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Abstract—As we are facing ever increasing air traffic demand,
it is critical to enhance air traffic capacity and alleviate human
controllers’ workload by viewing air traffic optimization as a
continuous/online streaming problem. Air traffic optimization
is commonly formulated as an integer linear programming
(ILP) problem. Since ILP is NP-hard, it is computationally
intractable. Moreover, a fluctuating number of flights changes
computational demand dynamically. In this paper, we present
an elastic middleware framework that is specifically designed
to solve ILP problems generated from continuous air traffic
streams using a Lagrangean approximation over an IaaS
cloud. We propose a model-based speculative VM scheduling
algorithm: it implements a time series prediction model to
decide when to allocate/deallocate VMs, and it also uses a
resource prediction model to estimate how many VMs to
allocate/deallocate. Experiments show that our speculative VM
scheduling algorithm can achieve a similar performance to a
static schedule while using 49% less VM hours for a smoothly
changing air traffic. However, for a sharply changing air traffic,
our speculative VM scheduling algorithm costs slightly more
VM hours to achieve the same performance. Our algorithm is
able to adapt dynamically to potentially unforeseen fluctuating
demand with a reasonable prediction accuracy.

1. Introduction

The number of flight passengers is expected to reach
7.3 billion by 2034 globally, which requires a 4.1% av-
erage growth in flight capacity in every year from 2014
on [1]. Air traffic optimization is crucial to enhance flight
capacity and also alleviate human controllers’ workload. Air
traffic management problems are commonly formulated as
integer linear programs (ILP), which are known to be NP-
hard [2]. Therefore, large-scale ILP problems are computa-
tionally intractable. Moreover, since the number of flights
fluctuates a lot in practice, computational demands for air
traffic optimization also change dynamically. For example,
Figure 1 shows how the number of commercial flights in
the U.S. changed over 24 hours from 4am EST on January
18th, 2014. Once air traffic hits the peak at around 1pm,
it gradually drops and eventually reaches 200 at around
3am. To keep up with the fluctuating computing demands
in a cost-efficient way, we can dynamically allocate and

deallocate virtual machines (VMs) from Infrastructure-as-a-
Service (IaaS) cloud computing providers. The challenge is
dynamically choosing the right number of VMs that satisfies
computational demands at the lowest possible cost.
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Figure 1. Example of U.S. flights on January 18th, 2014 (created from data
available on [3]).

ILP has a lot of practical applications, and some of
them have a strong time-dependency. Examples of such
applications include: public transportation routing [4], in-
vestment portfolio optimization [5], and marketing budget
optimization [6], [7]. Just as air traffic management, public
transportation routing has similar characteristics: e.g., the
number of buses changes depending on time of the day.
Investment portfolios must be evaluated periodically to keep
up with stock markets. Advertisers look for an optimal
way of spending their money across both traditional and
online media; however, advertisement costs always change
especially for online advertisements such as Google Ad-
Words [8] because of its bidding mechanism [7], [9]. These
time-dependent factors can fluctuate the computational cost
of optimization to a large degree. Elastic ILP middleware
is potentially useful for many application areas considering
these applications’ time-dependent behaviors.

To implement such an elastic ILP middleware, we can ei-
ther adaptively adjust the number of VMs at runtime without
any prior knowledge of the application or proactively predict
the number of VMs using a resource prediction model.
The former includes a threshold-based approach, as used
in Amazon’s Auto Scaling [10], and reinforcement learn-
ing [11], [12]. In this paper, we take the latter approach with
the intention to improve the resource utilization, cost, and
latency violations. That is, we model required computational
resources to solve an ILP problem formulated for air traffic



management. Moreover, we use an autoregressive time se-
ries prediction model to decide when to allocate/deallocate
VMs in a speculative manner.

To the best of our knowledge, this is the first attempt
to present an elastic middleware framework specifically
designed to solve ILP problems created from continuous air
traffic streams. Here is the summary of our contributions:

‚ We develop an elastic middleware framework (Sec-
tion 3) to solve optimization problems created from
continuously incoming air traffic streams (Section 2)
over IaaS clouds. The framework obtains an ap-
proximate solution to ILP problems using a two-
level optimization technique based on Lagrangean
decomposition [13].

‚ We design VM scheduling algorithms that are specif-
ically designed to solve ILP problems generated
from continuous air traffic streams (Section 4). We
use a time series prediction model to decide when to
allocate VMs and we also use a resource prediction
model to estimate how many VMs to allocate. The
resource prediction model estimates required VM
resources given the number of flight routes and target
processing latency by using linear regression.

‚ Experiments show that our speculative VM schedul-
ing algorithm can achieve a similar performance to
a static schedule while using 49% less VM hours
for a smoothly changing air traffic. Our algorithm is
able to adapt dynamically to potentially unforeseen
fluctuating demand with a reasonable prediction ac-
curacy.

The rest of the paper is organized as follows. First, in
Section 2, we formulate an air traffic management problem
as an ILP problem and describe how we apply Lagrangean
decomposition to the defined ILP problem. Next, we present
the design of our elastic air traffic management middleware
in Section 3 and VM scheduling algorithms in Section 4.
Then, in Section 5, we present evaluation results for the
proposed VM scheduling method. Finally, we present related
work in Section 6 and conclude the paper in Section 7.

2. Air Traffic Management Problem

2.1. Problem Formulation

The Link Transmission Model (LTM) [14] is an air
traffic flow management model that optimizes nationwide
air traffic by formulating it as an ILP problem. Cao and
Sun decompose the original LTM problem into multiple sub-
problems using Lagrangean decomposition and use MapRe-
duce [15] to approximate the solution to large scale LTM
problems in parallel [16].

Our work is inspired by their approach. We formulate
a simplified version of the LTM problem that captures
the computationally intensive nature of the original LTM
problem. Figure 2 shows an example of the simplified air
traffic management problem. A route connects a departure

airport and an arrival airport, and it consists of multiple
links that are distributed over multiple sectors. As illustrated
in the example, the same sector at the center of the grid
is shared by multiple routes, therefore congestion must be
controlled.
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Figure 2. Example of the simplified air traffic management problem.

We can formalize the simplified air traffic management
problem as an ILP problem as follows:

maximize
K
ÿ

i“1

cᵀi xi (1)

subject to
K
ÿ

i“1

Aixi ď b (2)

0 ď xi @i P r1,K s, (3)
Ni
ÿ

j“1

x j
i ď di @i P r1,Ks, (4)

where xji P Z ě 0, Ai P t0, 1u
S ,Ni , b P ZS ě 0,

ci P RNi ě 0, di P Z ě 0.

The objective of this optimization problem is to assign
an ideal number of flights to each sector so that we can
maximize the air traffic capacity while satisfying capacity
of each sector. Given constants are: the number of routes
K, the number of links of the i-th route Nipi “ 1, ...,Kq,
and the number of sectors S. The number of flights for
a route i is expressed as a vector xi “ rx1i , x

2
i , ..., x

Ni
i s

ᵀ,
where xji P Z ě 0 is the number of flights at link j of the
route i. xipi “ 1, ...,Kq are the variables to be optimized
subject to the following capacity constraints:

‚ Sector capacity: Total number of flights in a sector s
must be less than or equal to bs P Z ě 0 ps “
1, ..., Sq (Inequality (2)).

‚ Route capacity: Total number of flights on a route i
must be less than or equal to di P Z ě 0 pi “
1, ...,Kq (Inequality (4)).

The objective function
řK

i“1 c
ᵀ
i xi is defined with vectors

ci “ rc1i , c
2
i , ..., c

Ni
i s

ᵀpi “ 1, ...,Kq, where cji P R ě 0
determines the degree of preference of assigning flights



on link j of route i. We can set higher values for less
congested sectors and lower values for highly congested
sectors. The sector capacity constraint is defined by In-
equality (2) using S ˆ Ni matrices Aipi “ 1, ...,Kq and
a vector b “ rb1, b2, ..., bSs, where bs P Z ě 0. For a
route i, the mapping of links to sectors naturally dictates
the construction of Ai; each element asj takes the value of
1 if link j is on sector s, otherwise 0. Each element of b
determines the sector capacity of a corresponding sector.

A solution to this problem captures the two important
properties of the original LTM problem that affect the com-
putational workload. First, adding a new route increases the
number of variables in proportion to the number of links on
the route. Second, each Ai matrix is extremely sparse, which
significantly affects the difficulty of satisfying constraints
because there are very few number of variables in each
constraint.

2.2. Lagrangean Decomposition

ILP is NP-hard. Thus, it is common to use algorithms
that find an approximate solution in a reasonable amount of
time. Lagrangean decomposition is a popular technique to
obtain an approximate solution to ILP problems, and it was
used for LTM in [16]. Lagrangean decomposition offers a
way to split a larger linear integer problem into multiple
smaller sub-problems by relaxing complicating constraints.
For our air traffic management problem described in Sec-
tion 2.1, the complicating constraint is the sector capacity
constraint (Inequality (2)), which prohibits us from separat-
ing the original problem into K sub-problems with Inequal-
ity (3) and (4). By constructing a Lagrangean relaxation
of the original problem, we can bring the complicating
constraints to the objective function as a penalty term as
follows:

maximize
K
ÿ

i“1

cᵀi xi ´ λᵀ
´

K
ÿ

i“1

Aixi ´ b
¯

(5)

subject to 0 ď xi,
Ni
ÿ

j“1

xji ď di @i,

where λ P RS ě 0 is a vector of Lagrange multipliers.
Now, we can decompose the problem (5) into a smaller
sub-problems, one for each route i:

maximize
´

cᵀi ´ λᵀAi

¯

xi (6)

subject to 0 ď xi,
Ni
ÿ

j“1

xji ď di.

Next, we define the master dual problem of the La-
grangean (5), which is responsible for updating λ:

minimize gpλq “
K
ÿ

i“1

pcᵀi ´ λᵀAiqx
˚
i ` λᵀb (7)

subject to 0 ď λ,

Algorithm 1: Two-level ILP optimization
input : Ai, ci, dipi “ 1, ...,Kq,b,λinit, δ, I
output: xipi “ 1, ...,Kq,minObj

1 tÐ 0;
2 λptq Ð λinit;
3 minObj Ð Double.MAX VALUE ;
4 while Iterations minObj not improved more than δ% ă I

do
5 // Solve K sub-problems
6 for i “ 1 to K do
7 xi Ð solveILPpAi, ci, di,λptqq;
8 end
9 // Update master objective

10 obj Ð
compObjpA1, ..., AK ,b, c1, ..., cK ,x1, ...,xK ,λq;

11 if obj ă minObj then
12 minObj Ð obj;
13 end
14 // Update λ for the next iteration
15 α “ 1

t
;

16 λpt` 1q Ð λptq ´ α ¨ gradientpAi,b,xiq;
17 tÐ t` 1;
18 end
19 return xipi “ 1, ...,Kq,minObj;

where x˚
i is the optimal solution to the sub-problem (6) for

a route i. To solve λ for the dual problem (7), we use the
gradient method:

Bg

Bλ
“ b´

K
ÿ

i“1

Aix
˚
i (8)

λpt` 1q “ λptq ´ α
Bg

Bλ
, (9)

where α is a small positive step-size.
As shown in Algorithm 1, we iteratively solve the K

sub ILP problems to find optimal xipi “ 1, ...,Kq for a
specific λ (Line 7) and update λ for the master dual problem
(Line 16). We keep track of the minimum value of objective
(minObj), and if it is not improved by more than δ% for
I iterations, we go out from the while loop and return the
final results.

3. Elastic Air Traffic Management Middleware

3.1. Background

System interaction. We assume that the user of the
middleware is a human air traffic controller who uses out-
put of our middleware for air traffic control activity. We
also assume that some flight information providers (e.g.,
FlightAware [17]) or airplanes directly send the latest flight
status information to the middleware (see Figure 3). Since
air traffic management is time critical, the middleware tries
to schedule VMs so that the optimization result can be used
by the user in a timely manner. Hence, the user can configure
latency to request how quickly the application should return
the result.



Cloud deployment. The middleware is designed to work
on an IaaS cloud. The IaaS cloud can be private, public,
or hybrid; however, the scheduling algorithm presented in
Section 4.3 is optimized for public IaaS clouds due to its
billing cycle aware scheduling. The billing cycle is the unit
of monetary charge (e.g., 1 hour for Amazon EC2 [18]).
The scheduler only terminates VMs just before their billing
cycle so that the application can use the VMs’ computing
power until the last minute.

3.2. Application Implementation

We use Spark 1.5.1 [19], a general cluster comput-
ing engine, to implement Algorithm 1. Spark’s high-level
abstractions for distributed programming and in-memory
data processing features are suitable for the iterative ILP
problem solving process. Spark applications run on a cluster
consisting of a master node and multiple worker nodes. In
Algorithm 1, executors running on the worker nodes execute
Line 7 to solve K sub-problems in parallel, and the rest
of the code is executed on the master node. While Spark
allows us to cache parameters Ai, ci, di for sub-problems
on each worker node, the master needs to broadcast the
updated value of λ to the workers in each iteration.

When executors solve the sub-problems, we use
lp solve [20] since it is open-source and thread-safe. Since
Spark runs multiple threads in one executor process in
parallel, thread safety is a required property for the ILP
problem solver.

3.3. Middleware Architecture

Figure 3 illustrates the architecture of the proposed
middleware framework. We describe how the middleware
works, step by step, as follows:

‚ Step 1: The Controller periodically pulls (e.g., every
5 minutes) flight status information in the queue
such as airplane positions and flights’ departure and
arrivals.

‚ Step 2: The Controller creates an ILP problem in-
stance from the obtained flight status information
and then pushes it to the VM Scheduler with re-
quested processing latency (e.g., 4 minutes).

‚ Step 3: The VM Scheduler uses a time series pre-
diction model and a resource prediction model to
estimate the required number of VMs to finish the
optimization within the requested processing latency.

‚ Step 4: The VM Scheduler allocates or deallocates
VMs accordingly by calling cloud APIs such as the
ones provided by Amazon EC2 [21].

‚ Step 5: The Controller requests the Application
Launcher to run the ILP application.

Even though flight status information flows into the
middleware continuously, the middleware processes the in-
formation collected within a sliding time window. We can
see this as a discretized stream processing model just as
used in Spark streaming [19].
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Figure 3. Architecture of the elastic air traffic management middleware
framework.

4. Virtual Machine Scheduling

In Section 4.1, we first confirm how the ILP optimization
application described in Section 3.2 performs on actual VMs
through a preliminary experiment. Next, in Section 4.2, we
describe a resource prediction model created using linear
regression. Finally, in Section 4.3, based on observations
from the preliminary experiment and the resource predic-
tion model, we present two VM scheduling algorithms:
baseScheduler and specScheduler .

4.1. Performance Characterization of ILP Opti-
mization

To understand how the Spark application works, we con-
ducted a preliminary experiment with the following settings:

‚ Number of links per route: generated from a Gaus-
sian distribution (average = 19, variance = 9).

‚ Number of sectors: 1024 made of a 32 by 32 grid
just as shown in Figure 2.

‚ Convergence criterion: the value of master dual
objective in Equation (7) does not improve more
than 1% for 1000 iterations (i.e., δ “ 1, I “ 1000
in Algorithm 1).

‚ Spark setting: 1 executor per core.

We tested 50 application runs with randomly selected VM
instances and number of routes from the following options:

‚ VM instances for Spark worker nodes: {c4.large,
c4.xlarge, c4.2xlarge} instance types available from
Amazon EC2 (see Table 1). Up to five instances can
be created for each instance type.



‚ Number of routes: {128, 256, 512, 1024}

TABLE 1. AMAZON EC2 VM INSTANCE TYPES USED IN EXPERIMENTS
(INFORMATION AS OF NOVEMBER 2015).

Name vCPU cores Cost [USD/hr] Instance limits
c4.large 2 0.11 5
c4.xlarge 4 0.22 5
c4.2xlarge 8 0.441 5

Figure 4 presents the relationship between total number
of cores used by the VMs and the application execution time.
First, we observe that the performance variance is relatively
small (at most 7%) regardless of VM configurations as long
as we use the same number of cores for the same number
of routes. This is due to the fact that we assign one thread
per core, and therefore, we end up using the same number
of threads even for different VM configurations as long as
they have the same number of cores. Second, as we can
clearly see from the graph, the application execution time
does not improve significantly from around 18 to 20 cores
for all numbers of routes. This behavior is consistent with
a performance analysis of a K-means Spark application re-
ported in [22], in which the performance converges at around
15 threads. They concluded that multi-threaded computation
overhead (i.e., work time inflation [23]) and load imbalance
cause the scalability bottleneck. Since our application and
K-means have a similar synchronization pattern (i.e., both
are iterative and synchronize all workers between every
iteration), this analysis applies to our case as well. These
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Figure 4. Characteristics of the ILP problem execution time.

observations lead to the following decisions for the resource
allocation method design:

‚ The unit of resource (de)allocation is the number
of cores. Since the performance and cost per core is
equal among {c4.large, c4.xlarge, c4.2xlarge}, we do
not distinguish one VM instance type from another.

‚ We set the upper limit for the number of cores
that we allocate to match the application’s inherent
scalability limitations.

4.2. Resource Prediction Model

The VM Scheduler introduced in Section 3.3 needs a
model to determine how many resources it should allocate to

achieve the target processing latency. We use linear regres-
sion with a non-linear transform to model the relationship
between the two input parameters: processing latency l and
number of routes r, and the output: number of cores c. We
sampled 50 application runs using the same experimental
settings as the preliminary experiment in Section 4.1, but
this time with uniformly random numbers of routes be-
tween 100 and 1200. Subsequently, we tested five non-linear
transforms to determine which one best fits the sampled
training data as shown in Table 2. As the transformation
becomes more complex, correlation between the model and
the training data improves. Based on this result, we have
identified Φ-2:2 to be the most correlated with the data. We
thus use this model in our algorithms. The number of cores
can be obtained as follows:

fpl, rq “ wᵀ ¨ Φ-2:2pl, rq, (10)

where w “ rw1, w2, ..., w11s is a weight vector acquired
from linear regression of the number of cores given the
latency and the number of routes.

TABLE 2. NON-LINEAR TRANSFORMS USED FOR LINEAR REGRESSION.

Name Transformation vector Correlation
Φ-1 r1{r, 1{l, 1sᵀ 0.615
Φ2 r1, r, l, r2, rl, l2sᵀ 0.765
Φ-2 r1{r2, 1{rl, 1{l2, 1{r, 1{l, 1sᵀ 0.870

Φ-2:1 r1{r2, 1{rl, 1{l2, 1{r, 1{l, 1, r, lsᵀ 0.873
Φ-2:2 r1{r2, 1{rl, 1{l2, 1{r, 1{l, 1, r, l, r2, rl, l2sᵀ 0.890

4.3. Elastic Scheduling Algorithms

The VM Scheduler periodically calls one of the schedul-
ing algorithms to keep the processing latency consistent. We
describe two scheduling algorithms for the VM Scheduler
that use the model presented in Section 4.2. Key notations
used in the algorithms are summarized in Table 3.

TABLE 3. KEY NOTATIONS USED IN SCHEDULING ALGORITHMS.

Name Description
lreq Requested processing latency.
rt Number of routes to process at time t.
tup VM startup time.

fpl, rq Resource prediction model that predicts the number
of cores to satisfy latency l when processing r routes.

Vact Set of VMs that are actively used by the application.
Vidle Set of VMs to be removed at the end of next billing

cycle.
Vspec Set of speculative VMs to be allocated.
V Set of currently allocated VMs. V “ Vact Y Vidle.

tbcpvq Next billing cycle time of a VM v P V .
cpvq Number of cores of a VM v P V .

4.3.1. Baseline Scheduling. The baseline scheduling al-
gorithm (baseScheduler) is shown in Algorithm 2. This
algorithm responds to increasing computational demand by
creating new VMs, while at the same time, tries to take



advantage of existing VMs even when they are not needed
to achieve required processing latency.

First, we compare the available number of cores call with
required cores creq estimated from the resource prediction
model f (Line 1-3). If there are enough cores, we sort V
in descending order of next billing cycles (the VM with
the latest billing cycle comes first) (Line 5). Then, we let
selectVMs select at least creq worth of VMs from the sorted
V and put them to Vact and the rest of VMs to Vidle (Line 6
and 7). Further, if there still remains VMs in Vidle such that
their billing cycles come after the time that we expect the
application to finish, we utilize those VMs Vextra too (Line
9-11). At this point, VMs in Vidle are expected to end their
billing cycles before the application finishes, and therefore
they will be deallocated.

If there are not enough cores to satisfy the requested la-
tency, we have to allocate new VMs to satisfy the requested
latency. Since newly allocated VMs take tup time before
they become fully operational, we can only start running
the application after tup time has passed. Therefore, we set
a tighter deadline lreq ´ tup and estimate the number of
cores to allocate calloc again (Line 15). Then, we call the
allocVMs sub-routine to allocate at least calloc worth of
VMs and update Vact and Vidle accordingly.

Algorithm 2: baseScheduler
(Baseline VM scheduling algorithm)

input : lreq, rt, tup, V
output: Vact, Vidle

1 creq Ð rfplreq, rtqs;
2 call Ð

ř

vPV cpvq;
3 if creq ď call then
4 // There are enough cores
5 Sort v P V in descending order of tbcpvq;
6 Vact Ð selectVMspcreq, V q;
7 Vidle Ð V ´ Vact;
8 Vextra “ tv | v P Vidle, t` lreq ă tbcpvqu;
9 if Vextra ‰ H then

10 Vact Ð Vact Y Vextra;
11 Vidle Ð Vidle ´ Vextra;
12 end
13 else
14 // Not enough cores, allocate VMs
15 calloc Ð rfplreq ´ tup, rtqs´ call;
16 Vact Ð V Y allocVMspcallocq;
17 Vidle ÐH;
18 end
19 return Vact, Vidle;

4.3.2. Speculative Scheduling. The speculative scheduling
algorithm (specScheduler) is shown in Algorithm 3. This
algorithm takes advantage of future computational demand
prediction and tries to allocate VMs before they are needed.
By doing so, we can avoid waiting a VM startup time before
running the application. We predict the number of routes
for time t` 1 using a slope computed from rt and rt´1 as
follows.

rt`1 “
rt ´ rt´1

t´ pt´ 1q
` rt “ 2rt ´ rt´1. (11)

This prediction model is equivalent to an autoregressive
model (i.e., AR(2)) just as used in [24], [25].

The specScheduler first obtains a baseline configura-
tion using the baseScheduler and computes all of available
number of cores in call (Line 2-3). Next, specScheduler
predicts the number of routes for the next step in r̂t`1

by using the prediction model of Equation (11) (Line 5).
Using r̂t`1 and the resource prediction model f , we esti-
mate a speculative required cores ĉreq. Finally, if we need
more cores at next time step than what we currently have
(call ă ĉreq), then we schedule to launch VMs that are worth
ĉreq ´ call cores just before the next time step (Line 8 and
10).

Algorithm 3: specScheduler
(Speculative VM scheduling algorithm)

input : lreq, rt, rt´1, tup, V
output: Vact, Vidle, Vspec

1 // Obtain a baseline configuration first
2 pVact, Vidleq Ð baseSchedulerplreq, rt, tup, V q;
3 call Ð

ř

vPV cpvq;
4 // Speculative VM allocation
5 r̂t`1 Ð predictNumRoutesprt, rt´1q;
6 ĉreq Ð rfplreq, r̂t`1qs;
7 Vspec ÐH;
8 if call ă ĉreq then
9 // Schedule to finish launching Vspec

VMs before the next time step
10 Vspec Ð scheduleAllocVMspĉreq ´ callq;
11 end
12 return Vact, Vidle, Vspec;

4.3.3. VM Allocation Policy. Given the number of
cores, we allocate VMs from a limited pool of VMs
when executing allocVMs (Line 16, Algorithm 2) and
scheduleAllocVMs (Line 10, Algorithm 3).

When selecting VMs, we try to allocate a VM type with
smaller number of cores. If a VM type reaches its instance
creation limit, then we try to allocate VM types with bigger
number of cores until at least the requested number of cores
is allocated. In case of Amazon EC2, we try to allocate
c4.large instances first, and then we try c4.xlarge followed
by c4.2xlarge. The reason that we give priority to smaller
instances is because they have finer core granularity. That is,
we would have a higher chance of allocating exact number
of cores so that we can avoid over provisioning of VMs.

5. Evaluation

We first introduce simulation based experimental settings
in Section 5.1. Next, we evaluate the proposed algorithms’
elastic behavior in Section 5.2. Then, we compare the pro-
posed algorithms’ performance with static VM scheduling
and threshold-based auto scaling in Section 5.3 and 5.4
respectively.



5.1. Experimental Settings

The experiments are simulation-based. We develop a
simulator that executes proposed VM scheduling algorithms.
Using the generated schedules by the simulator, we manu-
ally allocate and deallocate VMs on Amazon EC2 cloud
and run the Spark application to evaluate used VM hours,
cost, and latency violations based on actual execution time.
We use two 3-hour route datasets for testing: the first one
is called Nationwide that we create from the 24-hour real
nationwide flights shown in Figure 1, and the second one is
called Dallas that we create based on a simulated flights over
Dallas/Fort Worth area [26]. Both have almost the same peak
number of routes, about 1200, but the patterns of fluctuation
are different. While Nationwide has a smooth curve, Dallas
has steep spikes, as shown in Figure 7.

We use the following test parameters for evaluation:

‚ Scheduling interval: 5 minutes (36 scheduling prob-
lems over 3 hours).

‚ Requested processing latency (lreq) : 4 minutes.
‚ VM startup time (tup): 90 seconds.
‚ VM instances for Spark’s worker nodes: {c4.large,

c4.xlarge, c4.2xlarge} (see Table 1 for details). Up to
five instances can be created for each instance type.

‚ Billing cycle: 1 hour (Amazon EC2’s default).

5.2. Elastic Behavior Confirmation

5.2.1. Nationwide Dataset. Results for baseScheduler and
specScheduler for the Nationwide dataset are shown in
Figure 5(a)-(d). From Figure 5(a), we see that the base-
line scheduler allocates VMs, initially for 8 cores at 1900
seconds and then for 12 cores at 3900 seconds. Looking at
Figure 5(b), we notice that there are two “dips” in requested
latency at the same time as the scheduler allocates new VMs.
This lower latency corresponds to the value of lreq´ tup (=
150 seconds) at Line 15 of Algorithm 2. To account for
the VM startup time, we intentionally set a tighter latency.
Therefore, the scheduling algorithm has to allocate relatively
large number of cores. Since these cores are more than
enough to satisfy the regular required latency lreq (= 240
seconds), there are periods (2100 to 2700 seconds, 3900
seconds to the end) when execution time stays lower than
required, that is, resources are over-provisioned during these
periods. This is a limitation of the reactive approach. There
are four latency violations occurring at 1800, 3300, 3600,
and 3900 seconds respectively. At these times, there are
exactly the same number of cores available as the resource
prediction model estimated. This means that the prediction
model underestimated the number of cores needed to satisfy
the requested latency. The average prediction error of execu-
tion time for the four violations is 12%. This result suggests
that the accuracy of resource prediction is limited and we
may need to over-provision VMs intentionally. The total cost
for the base scheduler is $1.72 and latency violations are 4
out of 36.

From Figure 5(c), we can visually confirm that the
speculative scheduler gradually allocates smaller numbers of

cores, unlike the baseline scheduler which abruptly allocates
larger numbers of cores. This is a direct effect of the
speculative VM allocation. In fact, all the allocated VMs
are launched by scheduleAllocVMs at Line 10 in Algo-
rithm 3. Since there are already enough cores by the time
baseScheduler at Line 2 tries to schedule, it does not need to
create any new VMs. As a result, there are no latency drops
in Figure 5(d). The total cost for the speculative scheduler
is $1.01 and latency violations are 2 out 36. The cost is a
41% improvement compared to the baseline scheduler.

Figure 6 shows a VM allocation sequence from the
speculative scheduler created from the Nationwide dataset.
We can see that five c4.large instances (ID = 0 to 4) are
allocated by 2910 seconds, and then a c4.xlarge instance
(ID = 5) is allocated at 3210 seconds. Interestingly, at 9900
seconds, the scheduler chooses to keep the c4.xlarge instance
instead of the c4.large (ID = 4) instance even though the
c4.large can also satisfy the requested processing latency.
This is because the c4.xlarge will have the billing cycle
later than the c4.large does; however, in a truly continuous
optimization scenario, it may be less critical because wasted
VM hours will be negligible compared with the application
execution time.

5.2.2. Dallas Dataset. Results for baseScheduler and
specScheduler for the Dallas dataset are shown in Fig-
ure 7(a)-(d). From Figure 7(a), we can confirm that the
baseline scheduler allocates VMs for 6 cores at 1200 sec-
onds and then for 12 cores at 7800 seconds. In Figure 7(c),
the speculative scheduler follows changes of the routes
smoothly for the first stage of the sequence; however, at
7500 seconds, it fails to predict the number of routes cor-
rectly and ends up allocating less VMs than actually needed
at 7800 seconds. It allocates two more VMs at 7800 seconds
and that is the reason why we see a requested latency drop
at 7500 seconds of Figure 7(d). The current slope-based
time series predictor cannot keep up with sudden route
changes. Apart from the time series prediction failure of the
speculative scheduler, both schedulers are able to adapt to
the spike and allocate/deallocate VMs successfully. For the
base scheduler, the total cost is $0.83 and latency violations
are 2 out of 36. For the speculative scheduler, they are $1.38
and 1 out 36 respectively.

5.3. Comparison with Static Scheduling

Elastic scheduling can adapt to unforeseen fluctuating
demand whereas static scheduling cannot. We compare
static scheduling against our proposed elastic algorithms
to confirm the effectiveness of our approach’s adaptiv-
ity. Experimental settings are the same as Section 5.2,
and we use both Nationwide and Dallas datasets. For the
static scheduling, we test VM configurations with cores =
t2, 4, 8, 10, 12, 14, 16u for Nationwide and t2, 6, 8, 10, 12u
for Dallas. Comparison of VM hours, cost, and the per-
centage of latency violations are shown in Tables 4 and 5,
respectively, for the Nationwide and Dallas datasets. Since
static schedules do not waste any VM hours at all (i.e., they
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Figure 5. Experimental results for the Nationwide dataset.
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Figure 6. VM allocation sequence for the speculative scheduling algorithm
created from the Nationwide dataset.

do not visit a situation as in Figure 6), we compute the
cost for our elastic schedulers in proportion to the execution
time for fairness. In the tables, VM hours means the net
number of cores used over 3 hours of the experiments.
The percentage of latency violations is computed out of 36
scheduling problems over 3 hours.

For the Nationwide dataset, the speculative scheduler
successfully improves over the baseline scheduler in terms
of latency violations by 50% with 41% less VM hours
and cost. The performance of the static schedule with 12
cores is comparable to the speculative scheduler (0% vs.
5.56% violations). When comparing the two, the speculative
scheduler achieves a similar performance with 49% less VM
hours and cost. For the Dallas dataset, the base scheduler
improves latency violations over the closest static allocation
approach (6 cores) by 66% despite it uses 17% less VM
hours. When comparing to the static schedule with 8 cores,
the speculative scheduler slightly over-provisions due to
inaccuracy of both time series and resource predictions.
That is, it spends 5% more VM hours and cost, but equally
performs as the static scheduler with 8 cores in terms latency
violations.

While our elastic scheduling policy exhibits a small
percentage of latency violations, we note that any static
scheduler, other than a very highly provisioned one, will
not be able to guarantee zero latency violations. For any
static VM allocation, there is a possibility that it will not be
sufficient for some level of demand. Our elastic schedulers,

TABLE 4. VM HOURS, COST, AND LATENCY VIOLATIONS FOR ELASTIC
AND STATIC SCHEDULING ALGORITHMS (NATIONWIDE DATASET).

Policy Cores VM hours Cost Violations
[core¨hour] [USD] [%]

Static

2 6 0.33 63.89
4 12 0.66 44.44
8 24 1.32 19.44
10 30 1.65 13.89
12 36 1.98 0
14 42 2.31 0
16 48 2.64 0

Auto Scaling 2 to 8 15.96 0.88 25
Elastic (base.) 2 to 22 31.33 1.72 11.11
Elastic (spec.) 2 to 14 18.33 1.01 5.56

TABLE 5. VM HOURS, COST, AND LATENCY VIOLATIONS FOR ELASTIC
AND STATIC SCHEDULING ALGORITHMS (DALLAS DATASET).

Policy Cores VM hours Cost Violations
[core¨hour] [USD] [%]

Static

2 6 0.33 61.11
6 18 0.99 16.67
8 24 1.32 2.78
10 30 1.65 2.78
12 36 1.98 0

Elastic (base.) 2 to 14 15 0.83 5.56
Elastic (spec.) 2 to 18 25.15 1.38 2.78

on the other hand, successfully adapt to unforeseen compu-
tational demand changes and scale VMs accordingly with
reasonably low cost.

5.4. Comparison with Auto Scaling

Since threshold-based auto scaling is commonly used as
an application-agnostic scaling technique, we test it against
our application aware approach. We use the same experi-
mental settings as Section 5.2. We implement the following
rules that are compatible to Amazon Auto Scaling [10]:

‚ VM instance type: c4.large.
‚ VM allocation: minimum 1, maximum 5 instances.
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Figure 7. Experimental results for the Dallas dataset.

‚ Rule to scale up: if the average CPU utilization
of allocated VMs is consistently above 70% for 2
minutes, add one VM.

‚ Rule to scale down: if the average CPU utilization
of allocated VMs is consistently below 30% for 2
minutes, reduce one VM.

‚ Cooldown period: once scaling decision is made, no
new scaling activity is performed for 300 seconds.

‚ VM termination: the instance that is closest to the
next billing cycle is chosen to terminate.

Figure 8 shows average CPU utilization and the number
of VMs over the 3 hour experiment period. The auto scaler
successfully increases VMs up to 4, and then decreases
them to 1. The results are summarized in Table 4. Since the
threshold-based auto scaler is not aware of the application
performance requirement (i.e., 240 seconds latency) at all, it
under-provisions the VMs and ends up producing relatively
many latency violations compared to our elastic schedulers.
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Figure 8. CPU utilization and VM allocation by a threshold-based auto
scaling.

6. Related Work

First and foremost, related work is an air traffic flow
management model optimizing nationwide air traffic [16].
Cao and Sun formulate the air traffic management problem
as an ILP problem and decompose it into multiple sub-
problems using Lagrangean decomposition. Further, they

use MapReduce [15] to solve the Lagrangean relaxation of
the large LTM problem in parallel [16]. They only consider
fix-sized clusters as a running environment; however, we
apply it to an IaaS cloud and support auto scaling of VMs.
Also, our approach is aware of billing cycles and tries not
to renew VM leases unless necessary.

Many techniques have been developed to automatically
scale VM allocations [27]. Autoregression and ARMA are
widely used to predict time series and have been success-
fully applied to auto-scaling cloud systems [24], [25]. If
the system foresees a demand spike in advance, it can
allocate new VMs and make them ready before the spike
actually arrives. As long as prediction accuracy is reason-
ably high, time series prediction approaches are effective.
Another common approach is threshold-based such as of-
fered in Amazon Auto Scaling [10]. For example, users
can configure a policy that creates a new VM if the CPU
utilization consistently goes above 70%. This approach is
simple and easy to use; however, since it only reacts to
simple metrics, from our experiment, it cannot optimally
allocate VMs to meet the application specific performance
target (e.g., processing latency).

Other auto scaling techniques include reinforcement
learning and control theory based approaches. Reinforce-
ment learning (RL) techniques try to scale VMs without any
prior knowledge about the application [11], [12]. RL agents
learn appropriate actions by interacting with environments,
but it requires a long time to find an optimal solution. In
control theory based approaches, a controller tries to control
the system to follow some desired value by using feedback
from the system. For example, the controller controls the
number of VMs to keep the system’s throughput consis-
tent [28], [29]. Unlike the control theory based approaches,
our model based approach does not require online model
updates. Therefore, it is expected to work as soon as the
system starts running. As a trade-off, the models in our
approach cannot adapt at run time.



7. Conclusion and Future Work

In this paper, we presented an elastic middleware frame-
work that is specifically designed to solve ILP problems
generated from continuous air traffic streams over an IaaS
cloud. We proposed a speculative VM scheduling algorithm
with time series and resource prediction models. Experi-
ments show that our speculative VM scheduling algorithm
can achieve a similar performance to a static schedule while
using 49% less VM hours for a smoothly changing air traffic.
However, for a sharply changing air traffic, our speculative
VM scheduling algorithm costs slightly more VM hours
to achieve the same performance. Our algorithm is able
to adapt dynamically to potentially unforeseen fluctuating
demand with a reasonable prediction accuracy. We plan to
improve model prediction accuracy especially for time series
using a more complex model (e.g., ARMA).

We have several potential directions for future work.
First, we would like to apply our middleware to other
application areas since the concept of solving large scale
ILP problems created from continuous data stream is widely
applicable. Candidate application areas include: public trans-
portation routing [4], investment portfolio optimization [5],
and marketing budget optimization [6], [7]. Second, we plan
to explore other modeling techniques for predicting resource
allocation. Finally, we plan to extend our framework to sup-
port other optimization policies such as budget constrained
and deadline constrained policies.

Acknowledgments

This research is partially supported by the DDDAS
program of the Air Force Office of Scientific Research,
Grant No. FA9550-15-1-0214 and NSF Awards, Grant No.
1462342, 1553340, and 1527287. The authors would like to
thank an Amazon Web Services educational research grant
and a Google Cloud Credits Award.

References

[1] International Air Transport Association (IATA), “New IATA
Passenger Forecast Reveals Fast-Growing Markets of the Future,”
http://www.iata.org/pressroom/pr/pages/2014-10-16-01.aspx,
October 2014.

[2] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[3] GE, “GE Flight Quest Challenge 2,” http://www.gequest.com/c/
flight2-final/data.

[4] J.-F. Cordeau, P. Toth, and D. Vigo, “A Survey of Optimization
Models for Train Routing and Scheduling,” Transportation Science,
vol. 32, no. 4, pp. 380–404, 1998.

[5] C. Papahristodoulou and E. Dotzauer, “Optimal portfolios using linear
programming models,” Journal of the Operational research Society,
vol. 55, no. 11, pp. 1169–1177, 2004.

[6] T. Lu and C. Boutilier, “Dynamic segmentation for large-scale mar-
keting optimization,” in International Conference on Machine Learn-
ing 2014 Workshop on Customer Life-Time Value Optimization in
Digital Marketing, June 2014.

[7] Z. Abrams, O. Mendelevitch, and J. Tomlin, “Optimal delivery of
sponsored search advertisements subject to budget constraints,” Pro-
ceedings of the 8th ACM Conference on Electronic Commerce - EC
’07, p. 272, 2007.

[8] Google, “Google AdWords,” https://www.google.com/AdWords/.
[9] E. Even-dar, Y. Mansour, V. Mirrokni, S. Muthukrishnan, and

U. Nadav, “Bid Optimization in Broad-Match Ad Auctions,”
Proceedings of the 18th International Conference on World Wide
Web, p. 10, 2009. [Online]. Available: http://arxiv.org/abs/0901.3754

[10] Amazon Web Services, “Auto Scaling,” https://aws.amazon.com/
autoscaling/.

[11] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: Towards a fully automated workflow,” in ICAS
2011, The Seventh International Conference on Autonomic and Au-
tonomous Systems, 2011, pp. 67–74.

[12] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application scal-
ability in the cloud,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 12, pp. 1656–1674, 2013.

[13] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[14] Y. Cao and D. Sun, “A Link Transmission Model for Air Traffic Flow
Management,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 5, pp. 1342–1351, 2011.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on
Large Clusters,” Proceedings of 6th Symposium on Operating Systems
Design and Implementation, pp. 137–149, 2004.

[16] Y. Cao and D. Sun, “Migrating Large-Scale Air Traffic Modeling
to the Cloud,” Journal of Aerospace Information Systems, vol. 12,
no. 2, pp. 257–266, 2015. [Online]. Available: http://arc.aiaa.org/doi/
10.2514/1.I010150

[17] FlightAware, “FlightAware,” http://flightaware.com/.
[18] Amazon Web Services, “Amazon Elastic Compute Cloud (Amazon

EC2),” https://aws.amazon.com/ec2/.
[19] The Apache Software Foundation, “Apache Spark,” http://spark.

apache.org/.
[20] LGPL open source project, “lp solve: linear integer programming

solver,” http://lpsolve.sourceforge.net/.
[21] Amazon Web Services, “Amazon Elastic Compute Cloud (Amazon

EC2) API Reference,” http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/.

[22] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Performance
Characterization of In-Memory Data Analytics on a Modern Cloud
Server,” arXiv:1506.07742, 2015.

[23] S. L. Olivier, B. R. De Supinski, M. Schulz, and J. F. Prins, “Charac-
terizing and mitigating work time inflation in task parallel programs,”
Scientific Programming, vol. 21, pp. 123–136, 2013.

[24] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao, “Energy-aware server provisioning and load dispatching for
connection-intensive internet services.” in NSDI, vol. 8, 2008, pp.
337–350.

[25] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Cloud Comput-
ing (CLOUD), 2011 IEEE International Conference on. IEEE, 2011,
pp. 500–507.

[26] Yiyuan Zhao and Joachim K. Hochwarth and Adrianne A.
Hersrud, “Comprehensive Dynamic Air Traffic System Simula-
tion (ComDATSS,” https://www.aem.umn.edu/research/atc/projects/
ComDATSS/.

[27] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review
of Auto-scaling Techniques for Elastic Applications in Cloud
Environments,” Journal of Grid Computing, vol. 12, no. 4, pp.
559–592, 2014. [Online]. Available: http://link.springer.com/10.1007/
s10723-014-9314-7

[28] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck,
“From data center resource allocation to control theory and back,”
in Cloud Computing (CLOUD), 2010 IEEE 3rd International Con-
ference on. IEEE, 2010, pp. 410–417.

[29] X. Bu, J. Rao, and C.-Z. Xu, “Coordinated self-configuration of vir-
tual machines and appliances using a model-free learning approach,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 24,
no. 4, pp. 681–690, 2013.


