
A Parallel PARAFAC Implementation & Scalability Testing
for Large-Scale Dense Tensor Decomposition

ABSTRACT

Parallel Factor Analysis (PARAFAC) is used in many scientific
disciplines to decompose multidimensional datasets into principal
factors in order to uncover relationships in the data. While quite
popular, the common implementations of PARAFAC are single

server solutions that do not scale well to very large datasets. To
address this limitation, a Parallel PARAFAC algorithm has been
designed and implemented in C using MPI. The end-to-end
pipeline includes a parallel read of the input data from a file, the
execution of the parallel algorithm, and concludes with a parallel
write of the results to a file. The implementation has been
evaluated using a strong scaling study on an IBM Blue Gene/Q
supercomputer. The compute time, as well as the communication,
file read, and file write bandwidths were each captured across

multiple scenarios to evaluate the overall system performance and
scalability. Results indicate the implementation scales well—with
a 128x increase in the number of parallel processes, the system
executed 200x faster. Further, the communication time at its peak
accounted for only 12% of the total processing time, indicating
the implementation is currently CPU bound and thus should
continue to scale well across more and more nodes.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent programing –
parallel programming.

G.1.0 [Numerical Analysis]: General – parallel algorithms.

General Terms

Algorithms, Performance, Design

Keywords

Parallel factor analysis; tensor; multiway data analysis; parallel

computing; MPI; scalability testing; performance testing

1. INTRODUCTION
Parallel Factor Analysis (PARAFAC) [1][2] is a powerful
technique for uncovering hidden relationships in datasets that
have three or more dimensions. Specifically, PARAFAC is used

to decompose multidimensional datasets into principal factors to
uncover relationships between variables. Three-or-more

dimensional datasets are typically referred to as ‘tensors’ or
‘multiway datasets,’ and are used in many scientific disciplines
including chemometrics (e.g., for identifying the chemical
components within a mixture [3]), social network analysis (e.g.,
for identifying hidden structures within a network [4]), and
neuroscience (e.g., for studying the effects of drug treatments on
brain activity [5]), to name a few.

An industrial example of a 3-way tensor is a set of sensor readings

generated from industrial equipment over time, in which one
dimension represents the physical units (e.g., gas turbines), a
second dimension represents the sensors on each unit (e.g.,
temperature sensors, pressure sensors, air flow sensors), and the
third dimension is time. In this example, PARAFAC could be
used to characterize relationships within and across the
dimensions, which in turn could be used to identify normal and
abnormal functioning of the equipment.

The canonical approach to PARAFAC decomposition is to use an

Alternating Least Squares (ALS) algorithm that performs a
sequence of matrix operations to decompose a tensor into its
principal factors (plus some residual error). The objective of
PARAFAC-ALS is to iteratively improve the principal factor
decomposition of a tensor in order to minimize the residual error,
and thus requires the iterative execution of the matrix operations
until either a convergence or other stopping criteria is met [6].

The two most commonly used tensor analysis packages are both

written in MATLAB [7][8], and are limited in their ability to scale
to large datasets. Now that we are in the era of “Big Data,”
datasets are growing ever larger and a greater amount of data-
driven analysis is being enabled within almost every scientific
discipline [9][10]. Thus, the need to be able to run PARAFAC and
similar analytic techniques at scale is becoming increasingly
important. To address the need for a PARAFAC implementation
able to scale to very large, dense datasets, a Message Passing

Interface (MPI)-based parallel implementation of PARAFAC has
been designed and implemented to decompose three-dimensional
tensors. This implementation includes the ability to: (1) read in
large datasets using parallel I/O and then formulate that data into a
tensor distributed across a collection of parallel processes, (2)
execute a parallel version of the PARAFAC-ALS algorithm, and
finally, (3) use parallel I/O to write the principal factor matrices to
files. This MPI-based Parallel PARAFAC implementation has

been designed and implemented such that the full tensor is never
collected on a single node, allowing it to analyze tensors that are
too large to fit in the main memory of a single machine. This
implementation has been tested on an IBM Blue Gene/Q
supercomputer to evaluate its runtime performance and
scalability.

Kareem S. Aggour
Knowledge Discovery Lab

GE Global Research
Niskayuna, NY 12309

518-387-4047

aggour@ge.com

Bülent Yener
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
518-276-6907

yener@cs.rpi.edu

This paper is organized as follows: Section 2 summarizes prior art
in the space of parallel implementations of PARAFAC. Section 3
outlines the sequential PARAFAC-ALS algorithm. Section 4
details the design of our Parallel PARAFAC algorithm, and
Section 5 describes the MPI-based implementation. Section 6

presents the results of performance and scalability testing on a
dense dataset, and Section 7 outlines conclusions and future work.

2. PRIOR ART
The first documented explorations of parallel implementations of
PARAFAC appeared independently in 2009. In an HPC

minisymposium, Sears et al. [11] presented efforts to develop an
MPI-based parallel implementation of PARAFAC. However, they
explicitly stated their solution was implemented for sparse
matrices, which limits its applicability to only certain multiway
datasets. Further, they did not provide any details on their
parallelism approach nor is their source code publicly available,
preventing a meaningful evaluation of their approach.

Around the same time Zhang et al. [12] published a detailed

description of a PARAFAC parallelization approach applied to
global climate data (they focus on Nonnegative Tensor
Factorization, an extension of PARAFAC such that all of the
factors are nonnegative). Their approach relies on a few
observations of the inherent parallel properties of the matrix
operations that were rediscovered during this research effort.
While we use similar properties as that of Zhang et al., their use of
a gradient descent algorithm results in different operations to

perform the decomposition. Their use of C++ and MPI to
implement the parallel algorithm makes this work similar to our
own research, however, they limited their scalability testing to 10
parallel processes and achieved only a modest sub-linear peak
speedup of 6.8x (comparing runtime on 8 nodes vs. 1 node) [12].

Phan and Cichocki [13] also explored parallel implementations of
PARAFAC, including developing a grid-based approach to
parallelizing the algorithm that divides a tensor into an arbitrary
number of sub-tensors split across all dimensions. Their approach

allows a finer-grained level of parallelism than our design;
however, their approach introduces some error with more parallel
processes, resulting in a tradeoff between runtime and accuracy.

Beyond the above efforts, recent research in large-scale, parallel
PARAFAC implementations has originated primarily from a
group at Carnegie Mellon University. Starting in 2012, Kang et al.
[14] describe GigaTensor, which appears to be the first Hadoop-
based implementation of PARAFAC. GigaTensor is implemented

using three separate MapReduce jobs executed in sequence for
each iteration of the PARAFAC algorithm. While interesting,
GigaTensor’s parallelism approach requires the passing of the
tensor elements between the Map and Reduce stages, and is
efficient only because they assume the tensor is sparse.

Papalexakis et al. [15] describe ParCube, which generates many
small tensors using random sampling of a single large tensor,
parallelizes the analysis of each small tensor, and finally combines

the resulting small decompositions. With this approach, the actual
PARAFAC-ALS algorithm is executed in an embarrassingly
parallel manner, and only at the completion of the small
decompositions are the results synthesized into a single solution.
Thus, ParCube is performing an approximation of a traditional
PARAFAC decomposition. ParCube is implemented in
MATLAB, and utilizes one of the established tensor toolboxes [8]
for the PARAFAC algorithm implementation.

In a similar vein to ParCube, Sidiropoulos et al. [16] propose a
parallel tensor decomposition approach they call PARACOMP,
which operates by generating a large number of random
compressed sub-tensors from a single large tensor, decomposing
each in an embarrassingly parallel manner and then aggregating

the results, again approximating a complete decomposition. It
appears that an implementation of PARACOMP is underway.

Outside of the research efforts at Carnegie Mellon, Zhe et al. [17],
a combined team from Purdue University and IBM’s T.J. Watson
Research Center, developed DinTucker (Distributed Infinite
Tucker), which utilizes an alternate algorithm for tensor
decomposition called Tucker [18]. While not based on
PARAFAC, DinTucker is still of interest because it addresses the

core challenge of decomposing a large tensor in a highly parallel
manner. DinTucker was built on top of Hadoop, and uses a
distributed stochastic gradient descent algorithm they built as
stages within MapReduce jobs in a vein similar to that of
GigaTensor.

Overall, the recent parallel tensor decomposition approaches
address the challenge of decomposing a large tensor either, in the
case of ParCube and PARACOMP, by approximating the solution

through the creation of many small tensors and decomposing them
in an embarrassingly parallel manner, or, in the case of
GigaTensor and DinTucker, by utilizing Hadoop with its
consequent performance overheads.

Our approach returns to the early work of parallel PARAFAC
decomposition through MPI, but attempts to (a) achieve
significantly better performance than what has been reported, (b)
without the assumption of a sparse tensor limiting the

applicability of our solution.

3. PARAFAC-ALS ALGORITHM
As stated previously, an alternating least squares algorithm is
traditionally used to decompose a tensor X into R factors, with
each dimension of X decomposed into R distinct vectors, as
shown in Figure 1.

Figure 1. 3D tensor decomposition into the sum of two rank-
one tensors and a tensor of residual error terms

For a 3-way tensor X ∈ ℝIxJxK, the tensor is decomposed into
matrices A ∈ ℝIxR, B ∈ ℝJxR, and C ∈ ℝKxR. Figure 1 can be

alternately represented by the equation:

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑟𝑏𝑗𝑟𝑐𝑘𝑟 + 𝑒𝑖𝑗𝑘
𝑅
𝑟=1 (1)

The objective of PARAFAC-ALS is to find A, B, and C matrices

that minimize the total residual error in Equation 1.

PARAFAC-ALS includes a sequence of matrix operations,
including the Khatri-Rao matrix product, matricization of X
(projection of a 3D tensor onto a 2D plane), matrix-matrix
multiplication, matrix transposition, and matrix inversion. Brief
descriptions of the Khatri-Rao product, matricization, and the
overall sequential ALS algorithm are provided next.

3.1 Khatri-Rao Product
The Khatri-Rao product is represented by the symbol ⊙ and takes

two matrices with the same number of columns and performs

column-wise multiplication of each row in the first matrix with
each column in the second. For matrices A ∈ ℝnxk and B ∈ ℝmxk,

the Khatri-Rao product A⊙B produces an (n*m)xk matrix P, such

that the first column of P equals:

P[;,1] = [a1,1b1,1 a2,1b1,1 .. an,1b1,1 …… an,1b1,1 an,1b2,1 .. an,1bm,1]T (2)

The remaining columns of the Khatri-Rao product are derived in
the exact same pattern as the first column, with the second column
of the product calculated as the product of the second column of
matrix A multiplied by the second column of matrix B in the
format shown in Equation 2.

3.2 Matricization
Matricization is the process of unfolding a tensor into a 2D
matrix, with different modes representing the different dimensions
of unfolding. For example, X(1) represents the unfolding of tensor
X ∈ ℝIxJxK in the 1st dimension, creating a matrix ∈ ℝIxJK. For the

other modes, X(2) ∈ ℝJxIK and X(3) ∈ ℝKxIJ.

Figure 2 shows a representative example of a 3rd order tensor of
dimensions 4x3x2 unfolded in all three modes.

Figure 2. Example 3D tensor A ∈ ℝ4x3x2 unfolded in three

modes, A(1), A(2), and A(3). The lines within the matrices A(i)

highlight where the IxJx1 and IxJx2 matrices in tensor A are
located within the 2D matrices

3.3 Alternating Least Squares Algorithm
The PARAFAC alternating least squares algorithm for tensor
decomposition is shown in Figure 3. The algorithm iterates until it
either: (a) converges upon A, B, and C matrices that no longer
improve the residual error above a threshold ε, or (b) has executed
for a maximum number of iterations.

4. PARALLEL PARAFAC
Through this effort, we have designed and developed an approach
to parallelizing the PARAFAC-ALS algorithm that does not rely
upon sampling or approximations of the canonical ALS algorithm
shown in Figure 3. Further, our approach implements the

PARAFAC-ALS algorithm in a highly scalable manner, limited
only by the largest dimension of the tensor.

To parallelize the algorithm, we first make the following
assumptions: dimensions I and J of matrix X are expected to be
relatively small (on the order of 10’s 1,000’s), while dimension
K is expected to be very large (on the order of 10K’s 1MM’s
or more). This assumption reflects use cases wherein dimensions I
and J represent physical assets or entities, such as industrial

equipment and sensors, respectively, and dimension K represents
an unbounded variable such as time. Given these assumptions, it
is most practical to divide the tensor X into r distinct subsets by
splitting the tensor across the K dimension, resulting in IxJx(K/r)

sub-tensors located on each rank (parallel process) r. A visual
representation of this split can be seen in Figure 4.

Random initialization of B and C

While (old error – new error) > ε and have not exceeded
maximum number of iterations do

/* fix B and C, solve for A */

𝑍 = 𝐶 ⊙ 𝐵

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1

/* fix A and C, solve for B */

𝑍 = 𝐶 ⊙ 𝐴

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1

/* fix A and B, solve for C */

𝑍 = 𝐵 ⊙ 𝐴

𝐶 = 𝑋(3)𝑍(𝑍𝑇𝑍)−1

calculate new residual error
end while

Figure 3. PARAFAC Alternating Least Squares algorithm

Figure 4. Single tensor for single-server sequential processing,
and split into r blocks for parallel processing

Further, we assume that because each process will have a
complete set of IxJ matrices (K/r of them, to be precise), each
process will require a complete A and B matrix, and a K/r subset

of the C matrix, Ci. Note that in practice, any dimension can be
viewed as the ‘K’ dimension for splitting the tensor across the
parallel processes. However, it makes the most sense to always
split on the largest dimension, to maximize the opportunity for
parallelism.

Given the above assumptions, we then designed an approach to
solve for matrices A, B, and C in parallel. The approach is built
upon three theorems of the transformations used in the algorithm.

4.1 Theorem 1: Khatri-Rao product

decomposition
When solving for A, if a process has only a subset of the C matrix
but has the full B matrix available, then the Khatri-Rao product is
fully decomposable. In practice, one can apply the Khatri-Rao
product to every row in the C matrix in parallel and assemble the
correct output. For example, assuming the C matrix is divided into
two parts, this can be expressed as:

𝐶 = [
𝐶1

𝐶2
] (3)

𝑍1 = 𝐶1 ⊙ 𝐵
𝑍2 = 𝐶2 ⊙ 𝐵

 (4)

𝑍 = [
𝑍1

𝑍2
] ≡ 𝐶 ⊙ 𝐵 (5)

From Equation 4, if the Khatri-Rao product is parallelized for
each Ci block of C, then each process will generate a distinct
subset of the Z matrix, Zi.

Proof:

For B ∈ ℝJxR and C ∈ ℝKxR,

if 𝑍 = 𝐶 ⊙ 𝐵

then ∀𝑖 ∈ [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 ∈ [1, 𝐾]

 𝑍[𝑖 ∗ 𝐾 + 𝑗, 𝑘] = 𝐶[𝑖, 𝑗] ∗ 𝐵[𝑗, 𝑘]. (6)

Therefore, each row of Z (indexed by i*K + j) can be solved for

with only the ith row of C and the jth row of B.

After the Khatri-Rao product, when solving for A the next
operation in the algorithm requires solving for X(1)Z(ZTZ)-1. The
remaining two theorems give insight into how this operation can
be parallelized using the Zi subsets of Z available within each
parallel process.

4.2 Theorem 2: ZTZ sum of parts
If the Z matrix is divided into r blocks, then the ZTZ operation is
equal to the sum of the Zi

TZi of the parts. For our 2-process
example, this can be represented as:

𝑍𝑇𝑍 = 𝑍1
𝑇𝑍1 + 𝑍2

𝑇𝑍2 (7)

Proof:

For Z ∈ ℝIxJ,

𝑍𝑇𝑍[𝑖, 𝑗] = ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗]𝑊
𝑘=1 (8)

= ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗] +𝑛−1
𝑘=1 ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗]𝑊

𝑘=𝑛 . (9)

Therefore, if Z is divided into r blocks, then ZTZ can be derived
from the sum of the Zi

TZi of the parts. Consequently, we can
perform parallel Zi

TZi operations and sum the results across all of
the processes to generate a complete ZTZ matrix. This is a

particularly attractive property because while the full Z matrix is
of dimension JKxR (when solving for A) and is expected to be
extremely large, the ZTZ matrix is extremely small; of dimension
RxR (where R is typically between 2 and 4). Therefore, the
collective operation is performed over an extremely small matrix.

4.3 Theorem 3: X(1)Z sum of parts
If the Z matrix is divided into blocks of equal dimensions, then
the X(1)Z operation is equal to the sum of the X(1)rZi of the parts.
For our 2-process example, this can be expressed as:

𝑋(1) = [𝑋(1)1 𝑋(1)2] (10)

𝑋(1)𝑍 = 𝑋(1)1𝑍1 + 𝑋(1)2𝑍2 (11)

Proof:

If we split X(1) and Z into r blocks as shown in Figure 4, X(1)Z can
be expressed as:

𝑋(1)𝑍 = [𝑋(1)1 𝑋(1)2 … 𝑋(1)𝐾] [

𝑍1

𝑍2

⋮
𝑍𝐾

] (12)

𝑋(1)𝑍 = ∑ 𝑋(1)𝑍𝑘
𝐾
𝑘=1 . (13)

As in the previous theorem, this also requires a collective
operation to sum for the complete X(1)Z matrix, but this matrix is

of dimension IxR (when solving for A), which is expected to be
reasonably small.

From these three theorems, we conclude that we can completely
parallelize the derivation of decomposition matrix A with a
collection of large matrix operations performed independently in

each process, and the transmission of a relatively small amount of
data (r RxR and IxR matrices).

The calculation of matrix B follows an identical pattern to that of
matrix A, and so the same steps can be performed to solve for B
in parallel. When solving for B, we again require a collective
operation to sum the ZTZ RxR matrix, but because the B matrix is
likely of a different dimension from the A matrix, in this instance
we will require a collective operation to sum a JxR matrix.

The same parallel approach cannot be taken when solving for C,
however, because each parallel process contains only a portion of
the matrices along the K dimension of tensor X. Fortuitously,
solving for C is even simpler than solving for A and B, because C
can be updated independently within each process based on its
local data and does not require any collective operations. This is a
result of the matricization of X on the 3rd mode, which causes
each block of Xi to be divided into blocks of rows instead of

columns (as previously highlighted in Figure 2). Therefore, the
parallel operations can be expressed as:

𝐶 = [
𝐶1

𝐶2
] (14)

𝑋(3) = [
𝑋(3)1

𝑋(3)2
] (15)

𝐶 = [
𝐶1

𝐶2
] = [

𝑋(3)1

𝑋(3)2
] 𝑍(𝑍𝑇𝑍)−1 (16)

𝐶 = [
𝐶1

𝐶2
] = [

𝑋(3)1𝑍(𝑍𝑇𝑍)−1

𝑋(3)2𝑍(𝑍𝑇𝑍)−1] (17)

As shown in Equation 12, the full C matrix can be updated by
updating the individual Ci components within each parallel
process. These updates can occur independently on each node
because the Z matrix in this instance is dependent on matrices A
and B only, which are identical on each node and therefore no

information passing is required to solve for each local Ci
component.

4.4 Parallel Alternating Least Squares

Algorithm
Figure 5 shows the parallel ALS algorithm we designed to
decompose a 3rd-order tensor. The operations ensure that each
parallel process has the same local A and B matrix (which are
both small), and their own local component Ci of the extremely
large C matrix. Two collective operations occur when solving for
matrices A and B, and then a collective operation is performed to

calculate the total residual error at the end of each iteration.

This parallel algorithm is particularly attractive because it reduces
the dimensions of many large-scale matrix operations (such as
matrix multiplication, which is of order O(n3)), and so a reduction
in the size of n on each node (by adding more nodes) can result in
super-linear speedups. The limiting factor of the speedup will
come from the overhead induced through the message passing
required in the parallel implementation. A critical question is

whether reductions in the compute time will be overshadowed by
commensurate increases in the communication overhead from
more and more nodes participating in the parallel computation.

Random initialization of B and Ci on each node

while (sum(old error) – sum(new error)) > ε and not exceeded
maximum number of iterations do

/* fix B and C, solve for A */

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐵

solve for 𝑍𝑖
𝑇𝑍𝑖

𝑍𝑇𝑍 = ∑ 𝑍𝑖
𝑇𝑍𝑖

𝑟
𝑖=0 // MPI all reduce matrix sum

solve for 𝑋(1)𝑖𝑍𝑖

𝑋(1)𝑍 = ∑ 𝑋(1)𝑖𝑍𝑖
𝑟
𝑖=0 // MPI all reduce matrix sum

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1

/* fix A and C, solve for B */

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐴

solve for 𝑍𝑖
𝑇𝑍𝑖

𝑍𝑇𝑍 = ∑ 𝑍𝑖
𝑇𝑍𝑖

𝑟
𝑖=0 // MPI all reduce matrix sum

solve for 𝑋(2)𝑖𝑍𝑖

𝑋(2)𝑍 = ∑ 𝑋(2)𝑖𝑍𝑖
𝑟
𝑖=0 // MPI all reduce matrix sum

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1

/* fix A and B, solve for C */

𝑍 = 𝐵 ⊙ 𝐴
𝐶𝑖 = 𝑋(3)𝑖𝑍(𝑍𝑇𝑍)−1

calculate new error local ei
𝑛𝑒𝑤 𝑒 = ∑ 𝑒𝑖

𝑟
𝑖=0 // MPI all reduce error sum

end while

Figure 5. Parallel PARAFAC Alternating Least Squares
algorithm for 3rd-order tensors

5. IMPLEMENTATION
The Parallel PARAFAC-ALS algorithm has been implemented in
C using MPI compiled with the IBM XL C compiler [19]. The

code first initializes MPI for the user-defined number of ranks
(parallel processes) r, and then each rank allocates memory for the
A[I][R], B[J][R], and Ci[K/r][R] matrices, and randomly
initializes its local copies of the B and Ci matrices. A is not
initialized because the first step in the algorithm will derive A
from the B and Ci matrices. The code then allocates memory for
the local block of the tensor X[I][J][K/r], and performs a parallel
block read of the tensor from a single input file using the

MPI_File_read_at_all command, such that each rank reads in an
equal-sized portion of the file into its local tensor object. The
system captures the max file read time across the ranks, and this
time is used to calculate the file read bandwidth.

Once the tensor has been fully loaded across all ranks, the Parallel
PARAFAC-ALS algorithm can begin. A ‘while’ loop is used,
inside of which A is first solved for, and then B, and then each Ci,
as outlined in the algorithm in Figure 5. As mentioned previously,

these solves require the use of the Khatri-Rao product, matrix
transpose, inverse, multiply, and unfolded matrix multiply, as
described in the previous section. Solving for matrices A and B
requires two matrix synchronization (sum) operations, which
execute via the MPI_Allreduce function for each element of the
two matrices. At the end of each iteration the local error is
calculated for each rank, and then the cumulative error is summed
across all ranks using another MPI_Allreduce sum operation. If
the change in total error from one run to the next is less than the

minimum error change ε, or the loop has executed more than N
times, the computation completes. In this implementation, ε=10-4
and N=50, but both values are easily changed.

During the code execution, the compute time is captured from
before the while loop begins to after the while loop ends (minus
the communication time), and the MPI communication time is
captured as the time spent performing each of the many
MPI_Allreduce operations. The compute time is reported as part

of the final results, and the communication time is used to
calculate the communication bandwidth.

At the completion of the algorithm, the final step is to write the
three matrices to three separate files. Because each rank contains
an identical copy of the A and B matrices there is no need for
parallel writes, and the C command ‘fprintf’ is used to write these
two matrices to files, with rank 0 writing the A matrix and rank 1
writing the B matrix. As described previously, these matrices are

both quite small and take a negligible amount of time to write. In
these experiments the A matrix is 180 bytes and the B matrix is
5.2KB.

The C matrix is more complicated, as it is considerably larger and
divided across the r ranks. In these experiments the compact C
matrix file is 0.5MB. The code uses two methods to perform
parallel writes of the C matrix: one approach uses a compact write
of the matrix to a single contiguous file, and the other approach

writes the C matrix in 2KB blocks per Ci matrix. The code
dynamically sets the write block size as some multiple of 2KB
based on the size of the Ci matrix. In most instances one 2KB
block is sufficient, but in one instance the Ci matrix requires two
2KB blocks. The command MPI_File_write_at_all is used to
execute the parallel writes, and the code separately captures the
time spent performing the compact and block file writes. These
two write times are each used to calculate the file write

bandwidths.

5.1 Computational Complexity
Through this algorithm, tensor X ∈ ℝIxJxK is decomposed into

matrices A ∈ ℝIxR, B ∈ ℝJxR, and C ∈ ℝKxR. The Big-O

computational complexity of traditional implementations of the
matrix operations used in the Parallel PARAFAC algorithm
assuming all matrices are NxN are in Table 1.

Table 1. Computational complexity of matrix operations

Operation Symbol O(∙)

Khatri-Rao product ⊙ O(N3)

matrix multiply ∗ O(N3)

matrix inverse -1 O(N3)

From the Big-O of the general operations defined in Table 1, we
can identify the Big-O computational complexity for each
operation in the Parallel PARAFAC algorithm. The Big-O
complexity and the dimensions of the resulting matrices are found
in Table 2.

As can be seen in Table 2, the majority of the operations are
dependent on the size of the tensor split, K/r, indicating that the
more parallel processes r we can use, the faster the overall
calculation will execute. The few operations that do not change
based on the size of the tensor split are of the order R3, I*R*R and
J*R*R, which are each expected to be reasonably small given the

assumptions outlined prior to the development of the parallel
algorithm, and therefore are not expected to dominate the
calculations.

Table 2. Computational complexity of matrix operations

Operation O(∙)
Output Matrix

Dimensions

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐵 K/r * J * R (K/r*J) x R

𝑍𝑖
𝑇𝑍𝑖 (K/r * J) * R2 R x R

𝑋(1)𝑖𝑍𝑖 I * (K/r * J) * R I x R

(𝑍𝑇𝑍)−1 R3 R x R

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1 I * R2 I x R

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐴 K/r * I * R (K/r*I) x R

𝑍𝑖
𝑇𝑍𝑖 (K/r * I) * R2 R x R

𝑋(2)𝑖𝑍𝑖 J * (K/r * I) * R J x R

(𝑍𝑇𝑍)−1 R3 R x R

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1 J * R2 J x R

𝑍 = 𝐵 ⊙ 𝐴 J * I * R (J*I) x R

𝑍𝑇𝑍 (J * I) * R2 R x R

𝑋(3)𝑖𝑍 K/r * (J * I) * R K/r * R

(𝑍𝑇𝑍)−1 R3 R x R

𝐶𝑖 = 𝑋(3)𝑖𝑍(𝑍𝑇𝑍)−1 K/r * R2 K/r * R

Overall, the complexity analysis confirms that the algorithm
should scale well with more parallelism. A central question
explored in the performance testing is how the message passing
impacts the overall performance as the number of parallel tasks
grows. A plot comparing the upper bound of the runtime
calculated from the Big-O analysis to the actual runtime is
provided in the next section.

6. PERFORMANCE TESTING
While PARAFAC-ALS is usually executed until a convergence
criteria is met (e.g., the change in error is less than some constant
ε), for performance testing we required the system to execute
exactly 50 iterations of the algorithm. This ensured that the
performance comparison between different numbers of nodes and
ranks per core were comparable. For testing purposes, we have

assumed the tensor will be decomposed into R=2 factors, but this
is easily modified.

6.1 Tensor Dataset
A tensor of dimension 10x295x32,768 was generated for
performance testing, resulting in a 0.98 GB comma-separated text

file. The 10x295 dimensions arose from a small dataset that was
used for initial experimentation, which came from a biomedical
study of 295 patients with 10 biometrics captured per patient. The
tensor was generated to simulate this same size of population and
biometrics, with the biometrics simulated over 32,768 seconds
(over 9 hours). This number represents the maximum number of
parallel processes that can be used. This number was chosen
because it would allow us to run up to 4 ranks/core across 512
nodes in parallel.

6.2 AMOS Blue Gene/Q
The MPI-based Parallel PARAFAC implementation was run on
AMOS (Advanced Multiprocessing Optimized System), an IBM
Blue Gene/Q supercomputer that is a part of the Center for
Computational Innovations at Rensselaer Polytechnic Institute

(RPI). AMOS is named in homage to Amos Eaton, one of the
founders and first teachers at RPI.

In the November 2014 Top500 ranking of supercomputers
(www.Top500.org), AMOS ranked #43 in the world. AMOS is
comprised of 5 Blue Gene/Q racks and contains 5,120 nodes of

16-core 1.6 GHz A2 processors for a total of 81,290 cores, with
81,920 GB of RAM. It also contains 160 nodes for I/O. AMOS
uses a 5D torus network with a 56 Gbit/s FDR Infiniband
backbone, and includes 32 Intel servers for disk storage with
24TB disk per server, and can achieve a peak I/O bandwidth of 5
to 24GB/sec.

A strong scaling study was performed on AMOS to understand
how the performance of the algorithm for a fixed problem size (in

this case, tensor size) changes with the number of parallel
processes. The following metrics were captured during the
simulation: file read time, total computation time, MPI
communication time, block file write time, and compact file write
time. The algorithm was run with as few as 128 parallel processes
across 8 nodes to 16,384 parallel processes across 256 nodes. At
this scale, each process is managing an IxJx2 tensor.

To understand how the performance was impacted by the number

of nodes and ranks/core, we executed the algorithm on a total of
18 unique configurations using 6 different numbers of nodes (8,
16, 32, 64, 128, and 256) and 3 scenarios of ranks/core (1, 2, and
4). Each configuration was run 3 times for a total of 54 runs, and
the median of each metric was used for plotting and analysis in
the figures and tables below. The median was chosen to limit the
impact of outlier readings, which occurred solely in a small
percentage of the file read and write measurements. It is natural

that outliers may occur for file I/O operation times, as these can
be noticeably impacted by other jobs on the supercomputer.

6.3 Compute Time & MPI Communication

Bandwidth
The compute time is defined as the amount of time spent
performing the many matrix operations. Table 3 shows the
compute time versus the number of nodes for the three different
ranks/core scenarios.

Table 3. Compute time vs. number of nodes for 1, 2, and 4
ranks/core

Num.

Nodes

1 rank/core

(sec)

2 ranks/core

(sec)

4 ranks/core

(sec)

8 1,014.85 380.94 193.02

16 353.15 148.74 82.95

32 137.95 63.96 38.05

64 59.30 29.40 18.27

128 27.17 14.00 8.95

256 12.94 6.87 4.45

The columns in Table 3 have been plotted versus the number of
nodes. Figure 6 shows all values and Figure 7 shows only the
values between 64 and 256 nodes.

From Table 3, Figure 6, and Figure 7, we observe very consistent
behavior across the three lines. The total execution time drops
dramatically when increasing from 8 to 32 nodes, and then drops
less and less substantially when increasing from 32 to 256 nodes.
This demonstrates that doubling the number of nodes has less of

an impact the more nodes we are already using, i.e., we are
witnessing a ‘law of diminishing returns’ effect as we approach
the maximum possible number of parallel processes.

Figure 6. Compute Time (sec) vs. Number of Nodes

Figure 7. Compute Time (sec) vs. Number of Nodes for 64 to

256 nodes only

Further, comparing one line to the next we see an average 53%

decrease in compute time moving from 1 rank/core to 2
ranks/core, and a smaller average 41% decrease moving from 2
ranks/core to 4 ranks/core. This also highlights the law of
diminishing returns effect when doubling the number of
ranks/core for a fixed number of nodes, but may also be a result of
resource contention as we overcommit the cores.

Figure 8. Big-O Upper Bound Runtime and Actual Runtime
(sec) vs. Number of Nodes for 4 ranks/core

A plot comparing the upper bound of the runtime calculated from
the Big-O analysis to the actual runtime is shown in Figure 8.
Clearly, the actual runtime follows a very consistent pattern to the
Big-O analysis, as expected.

The MPI communication bandwidth is the amount of data

transmitted per second during the MPI reduce operations. Table 4
shows the communication bandwidth versus the number of
processes for the three ranks/core scenarios.

Table 4. MPI communication bandwidth vs. number of nodes
for 1, 2, and 4 ranks/core

Num.
Nodes

1 rank/core
(GB/sec)

2 ranks/core
(GB/sec)

4 ranks/core
(GB/sec)

8 0.07 0.05 0.03

16 0.20 0.19 0.13

32 0.51 0.54 0.44

64 1.02 1.24 1.05

128 2.05 2.69 2.48

256 4.49 5.89 5.99

Figure 9 plots the MPI communication bandwidth versus the
number of nodes from Table 4.

Figure 9. MPI Communication Bandwidth (GB/sec) vs.
Number of Nodes

In Figure 9 we observe a consistent pattern across all three
scenarios. The communication bandwidth is quite low initially,
when there are only 8 nodes used. Above 8 nodes, we see an
approximately linear increase in the bandwidth. This indicates that
we are not saturating the communication backbone, and that as we
transmit more and more data (due to more and more parallel
processes executing), we are able to use more and more network

bandwidth. While the bandwidth across the three scenarios starts
out similar, as the number of nodes increases the 1 rank/core
bandwidth grows less than the other two, most likely because it
benefits the least from the fastest channel—inter-process
communication within a node.

The total processing time, defined as the sum of the compute and
MPI communication time, is shown in Table 5.

0

20

40

60

80

100

120

140

160

180

200

0 32 64 96 128 160 192 224 256

C
o

m
p

u
te

 T
im

e
 (

se
co

n
d

s)

Number of Nodes

Big-O runtime est.

actual runtime

Table 5. Total processing time vs. number of nodes for 1, 2,
and 4 ranks/core

Num.
Nodes

1 rank/core
(sec)

2 ranks/core
(sec)

4 ranks/core
(sec)

8 1,015.30 382.05 196.81

16 353.45 149.35 84.75

32 138.18 64.40 39.12

64 59.53 29.78 19.17

128 27.40 14.35 9.71

256 13.15 7.19 5.08

Figure 10 plots the total processing time versus the number of
nodes. We see very consistent behavior between this and Figure 6,

indicating that the processing time is dominated by the compute
time. In fact, at its peak (for 256 nodes, 4 ranks/core), the
communication time only accounts for 12% of the total processing
time. (The total communication time can be calculated as the
difference between Table 5 and Table 3, and thus is not included
in a separate table here.)

Figure 10. Total Processing Time (sec) vs. Number of Nodes

For the slowest runtime of 1,015.30 sec we had 8 nodes with 1
rank/core, resulting in 128 (27) parallel tasks. For the fastest

runtime at 5.08 sec we had 256 nodes with 4 ranks/core, resulting
in 16,384 (214) parallel tasks. The ratio of the number of parallel
tasks between the best and worst runtimes was 128, and the ratio
of the associated runtimes was 200. Therefore, for 128x the
number of processes we achieved a 200x runtime performance
improvement. As mentioned previously, this super-linear speedup
was expected, because operations such as matrix multiply are of
O(n3), and so any reduction to the order n of the matrices on a

single node will result in a greater than n reduction in the
computation time.

While the super-linear compute time speedup could have been
hampered by commensurate increases in the communication time,
from the consistent growth in the MPI communication bandwidth
indicating a lack of network saturation and the small percentage of
time attributed to MPI communication within the total processing
time, we conclude that the system is CPU bound at the current
scale (up to 256 nodes, 214 processes). If we were able to increase

the number of parallel processes even further, it is expected that
eventually we would saturate the network and see the
communication bandwidth level off. At that point the

communication time would come to dominate the total processing
time indicating that the system had become network bound, but
this did not become an issue at the current scale.

6.4 File Read and Write Bandwidth
As described previously, the file read bandwidth is calculated as
the tensor file size divided by the time to load the file by the
parallel processes. Table 6 shows the read bandwidth and Figure
11 plots the same.

Table 6. Tensor file read bandwidth vs. number of nodes for 1,
2, and 4 ranks/core

Num.
Nodes

1 rank/core
(GB/sec)

2 ranks/core
(GB/sec)

4 ranks/core
(GB/sec)

8 0.49 0.43 0.24

16 0.26 0.25 0.25

32 0.46 0.44 0.85

64 1.86 1.20 1.17

128 2.99 2.14 1.43

256 0.28 1.57 0.99

Figure 11. Tensor File Read Bandwidth (GB/sec) vs. Number
of Nodes

From the above table and figure, we see that the three scenarios
exhibit very similar behavior. The read bandwidth starts out quite
low on 8 nodes, and actually gets a bit worse for all three
scenarios as we scale to 16 nodes. However, the bandwidth then
improves as we grow from 16 to 128 nodes, where the bandwidth
peaks for all three scenarios. Moving from 128 to 256 nodes, the

bandwidth experiences a drop, which is significant in all three
cases but most dramatic for the 1 rank/core scenario. The 1
rank/core scenario has the best bandwidth at 128 nodes (2.99
GB/sec), and the worse at 256 nodes (0.28 GB/sec).

The consistent behavior across all three scenarios implies that the
MPI read performance is contingent less on the number of
processes, and more on the number of nodes involved in the read
operations, and that 128 appears to be the optimal number of
nodes for reading the tensor file. It appears that for the 0.98 GB

file being read, above 128 nodes MPI file metadata management
overhead begins to dominate the read performance, resulting in
the bandwidth drops we observe across all three scenarios [20].

The file write bandwidth is calculated as the compact C matrix
file size divided by the time to write the file in either a compact or

block mode. Due to space considerations, only the block file write
bandwidth is provided in table form, in Table 7. The block
bandwidth is included because it consistently outperformed the
compact write, and would almost certainly be the preferred
approach in future efforts.

Table 7. C matrix block file write bandwidth vs. number of
nodes for 1, 2, and 4 ranks/core

Num.
Nodes

1 rank/core
(MB/sec)

2 ranks/core
(MB/sec)

4 ranks/core
(MB/sec)

8 6.25 4.17 2.38

16 3.57 2.78 1.61

32 3.57 2.38 1.43

64 3.33 2.00 1.14

128 3.13 1.79 0.93

256 1.85 0.62 0.47

Figure 12 plots the block write bandwidth (from Table 7), and
Figure 13 plots the compact write bandwidth, for the three
scenarios. The same axes are used in both figures to facilitate
visual comparisons between the two.

From these two figures, we see roughly the same behavior, in that

the file write time starts out reasonably high for 8 nodes, and then
decreases as the number of nodes grows to 256. This is most
pronounced for the block file writes, which start out at 6.25
MB/sec for 1 rank/core on 8 nodes, and then decreases nearly by
half to 3.57 MB/sec at 16 nodes. After the initial dramatic drop for
each scenario, the write bandwidth then gradually declines as the
number of nodes increases, with the 1 rank/core scenario reaching
a low of 1.85 MB/sec at 256 nodes. The compact write bandwidth
shows less consistency across the scenarios, other than the fact

that it performs consistently worse than the block file writes and
the performance also tends to get worse as the number of nodes
increases.

The write bandwidth decreases as the number of nodes increases
most likely because the C matrix file is very small (0.5 MB).
Therefore, each of the parallel processes is writing an extremely
small amount of data (as few as 32 bytes to at most 4KB in these
experiments), and so the blocks are too small for AMOS to

efficiently parallelize the writes and we are not actually benefiting
from truly parallel write operations.

Figure 12. C Matrix Block Write Bandwidth (MB/sec) vs.
Number of Nodes

One interesting observation between the read and write
bandwidths is that the 1 rank/core scenario exhibits both the best
read and write rate. While each of the three ranks/core scenarios
achieve the best write rate for different numbers of nodes, the
absolute peak read bandwidth of 2.99 GB/sec (on 128 nodes) is

experienced by the 1 rank/core scenario, as is the absolute peak
write bandwidth of 6.25 MB/sec (on 8 nodes). Unlike the read
bandwidth, however, for the block write bandwidth the 1
rank/core scenario consistently outperforms the other two
scenarios across all node counts. These imply that for the peak
number of nodes involved in a parallel read or write operation, it
may be preferable to minimize the number of processes executing
on each node.

Figure 13. C Matrix Compact Write Bandwidth (MB/sec) vs.
Number of Nodes

7. CONCLUSIONS & FUTURE WORK
PARAFAC is a popular technique for discovering hidden
relationships in multidimensional datasets. As data volumes grow
within many scientific disciplines, researchers and scientists will
require new systems to enable PARAFAC (and similar analyses)
to execute on data that is too large to be manipulated on a single
server with traditional tools.

We have designed an approach to parallelize the execution of the
PARAFAC alternating least squares algorithm, and have

implemented it using C and MPI. A dataset was simulated and
used to test the performance and scalability of this implementation
on an IBM Blue Gene/Q supercomputer. The compute time, MPI
communication bandwidth, tensor file read bandwidth, and C
matrix file write bandwidth were all captured for three scenarios
(1 rank/core, 2 ranks/core, and 4 ranks/core) across 6 different
node counts.

This study found that the implementation scaled quite well and

specifically that increasing the number of parallel processes by a
factor of 128 resulted in a 200x speedup in the overall execution
time. The MPI bandwidth grew consistently as the size of the
study grew, indicating that the communication network was never
saturated during execution. At its peak the communication time
only accounted for 12% of the total processing time with a peak
bandwidth of 6 GB/sec, indicating the implementation is CPU
bound at the current scale. The peak bandwidth achieved when
performing a parallel read of the tensor from a file was

approximately 3 GB/sec, and the peak write bandwidth achieved
was 6.25 MB/sec.

This MPI-based Parallel PARAFAC implementation will allow
researchers to scale to considerably larger datasets, taking

advantage of more disk, memory, and CPU available on
supercomputers such as AMOS. In the future, we will explore
how the performance is impacted using substantially larger
datasets, starting in the multi-terabyte range. We also expect to
begin analyzing a real industrial multiway dataset from GE Power

& Water’s Remote Monitoring and Diagnostics (RM&D) Center.
This RM&D Center has over 20TB of time series data from
sensors on gas turbines captured over more than a 7 year period.
To our knowledge no one has ever attempted to execute
PARAFAC on this type of data, nor at this scale.

Beyond new and larger datasets, we will also explore alternative
platforms on which to implement the Parallel PARAFAC
algorithm. In particular we will focus on Apache Hadoop and

Apache Spark. Hadoop is a well-established Big Data platform for
distributed data storage and parallel task execution using the
MapReduce computing paradigm running on clusters of
commodity hardware [21][22]. Spark is a comparatively new
project originating from UC Berkeley that allows for iterative
MapReduce-style operations to be run across large commodity
clusters [23]. Spark keeps working sets of data entirely in memory
between jobs to optimize the performance of iterative operations,

and claims to be 100x faster than traditional Hadoop as a result.
We plan to explore both Hadoop and Spark as alternative
platforms on which to implement our Parallel PARAFAC
algorithm.

8. REFERENCES
[1] Harshman, R.A., 1970. Foundations of the parafac

procedure: models and conditions for an 'explanatory' multi-
modal factor analysis. UCLA working papers in phonetics
16, 1-84.

[2] Harshman, R.A. and Lundy, M.E., 1994. PARAFAC:
Parallel factor analysis. Computational Statistics & Data
Analysis 18, 39-72

[3] Andersen, C.M. and Bro, R., 2003. Practical aspects of
parafac modelling of fluorescence excitation-emission data.
J. of Chemometrics 17, 4, 200-215

[4] Bader, B.W., Harshman, R.A. and Kolda, T.G., 2006.
Temporal analysis of social networks using three-way
dedicom. Technical Report SAND2006-2161, Sandia
National Laboratories

[5] Estienne, F., Matthijs, N., Massart, D.L., Ricoux, P. and
Leibovici, D., 2001. Multi-way modelling of high-
dimensionality electroencephalographic data. Chemometrics
Intell. Lab. Systems 58, 1, 59-72

[6] Acar, E. and Yener, B., 2009. Unsupervised Multiway Data
Analysis: A Literature Survey. IEEE Transactions on
Knowledge and Data Engineering, 21, 1

[7] Andersson, C.A. and Bro, R., 2000. The n-way toolbox for
matlab. Chemometrics and Intelligent Laboratory Systems,
52, 1, 1-4

[8] Bader, B.W. and Kolda, T.G., 2007. Efficient MATLAB
Computations with sparse and factored tensors. SIAM
Journal on Scientific Computing, 30, 1, 205-231

[9] McKinsey & Company, 2011. Big data: The next frontier for
innovation, competition, and productivity,
http://www.mckinsey.com/insights/

business_technology/big_data_the_next_frontier_for_innovat
ion

[10] Fan, J., Han, F. and Liu, H., 2014. Challenges of Big Data
analysis, National Science Review, Oxford University Press,
doi: 10.1093/nsr/nwt032

[11] Sears, M., Bader, B.W. and Kolda, T.G., 2009. Presentation:
Parallel Implementation of Tensor Decompositions for Large
Data Analysis. SIAM Annual Meeting (AN09),
Minisymposium on High Performance Computing on
Massive Real-World Graphs

[12] Zhang, Q., Berry, M., Lamb, B. and Samuel, T., 2009. A
parallel nonnegative tensor factorization algorithm for

mining global climate data. Computational Science,
International Conference on Computational Science (ICCS),
405-415

[13] Phan, A.H. and Cichocki, A., 2011, PARAFAC algorithms
for large-scale problems, Neurocomputing, 74, 1970-1984

[14] Kang, U., Papalexakis, E.E., Harpale, A. and Faloutsos, C.,

2012. GigaTensor: Scaling Tensor Analysis Up By 100
Times - Algorithms and Discoveries, ACM SIGKDD
Conference on Knowledge Discovery and Data Mining
(KDD), Beijing, China

[15] Papalexakis, E.E., Faloutsos, C. and Sidiropoulos, N.D.,
2012. ParCube: Sparse Parallelizable Tensor
Decompositions, European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD), Bristol, United Kingdom

[16] Sidiropoulos, N.D., Papalexakis, E.E. and Faloutsos, C.,
2014. A Parallel Algorithm for Big Tensor Decomposition
using Randomly Compressed Cubes (PARACOMP), IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Florence, Italy, 1-5

[17] Zhe, S., Qi, Y., Park, Y., Molloy, I.M. and Chari, S. N.,
2013. DinTucker: Scaling up Gaussian process models on

multidimensional arrays with billions of elements,
Computing Research Repository (CoRR) arXiv:1311.2663

[18] Tucker, L.R., 1964. The extension of factor analysis to three-

dimensional matrices. In Contributions to Mathematical
Psychology. Holt, Rinehart and Winston, New York, 110-
182

[19] Gilge, M., 2014. IBM System Blue Gene Solution Blue
Gene/Q Application Development, IBM Redbooks, ISBN
0738438235

[20] Alam, S.R., El-Harake, H.N., Howard, K., Stringfellow, N.
and Verzelloni, F., 2011. Parallel I/O and the metadata wall.
In Proceedings of the sixth workshop on Parallel Data
Storage (PDSW '11). ACM, New York, NY, USA, 13-18

[21] Dean, J. and Ghemawat, S., 2008, MapReduce: Simplified
Data Processing on Large Clusters, Communications of
ACM, 51, 1, 107-113

[22] Shvachko, K., Kuang, H., Radia., S. and Chansler, R., 2010,
The Hadoop Distributed File System, Proc. of IEEE
Symposium on Mass Storage and Technologies (MSST), 1-
10

[23] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and
Stoica, I., 2010. Spark: cluster computing with working sets.
In Proceedings of the 2nd USENIX conference on hot topics
in cloud computing (HotCloud'10). USENIX Association,
Berkeley, CA, USA

