptible to signature matching. For malware, a natural
counter to emulation is to detect when being emulated, and exit.
But to do this, malware authors need to establish detectable
differences between running inside an emulator, and running
normally. These differences are known as artifacts. Malware
authors could easily find artifacts if they were able to extract
information while running inside emulators. The difficulty is that
the emulators are opaque and do not allow emulated programs
to communicate outside the emulator. In addition to that, AV’s
often have many anti-analysis techniques embedded in their
code, so normal reverse engineering techniques like disassembly
and debugging are severely impeded. To avoid the difficulties
of traditional reverse engineering, we have developed a black-
box technique to extract the return values of API’s called from
within AV emulators. These return values allow for easy detection
of emulator artifacts, and thus evasion. In this paper, we describe
our technique and its implementation called AV Oracle. We
demonstrate its effectiveness against six current AVs. We give
practical applications for our approach and then suggest ways
to defeat. Finally, we give possible future directions of research
that build on our current work.

I. INTRODUCTION

Malware is clearly a large problem and is only getting
worse. And from commercial malware to state-sponsored
malware used for espionage, AV’s are often central to defense
against malware. AV’s may have begun with simple byte
signature matching but have now evolved to include a wide
breadth of technologies. These technologies include signature
matching, run-time behavioral monitoring, network monitor-
ing, and emulation. Emulation is the newest techologyto
be integreated into AV’s. Emulation allows AV’s to execute
suspected malware in a contained environment. This allows
the malware to expose itself to other forms of detection like
signature matching or behavioral monitoring. It this technol-
ogy and it’s use in AV’s that we focus on.

In this paper, we use the terms malware and virus inter-
changably. We understand that virus is particular class of
malware, and in fact our approach works using any type of

malware. We choose to use the term virus at times because
more often than not, our malware samples were viruses. We
chose to use viruses because older viruses were small in size
and easy accessible.

A fact that is central to this paper is that AV emulators do
not provide any output. This is contrast to other emulators
used in malware analysis, i.e. Bochs [1] or QEMU [2]. These
emulators allow for total control of a process, but also allow
that process to provide output. AV emulators on the other hand,
do not allow any output, even if the program being scanned
normally has output. This includes visual output, output to
memory, and output to disk. This severly limits the ability to
get information out of the emulator. AV emulators are designed
specifically for emulating malicious executables, so it is in the
emulators best interest to not let anything actually change the
system. Otherwise, these changes could lead to infection of
the system itself.

The paper is organized as follows. Section 2 covers related
work. Section 3 describes our approach. Section 4 describes
our testing methodlogy. Section 5 describes experimental re-
sults. Section 6 describes applications of our approach. Section
7 covers possible countermeasures to our approach. Section 8
covers future work and section 9 describes our conclusions.

II. RELATED WORK

AV emulators are commercial technologies and are closed
source, but we can learn some about the internals of these em-
ulators through patents [3] [4] [5]. Other resources describing
AV emulator technologies are press releases [6] [7]. Because
of the closed source nature of most AV products, there has
been much academic work evaluating the effectiveness of AV
scanners through black-box analysis. None of the work so far
has focused on the emulator technology though.

In [8], Filiol shows how black-box analysis can be used to
extract static byte signatures in AVs. By static byte signature,
we mean a string of bytes in the malware used to identify
it. Filiol demonstrates his technique in a wide-scale study of
AVs, and proposes a technique that limits black-box analysis.

In a follow-on work [9], Filiol et al. selectively modify the
behavior of a sample, instead of byte sequences. They then
record whether the tested AV still detects the code or not. This
approach is similar to [8], but is now considering behavioral
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analysis. They did not consider code emulation due to the
current limitations of AVs at the time.

In [10], Borello et al. design a code morphing engine to gen-
erate malware samples. These samples were then used to do
black-box testing against static AV scanning and scanning at
run-time. It was found that AV’s employ behavioral monitoring
and behavioral blocking at run-time. Again, code emulation
was not considered in the AV products tested.

[11] describes another black-box approach to determining
static AV signatures. The authors do this by querying the AV
with a program, then recording features about the program
and whether it was detected or not. From this information
they infer what the signatures are.

Two interesting self-published papers [12][13] on reverse
engineering AVs were written by Tavis Ormandy. Ormandy is
a security engineer at Google. In his papers, he uses white-box
and black-box analysis to expose flaws in Sophos AV.

Even though AV emulators have not been specifically an-
alyzed, there has been a large body of work in analyzing
malware through the use of emulators.

[14] [15] shows how emulation has been successfully used
against packed malware.

Along with using emulators to unpack malware, there are a
lot of papers describing techniques to counter emulation. Peter
Ferrie, the principle anti-virus researcher at Microsoft, has a
great 14 part series of articles on anti-unpacking techniques
[16]. Many of these target emulators.

With one exception, papers up til now have explored the
related areas of emulator analysis and black-box AV analysis,
but none have done both.

[17] stands out as targeting AV emulators . It was written
and self-published by a virus author. It describes a way to
detect AV emulators through black-box analysis. The author’s
technique involves calling an API with random parameters,
recording the result, calling the API again with different
parameters and recording the result. If the results of the two
API calls are the same, even with different parameters, then
assume the program is being emulated. This work most closely
aligns with our own, in that it targets AV emulators through
black-box analysis. The major draw back of the technique
presented in [17] is that no information can ever be extracted
from inside the emulator. Any emulator artifacts found while
running inside the emulator are lost when the emulation ends.
Our approach solves this problem. We present a way to extract
information from inside the emulator for future use.

III. OUR APPROACH

A. Overview

Our approach involves building a mapping of ASCII values
to known viruses. The actual viruses are then XOR’ed and
appended to an unpacking stub. The stub, with XOR’ed viruses
and mapping, selectively unpacks viruses at run-time to expose
information about the emulator. This simple process is best
illustrated by describing each step in detail.

B. Step 0: Gather Known Viruses

Collect known viruses from places like [18] or [19]. There
is actually a torrent of 45GB of viruses from [19] available at
[20]. This is the our starting set of binaries B.

C. Step 1: Filter for Exact Signatures

To describe this step, we must first formalize a basic model
for most AVs, where A is an AV scanner running on program
x:

A(x) =


0, if x is not detected
1, if x is detected with a general signature
s, if x is detected with a unique signature s

s ∈ S | S is the set of all viruses detected by A(x)

Using this model, we filter our starting set of binaries B,
for viruses that return exact signatures when scanned with A.
More formally we define V as:

V := {∀b ∈ B | A(b) = s ∈ S}

D. Step 2: Encrypt Viruses

Now we encrypt the set V to create a set of encrypted
viruses C. The encryption can be trivial like XOR with a
static key k. It only has to transform the viruses enough for
them to no longer be detected by the AV. We define C as:

C := {∀c ∈ C, ∀v ∈ V | c = E(v, k) and A(c) = 0}

and we define E’s inverse D as:

v = D(E(v))

E. Step 3: Build Decryption Stub

In this step, we build a decryption stub which reads in the
set of encrypted viruses C and selectively decrypts members
of C at run-time. C is appended to the stub before run-
time, so that it’s part of the same binary. AV emulators will
often intercept API calls made by an executable and return
false information, except when those API calls operate on
the executable itself. Presumably, some emulators allows an
executable to have truthful access to itself in order to facilitate
accurate unpacking.

The encryption stub will contain a one-to-one mapping f
of the printable ASCII set P to the set of encrypted viruses
C.

P := {∀a ∈ ASCII | int(a) ≥ 32, int(a) ≤ 126}

f : P → C

This should allow us to perform the following operation in
the decryption stub:

string = ”cat”
for each char in string do

D( f(char), k )
end for
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Fig. 1. This is illustrates the process running a sample program through an AV. It begins on the left with composing an executable with an unpacking stub,
dictionary, and encrypted malware. This executable is then scanned by an AV. The output from the AV is parsed and cross-referenced with the malware
dictionary for the corresponding ASCII characters. These characters are then printed as output.

When the code is emulated, the AV will detect and print
viruses with signatures sx, sy, sz ∈ S. Knowing the mapping
f beforehand, we parse the output of the AV by running the
inverse of f on the detected viruses. This will give us the
ASCII characters that are assigned to those viruses:

f−1(sx) = ‘c’

f−1(sy) = ‘a’

f−1(sz) = ‘t’

In a sense, we have printed through the emulator. In this
last example, printing something that we know a priori is
hardly useful. In the next step, we show how we can use this
mechanism to extract useful information, i.e. the return values
of API calls.

F. Step 4: Integrate Useful Queries with Stub
Now that we have a mechanism to output infromation from

within the emulator, we will use it to extract information nor-
mally unavailable outside the emulator. A simple modification
to our stub is as follows:

string = GetUserName()
for each char in string do

D( f(char), k )
end for

This will give us the return value for the API call GetUser-
Name(), as seen from within the emulator. If this value is
different than what is returned when running this API call
outside the emulator, then we have found an artifact of the
emulator. Emulator artifacts can be used by malware for
detection and manipulation of the emulator.

IV. TESTING METHODOLOGY

A. Virus Total

To test our method, we needed AVs that use emulation.
We used the 42 AVs on VirusTotal [21] as a sample set. To
determine which AVs on VirusTotal contained emulation in
their scanners, we first uploaded a common virus. Most AVs
detected it with an exact signature, A(x) = s. We then XORed
the virus and uploaded it again to acheive a zero percent
detection rate. We then uploaded the same XORed version
of the virus with an unpacking stub, that would XOR the
virus back to its original form at run-time. With this version,
7 AVs detected our sample. Out of these 7 AVs, 6 were
chosen for testing because their evaluation versions offered
full functionality. They are listed above in figure 2.

B. Environment

Our environment consisted of a Windows XP SP3 virtual
machine (VM). Each of the six AVs was installed on its own
VM. The VM software was VirtualBox[22] with FreeBSD as
the host operating system.

V. EXPERIMENT RESULTS

A. Initial Experiments

The goal of our initial experiments was to establish the
ability to reliably unpack selected malware in all of the AV’s.
To do this we used the approach we described in section
3. We first established success on the simplest case, which
is unpacking virus 1 if true, and virus 2 if false. This is
illustrated in the following pseudocode:
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AV Version Detections per Scan
Bitdefender 2013 1
Emsisoft 7.0.0.21 1
F-Secure 1.77 Build 243 1
GData 24.0.1 1
Kaspersky 13.0.1.4190 (e) 31
nProtect 2012.12.29.001 1

Fig. 2. This is largest distinctions between the each AV and its emulator was
the number of detections per scan.

Kaspersky AV Emulator
Data Emulated Bare Metal
HwProfInfo.szHwProfileGuid {6D2074C9-558B-860D-1A90-1A8BAF609E64} {e29ac6c0-7037-11de-816d-806e6f6e6963}
HwProfInfo.szHwProfileName Profile 1 Undock Profile
lpSystemInfo–>dwPageSize 4096 4096
lpSystemInfo–>dwNumberofProcessors 1 2
lpSystemInfo–>dwProcessorType 586 586
lpSystemInfo–>dwAllocationGranularity 65536 65536
lpSystemInfo–>wProcessorLevel 15 15
lpSystemInfo–>wProcessorRevision 519 18434
osvi.dwBuildNumber 2600 7601
osvi.dwMajorVersion 5 6
osvi.dwMinorVersion 1 1
osvi.wServicePackMajor 2 1
osvi.wServicePackMinor 0 0
osvi.wSuiteMask 256 256
userName Administrator user
computerName <randomized> GATEWAY
uDriveMask 0x200001d 0x7c
NX ENABLED NO-NX 1

Fig. 3. This clearly shows the discrepencies between API return values inside Kasperky’s emulator and outside of it. One value of interest is the computer
name. It was randomally generated each time an executable was scanned.

x = rand() mod 2
if x==0 then

D( f(0), k)
else

D( f(1), k)
end if
Once this was established, we had a channel to bring

information out of the emulator. This was successfully applied
to all 6 AV’s. This is a very narrow channel to communicate
though.

One simple way to exapand the amount information we
can communicate is by increasing the number of unique virus
signatures in our dictionary.

The ASCII table has 127 characters total, of which the
96 printable ones we are concerned with. If we assign each
character a different virus, we can leak 1 character. This can
be scaled to n choose k, where n is 96, and k is the number
of characters in the string we would like to leak. 96 choose 3
is 142880, which is a reasonable number of virus definitions
to include in our dictionary. So this system would get us 3
characters of output per scan.

Another way to expand this communication channel is to
do multiple scans. For instance, we begin by establishing the
length of the string we want to communicate. This could be
done with a binary search within the unpacking stub. Once
we have the length of a string, we can communicate a single
character of that string per run. This is all based on the assump-
tion that the string will be constant over multiple runs. This
assumption can be verified by applying this technique over
many multi-run experiments. We did encounter randomized
API return values in one of the emulators. We will talk more
about that in the following section.

And finally, there are always various compression tech-
niques. We chose not to pursue compression for expanding
the communication channel because we wanted to prove the
concept possible before we began optimizing. We see all of
the previous techniques as plausible ways to improve our
technique and plan to do implement them in the future.

B. Additional Experiments
One AV that stood out from the rest was Kaspersky. It’s

biggest distinction was that it detected 31 viruses per scan.
This gave a much larger communication channel out of the
emulator. This allowed us to run additional experiments with-
out having to implement any of the optimization techniques
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we mentioned at the end of the last section. It was through
Kaspersky AV that the power of our technique is really
demonstrated.

With the increased bandwidth, we were able to efficiently
extract API return values. Figure 3 lists several API return
values, as returned while running inside the emulator and
outside of it.

The most interesting value in the table is the hardware
GUID string in the first row. This serves as a 38-character
unique id for Kaspersky.

Another value that stood out was that of the username. This
was different across scans, even on the same executable. We
did not explore the entropy of this randomized value, but plan
to in follow-on research.

In addition to our original environment, we ran Kasper-
sky AV in several more, including bare-metal/WinXP, bare-
metal/Win7, VM/WinXP, and VM/Win7. The values in figure
3 were consistent across all 4 environments.

VI. APPLICATIONS

Our approach is well suited for circumvention of AVs and
also in their testing. We describe specific applications in these
two domains in this section.

A. Malware

The biggest weakness of the emulators we tested was
returning constant distinct values for APIs called within the
emulator. These values could be checked for within malware to
detect emulators. Detection of an emulator would then lead the
malware to act benignly. Not only is detection of an emulator
possible, but detection of a specific brand of emulator. This
could lead to targeted exploitation of the emulator, possible
leading to infection of the host computer.

B. Anti-Virus

AV companies can use our technique to better evaluate
their own exposure of information to the customer. Right
now it seems that AVs are relying on the opaqueness of their
emulators as a source of security. We think this is a mistake.
We have shown that emulators are not just a source of security,
but actually increase the attack surface of the AV scanner itself.

VII. PREVENTION

We do not think there is any security advantage for keeping
the return values for API calls constant and distinct across
scans. Ideally, values should be indistinguishable from those
received when running in an unemulated environment. To
achieve this, AVs could generate random return values for
API calls that fit within the possibility of normal API return
values. AVs have to be careful to choose a space large enough
that malware authors cannot enumerate all possible generated
return values and embed all of them in their malware. Also,
generated values cannot have any qualities of format or content
that could be used to distinguish them from normal return
values.

VIII. FUTURE WORK

We are now in the process of developing a more powerful
API built on top of AV Oracle primitives. Currently, we have
APIs to dump CPU registers and arbitrary memory address.
We plan on doing extensive testing using this API frameowork
in future work.

We think that AV Oracle and other frameworks built on
top of it could lead to more efficient emulator detection and
exploitation.

IX. CONCLUSION

In this paper, we have described a technique to extract
information from AV emulators. These emulators are normally
opaque and difficult to reverse engineer. Our approach used
only blackbox analysis to avoid the normal difficulties of
reverse engineering programs with protection mechanisms. We
built a program titled AV Oracle and demonstrated it against
six current AVs. All six AVs we tested were succeptible to
our technique.
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APPENDIX

Virus Total Results - April 23, 2013
Anti-Virus Detected Virus Detected XOR’ed Virus Detected Unpacked Virus
Agnitum CLEAN CLEAN CLEAN
AhnLab-V3 CLEAN CLEAN CLEAN
AntiVir BAT/Asscom CLEAN CLEAN
Antiy-AVL CLEAN CLEAN CLEAN
Avast Asscom-164 CLEAN CLEAN
AVG CLEAN CLEAN CLEAN
BitDefender BehavesLike:Bat.Shimmer.Gen CLEAN Dropped:BAT.Asscom.A
ByteHero CLEAN CLEAN CLEAN
CAT-QuickHeal CLEAN CLEAN CLEAN
ClamAV Bat.Asscom.164 CLEAN CLEAN
Commtouch Virus Dropper!7ebf CLEAN CLEAN
Comodo Virus.Bat.Asscom.A CLEAN CLEAN
DrWeb Bat.Asscom CLEAN CLEAN
Emsisoft BehavesLike:Bat.Shimmer.Gen (B) CLEAN Dropped.BAT.Asscom.A (B)
eSafe Win32.Trojan CLEAN CLEAN
ESET-NOD32 BAT/SS.b CLEAN CLEAN
F-Prot Virus Dropper!7ebf CLEAN CLEAN
F-Secure BehavesLike:Bat.Shimmer.Gen CLEAN Dropped.BAT.Asscom.A
Fortinet BAT/Asscom.B CLEAN CLEAN
GData BehavesLike:Bat.Shimmer.Gen CLEAN Dropped.BAT.Asscom.A
Ikarus Virus.BAT.SS CLEAN CLEAN
Jiangmin BAT/Asscom.164 CLEAN CLEAN
K7AntiVirus Virus CLEAN CLEAN
K7GW CLEAN CLEAN CLEAN
Kaspersky Virus.Vat.Asscom.164 CLEAN Virus.BAT.Asscom.164
Kingsoft CLEAN CLEAN CLEAN
Malwarebytes CLEAN CLEAN CLEAN
McAfee Bat/ass CLEAN CLEAN
McAfee-GW-Edition Bat/ass CLEAN CLEAN
Microsoft Virus:BAT/Asscom CLEAN CLEAN
MicroWorld-eScan BehavesLike:Bat.Shimmer.Gen CLEAN CLEAN
NANO-Antivirus Trojan.Script.Asscom.gkqa CLEAN CLEAN
Norman CLEAN CLEAN CLEAN
nProtect CLEAN CLEAN Dropped:BAT.Asscom.A
Panda Bat/Asscom CLEAN CLEAN
PCTools Asscom (bat) CLEAN CLEAN
Sophos Asscom-164 CLEAN CLEAN
SUPERAntiSpyware CLEAN CLEAN CLEAN
Symantec Asscom (bat) CLEAN CLEAN
TheHacker CLEAN CLEAN CLEAN
TotalDefense CLEAN CLEAN CLEAN
TrendMicro BAT ASSCOM.A CLEAN CLEAN
TrendMicro-HouseCall BAT ASSCOM.A CLEAN CLEAN
VBA32 Virus.Bat.Asscom.164 CLEAN CLEAN
VIPRE CLEAN CLEAN CLEAN
ViRobot BAT.Asscom CLEAN CLEAN

TABLE I
THIS IS THE TABLE OF VIRUS TOTAL RESULTS. CLEAN INDICATES THAT THE AV DID NOT IDENTIFY ANYTHING MALICIOUS.
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