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ABSTRACT 

Parallel Factor Analysis (PARAFAC) is used in many scientific 
disciplines to decompose multidimensional datasets into principal 
factors in order to uncover relationships in the data. While quite 
popular, the common implementations of PARAFAC are single 

server solutions that do not scale well to very large datasets. To 
address this limitation, a Parallel PARAFAC algorithm has been 
designed and implemented in C using MPI. The end-to-end 
pipeline includes a parallel read of the input data from a file, the 
execution of the parallel algorithm, and concludes with a parallel 
write of the results to a file. The implementation has been 
evaluated using a strong scaling study on an IBM Blue Gene/Q 
supercomputer. The compute time, as well as the communication, 
file read, and file write bandwidths were each captured across 

multiple scenarios to evaluate the overall system performance and 
scalability. Results indicate the implementation scales well—with 
a 128x increase in the number of parallel processes, the system 
executed 200x faster. Further, the communication time at its peak 
accounted for only 12% of the total processing time, indicating 
the implementation is currently CPU bound and thus should 
continue to scale well across more and more nodes. 

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent programing – 
parallel programming. 

G.1.0 [Numerical Analysis]: General – parallel algorithms. 

General Terms 

Algorithms, Performance, Design 

Keywords 

Parallel factor analysis; tensor; multiway data analysis; parallel 

computing; MPI; scalability testing; performance testing 

1. INTRODUCTION 
Parallel Factor Analysis (PARAFAC) [1][2] is a powerful 
technique for uncovering hidden relationships in datasets that 
have three or more dimensions. Specifically, PARAFAC is used 

to decompose multidimensional datasets into principal factors to 
uncover relationships between variables. Three-or-more 

dimensional datasets are typically referred to as ‘tensors’ or 
‘multiway datasets,’ and are used in many scientific disciplines 
including chemometrics (e.g., for identifying the chemical 
components within a mixture [3]), social network analysis (e.g., 
for identifying hidden structures within a network [4]), and 
neuroscience (e.g., for studying the effects of drug treatments on 
brain activity [5]), to name a few. 

An industrial example of a 3-way tensor is a set of sensor readings 

generated from industrial equipment over time, in which one 
dimension represents the physical units (e.g., gas turbines), a 
second dimension represents the sensors on each unit (e.g., 
temperature sensors, pressure sensors, air flow sensors), and the 
third dimension is time. In this example, PARAFAC could be 
used to characterize relationships within and across the 
dimensions, which in turn could be used to identify normal and 
abnormal functioning of the equipment. 

The canonical approach to PARAFAC decomposition is to use an 

Alternating Least Squares (ALS) algorithm that performs a 
sequence of matrix operations to decompose a tensor into its 
principal factors (plus some residual error). The objective of 
PARAFAC-ALS is to iteratively improve the principal factor 
decomposition of a tensor in order to minimize the residual error, 
and thus requires the iterative execution of the matrix operations 
until either a convergence or other stopping criteria is met [6]. 

The two most commonly used tensor analysis packages are both 

written in MATLAB [7][8], and are limited in their ability to scale 
to large datasets. Now that we are in the era of “Big Data,” 
datasets are growing ever larger and a greater amount of data-
driven analysis is being enabled within almost every scientific 
discipline [9][10]. Thus, the need to be able to run PARAFAC and 
similar analytic techniques at scale is becoming increasingly 
important. To address the need for a PARAFAC implementation 
able to scale to very large, dense datasets, a Message Passing 

Interface (MPI)-based parallel implementation of PARAFAC has 
been designed and implemented to decompose three-dimensional 
tensors. This implementation includes the ability to: (1) read in 
large datasets using parallel I/O and then formulate that data into a 
tensor distributed across a collection of parallel processes, (2) 
execute a parallel version of the PARAFAC-ALS algorithm, and 
finally, (3) use parallel I/O to write the principal factor matrices to 
files. This MPI-based Parallel PARAFAC implementation has 

been designed and implemented such that the full tensor is never 
collected on a single node, allowing it to analyze tensors that are 
too large to fit in the main memory of a single machine. This 
implementation has been tested on an IBM Blue Gene/Q 
supercomputer to evaluate its runtime performance and 
scalability. 
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This paper is organized as follows: Section 2 summarizes prior art 
in the space of parallel implementations of PARAFAC. Section 3 
outlines the sequential PARAFAC-ALS algorithm. Section 4 
details the design of our Parallel PARAFAC algorithm, and 
Section 5 describes the MPI-based implementation. Section 6 

presents the results of performance and scalability testing on a 
dense dataset, and Section 7 outlines conclusions and future work. 

2. PRIOR ART 
The first documented explorations of parallel implementations of 
PARAFAC appeared independently in 2009. In an HPC 

minisymposium, Sears et al. [11] presented efforts to develop an 
MPI-based parallel implementation of PARAFAC. However, they 
explicitly stated their solution was implemented for sparse 
matrices, which limits its applicability to only certain multiway 
datasets. Further, they did not provide any details on their 
parallelism approach nor is their source code publicly available, 
preventing a meaningful evaluation of their approach. 

Around the same time Zhang et al. [12] published a detailed 

description of a PARAFAC parallelization approach applied to 
global climate data (they focus on Nonnegative Tensor 
Factorization, an extension of PARAFAC such that all of the 
factors are nonnegative). Their approach relies on a few 
observations of the inherent parallel properties of the matrix 
operations that were rediscovered during this research effort. 
While we use similar properties as that of Zhang et al., their use of 
a gradient descent algorithm results in different operations to 

perform the decomposition. Their use of C++ and MPI to 
implement the parallel algorithm makes this work similar to our 
own research, however, they limited their scalability testing to 10 
parallel processes and achieved only a modest sub-linear peak 
speedup of 6.8x (comparing runtime on 8 nodes vs. 1 node) [12]. 

Phan and Cichocki [13] also explored parallel implementations of 
PARAFAC, including developing a grid-based approach to 
parallelizing the algorithm that divides a tensor into an arbitrary 
number of sub-tensors split across all dimensions. Their approach 

allows a finer-grained level of parallelism than our design; 
however, their approach introduces some error with more parallel 
processes, resulting in a tradeoff between runtime and accuracy. 

Beyond the above efforts, recent research in large-scale, parallel 
PARAFAC implementations has originated primarily from a 
group at Carnegie Mellon University. Starting in 2012, Kang et al. 
[14] describe GigaTensor, which appears to be the first Hadoop-
based implementation of PARAFAC.  GigaTensor is implemented 

using three separate MapReduce jobs executed in sequence for 
each iteration of the PARAFAC algorithm. While interesting, 
GigaTensor’s parallelism approach requires the passing of the 
tensor elements between the Map and Reduce stages, and is 
efficient only because they assume the tensor is sparse. 

Papalexakis et al. [15] describe ParCube, which generates many 
small tensors using random sampling of a single large tensor, 
parallelizes the analysis of each small tensor, and finally combines 

the resulting small decompositions. With this approach, the actual 
PARAFAC-ALS algorithm is executed in an embarrassingly 
parallel manner, and only at the completion of the small 
decompositions are the results synthesized into a single solution. 
Thus, ParCube is performing an approximation of a traditional 
PARAFAC decomposition. ParCube is implemented in 
MATLAB, and utilizes one of the established tensor toolboxes [8] 
for the PARAFAC algorithm implementation. 

In a similar vein to ParCube, Sidiropoulos et al. [16] propose a 
parallel tensor decomposition approach they call PARACOMP, 
which operates by generating a large number of random 
compressed sub-tensors from a single large tensor, decomposing 
each in an embarrassingly parallel manner and then aggregating 

the results, again approximating a complete decomposition. It 
appears that an implementation of PARACOMP is underway. 

Outside of the research efforts at Carnegie Mellon, Zhe et al. [17], 
a combined team from Purdue University and IBM’s T.J. Watson 
Research Center, developed DinTucker (Distributed Infinite 
Tucker), which utilizes an alternate algorithm for tensor 
decomposition called Tucker [18]. While not based on 
PARAFAC, DinTucker is still of interest because it addresses the 

core challenge of decomposing a large tensor in a highly parallel 
manner. DinTucker was built on top of Hadoop, and uses a 
distributed stochastic gradient descent algorithm they built as 
stages within MapReduce jobs in a vein similar to that of 
GigaTensor. 

Overall, the recent parallel tensor decomposition approaches 
address the challenge of decomposing a large tensor either, in the 
case of ParCube and PARACOMP, by approximating the solution 

through the creation of many small tensors and decomposing them 
in an embarrassingly parallel manner, or, in the case of 
GigaTensor and DinTucker, by utilizing Hadoop with its 
consequent performance overheads. 

Our approach returns to the early work of parallel PARAFAC 
decomposition through MPI, but attempts to (a) achieve 
significantly better performance than what has been reported, (b) 
without the assumption of a sparse tensor limiting the 

applicability of our solution. 

3. PARAFAC-ALS ALGORITHM 
As stated previously, an alternating least squares algorithm is 
traditionally used to decompose a tensor X into R factors, with 
each dimension of X decomposed into R distinct vectors, as 
shown in Figure 1. 

 

Figure 1. 3D tensor decomposition into the sum of two rank-
one tensors and a tensor of residual error terms 

For a 3-way tensor X ∈ ℝIxJxK, the tensor is decomposed into 
matrices A ∈ ℝIxR, B ∈ ℝJxR, and C ∈ ℝKxR. Figure 1 can be 

alternately represented by the equation: 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑟𝑏𝑗𝑟𝑐𝑘𝑟 + 𝑒𝑖𝑗𝑘
𝑅
𝑟=1    (1) 

The objective of PARAFAC-ALS is to find A, B, and C matrices 

that minimize the total residual error in Equation 1. 

PARAFAC-ALS includes a sequence of matrix operations, 
including the Khatri-Rao matrix product, matricization of X 
(projection of a 3D tensor onto a 2D plane), matrix-matrix 
multiplication, matrix transposition, and matrix inversion. Brief 
descriptions of the Khatri-Rao product, matricization, and the 
overall sequential ALS algorithm are provided next. 



3.1 Khatri-Rao Product 
The Khatri-Rao product is represented by the symbol ⊙ and takes 

two matrices with the same number of columns and performs 

column-wise multiplication of each row in the first matrix with 
each column in the second. For matrices A ∈  ℝnxk and B ∈ ℝmxk, 

the Khatri-Rao product A⊙B produces an (n*m)xk matrix P, such 

that the first column of P equals: 

P[;,1] = [a1,1b1,1 a2,1b1,1 .. an,1b1,1 …… an,1b1,1 an,1b2,1 .. an,1bm,1]T       (2) 

The remaining columns of the Khatri-Rao product are derived in 
the exact same pattern as the first column, with the second column 
of the product calculated as the product of the second column of 
matrix A multiplied by the second column of matrix B in the 
format shown in Equation 2. 

3.2 Matricization 
Matricization is the process of unfolding a tensor into a 2D 
matrix, with different modes representing the different dimensions 
of unfolding. For example, X(1) represents the unfolding of tensor 
X ∈ ℝIxJxK in the 1st dimension, creating a matrix ∈  ℝIxJK. For the 

other modes, X(2) ∈ ℝJxIK and X(3) ∈ ℝKxIJ. 

Figure 2 shows a representative example of a 3rd order tensor of 
dimensions 4x3x2 unfolded in all three modes. 

 

Figure 2. Example 3D tensor A ∈ ℝ4x3x2 unfolded in three 

modes, A(1), A(2), and A(3). The lines within the matrices A(i) 

highlight where the IxJx1 and IxJx2 matrices in tensor A are 
located within the 2D matrices 

3.3 Alternating Least Squares Algorithm 
The PARAFAC alternating least squares algorithm for tensor 
decomposition is shown in Figure 3. The algorithm iterates until it 
either: (a) converges upon A, B, and C matrices that no longer 
improve the residual error above a threshold ε, or (b) has executed 
for a maximum number of iterations. 

4. PARALLEL PARAFAC 
Through this effort, we have designed and developed an approach 
to parallelizing the PARAFAC-ALS algorithm that does not rely 
upon sampling or approximations of the canonical ALS algorithm 
shown in Figure 3. Further, our approach implements the 

PARAFAC-ALS algorithm in a highly scalable manner, limited 
only by the largest dimension of the tensor. 

To parallelize the algorithm, we first make the following 
assumptions: dimensions I and J of matrix X are expected to be 
relatively small (on the order of 10’s  1,000’s), while dimension 
K is expected to be very large (on the order of 10K’s  1MM’s 
or more). This assumption reflects use cases wherein dimensions I 
and J represent physical assets or entities, such as industrial 

equipment and sensors, respectively, and dimension K represents 
an unbounded variable such as time. Given these assumptions, it 
is most practical to divide the tensor X into r distinct subsets by 
splitting the tensor across the K dimension, resulting in IxJx(K/r) 

sub-tensors located on each rank (parallel process) r. A visual 
representation of this split can be seen in Figure 4. 

 

Random initialization of B and C 

While (old error – new error) > ε and have not exceeded 
maximum number of iterations do 

/* fix B and C, solve for A */ 

𝑍 = 𝐶 ⊙ 𝐵  

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1  

/* fix A and C, solve for B */ 

𝑍 = 𝐶 ⊙ 𝐴  

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1  

/* fix A and B, solve for C */ 

𝑍 = 𝐵 ⊙ 𝐴  

𝐶 = 𝑋(3)𝑍(𝑍𝑇𝑍)−1 

calculate new residual error 
end while 

Figure 3. PARAFAC Alternating Least Squares algorithm 

 

 

Figure 4. Single tensor for single-server sequential processing, 
and split into r blocks for parallel processing 

Further, we assume that because each process will have a 
complete set of IxJ matrices (K/r of them, to be precise), each 
process will require a complete A and B matrix, and a K/r subset 

of the C matrix, Ci. Note that in practice, any dimension can be 
viewed as the ‘K’ dimension for splitting the tensor across the 
parallel processes. However, it makes the most sense to always 
split on the largest dimension, to maximize the opportunity for 
parallelism. 

Given the above assumptions, we then designed an approach to 
solve for matrices A, B, and C in parallel. The approach is built 
upon three theorems of the transformations used in the algorithm. 

4.1 Theorem 1: Khatri-Rao product 

decomposition 
When solving for A, if a process has only a subset of the C matrix 
but has the full B matrix available, then the Khatri-Rao product is 
fully decomposable. In practice, one can apply the Khatri-Rao 
product to every row in the C matrix in parallel and assemble the 
correct output. For example, assuming the C matrix is divided into 
two parts, this can be expressed as: 

𝐶 = [
𝐶1

𝐶2
]   (3) 

𝑍1 = 𝐶1 ⊙ 𝐵
𝑍2 = 𝐶2 ⊙ 𝐵

   (4) 

𝑍 = [
𝑍1

𝑍2
] ≡ 𝐶 ⊙ 𝐵       (5) 



From Equation 4, if the Khatri-Rao product is parallelized for 
each Ci block of C, then each process will generate a distinct 
subset of the Z matrix, Zi. 

Proof: 

For B ∈ ℝJxR and C ∈ ℝKxR,  

if 𝑍 = 𝐶 ⊙ 𝐵 

then ∀𝑖 ∈ [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 ∈ [1, 𝐾] 

        𝑍[𝑖 ∗ 𝐾 + 𝑗, 𝑘] = 𝐶[𝑖, 𝑗] ∗ 𝐵[𝑗, 𝑘].   (6) 

Therefore, each row of Z (indexed by i*K + j) can be solved for 

with only the ith row of C and the jth row of B. 

After the Khatri-Rao product, when solving for A the next 
operation in the algorithm requires solving for X(1)Z(ZTZ)-1. The 
remaining two theorems give insight into how this operation can 
be parallelized using the Zi subsets of Z available within each 
parallel process. 

4.2 Theorem 2: ZTZ sum of parts 
If the Z matrix is divided into r blocks, then the ZTZ operation is 
equal to the sum of the Zi

TZi of the parts. For our 2-process 
example, this can be represented as: 

𝑍𝑇𝑍 = 𝑍1
𝑇𝑍1 + 𝑍2

𝑇𝑍2            (7) 

Proof: 

For Z ∈  ℝIxJ, 

𝑍𝑇𝑍[𝑖, 𝑗] = ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗]𝑊
𝑘=1       (8) 

= ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗] +𝑛−1
𝑘=1 ∑ 𝑍[𝑖, 𝑘] ∗ 𝑍[𝑘, 𝑗]𝑊

𝑘=𝑛 .     (9) 

Therefore, if Z is divided into r blocks, then ZTZ can be derived 
from the sum of the Zi

TZi of the parts. Consequently, we can 
perform parallel Zi

TZi operations and sum the results across all of 
the processes to generate a complete ZTZ matrix. This is a 

particularly attractive property because while the full Z matrix is 
of dimension JKxR (when solving for A) and is expected to be 
extremely large, the ZTZ matrix is extremely small; of dimension 
RxR (where R is typically between 2 and 4). Therefore, the 
collective operation is performed over an extremely small matrix. 

4.3 Theorem 3: X(1)Z sum of parts 
If the Z matrix is divided into blocks of equal dimensions, then 
the X(1)Z operation is equal to the sum of the X(1)rZi of the parts. 
For our 2-process example, this can be expressed as: 

𝑋(1) = [𝑋(1)1 𝑋(1)2]              (10) 

𝑋(1)𝑍 = 𝑋(1)1𝑍1 + 𝑋(1)2𝑍2  (11) 

Proof: 

If we split X(1) and Z into r blocks as shown in Figure 4, X(1)Z can 
be expressed as: 

𝑋(1)𝑍 = [𝑋(1)1 𝑋(1)2 … 𝑋(1)𝐾] [

𝑍1

𝑍2

⋮
𝑍𝐾

]            (12) 

𝑋(1)𝑍 = ∑ 𝑋(1)𝑍𝑘
𝐾
𝑘=1 .           (13) 

As in the previous theorem, this also requires a collective 
operation to sum for the complete X(1)Z matrix, but this matrix is 

of dimension IxR (when solving for A), which is expected to be 
reasonably small. 

From these three theorems, we conclude that we can completely 
parallelize the derivation of decomposition matrix A with a 
collection of large matrix operations performed independently in 

each process, and the transmission of a relatively small amount of 
data (r RxR and IxR matrices). 

The calculation of matrix B follows an identical pattern to that of 
matrix A, and so the same steps can be performed to solve for B 
in parallel. When solving for B, we again require a collective 
operation to sum the ZTZ RxR matrix, but because the B matrix is 
likely of a different dimension from the A matrix, in this instance 
we will require a collective operation to sum a JxR matrix. 

The same parallel approach cannot be taken when solving for C, 
however, because each parallel process contains only a portion of 
the matrices along the K dimension of tensor X. Fortuitously, 
solving for C is even simpler than solving for A and B, because C 
can be updated independently within each process based on its 
local data and does not require any collective operations. This is a 
result of the matricization of X on the 3rd mode, which causes 
each block of Xi to be divided into blocks of rows instead of 

columns (as previously highlighted in Figure 2). Therefore, the 
parallel operations can be expressed as: 

𝐶 = [
𝐶1

𝐶2
]   (14) 

𝑋(3) = [
𝑋(3)1

𝑋(3)2
]      (15) 

𝐶 = [
𝐶1

𝐶2
] = [

𝑋(3)1

𝑋(3)2
] 𝑍(𝑍𝑇𝑍)−1     (16) 

𝐶 = [
𝐶1

𝐶2
] = [

𝑋(3)1𝑍(𝑍𝑇𝑍)−1

𝑋(3)2𝑍(𝑍𝑇𝑍)−1]     (17) 

As shown in Equation 12, the full C matrix can be updated by 
updating the individual Ci components within each parallel 
process. These updates can occur independently on each node 
because the Z matrix in this instance is dependent on matrices A 
and B only, which are identical on each node and therefore no 

information passing is required to solve for each local Ci 
component. 

4.4 Parallel Alternating Least Squares 

Algorithm 
Figure 5 shows the parallel ALS algorithm we designed to 
decompose a 3rd-order tensor. The operations ensure that each 
parallel process has the same local A and B matrix (which are 
both small), and their own local component Ci of the extremely 
large C matrix. Two collective operations occur when solving for 
matrices A and B, and then a collective operation is performed to 

calculate the total residual error at the end of each iteration. 

This parallel algorithm is particularly attractive because it reduces 
the dimensions of many large-scale matrix operations (such as 
matrix multiplication, which is of order O(n3)), and so a reduction 
in the size of n on each node (by adding more nodes) can result in 
super-linear speedups. The limiting factor of the speedup will 
come from the overhead induced through the message passing 
required in the parallel implementation. A critical question is 

whether reductions in the compute time will be overshadowed by 
commensurate increases in the communication overhead from 
more and more nodes participating in the parallel computation. 



 

Random initialization of B and Ci on each node 

while (sum(old error) – sum(new error)) > ε and not exceeded 
maximum number of iterations do 

/* fix B and C, solve for A */ 

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐵  

solve for 𝑍𝑖
𝑇𝑍𝑖  

𝑍𝑇𝑍 = ∑ 𝑍𝑖
𝑇𝑍𝑖

𝑟
𝑖=0  // MPI all reduce matrix sum 

solve for 𝑋(1)𝑖𝑍𝑖  

𝑋(1)𝑍 = ∑ 𝑋(1)𝑖𝑍𝑖
𝑟
𝑖=0  // MPI all reduce matrix sum 

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1   

/* fix A and C, solve for B */ 

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐴  

solve for 𝑍𝑖
𝑇𝑍𝑖  

𝑍𝑇𝑍 = ∑ 𝑍𝑖
𝑇𝑍𝑖

𝑟
𝑖=0  // MPI all reduce matrix sum 

solve for 𝑋(2)𝑖𝑍𝑖  

𝑋(2)𝑍 = ∑ 𝑋(2)𝑖𝑍𝑖
𝑟
𝑖=0  // MPI all reduce matrix sum 

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1  

/* fix A and B, solve for C */ 

𝑍 = 𝐵 ⊙ 𝐴  
𝐶𝑖 = 𝑋(3)𝑖𝑍(𝑍𝑇𝑍)−1 

calculate new error local ei 
𝑛𝑒𝑤 𝑒 = ∑ 𝑒𝑖

𝑟
𝑖=0   // MPI all reduce error sum 

end while 

Figure 5. Parallel PARAFAC Alternating Least Squares 
algorithm for 3rd-order tensors 

 

5. IMPLEMENTATION 
The Parallel PARAFAC-ALS algorithm has been implemented in 
C using MPI compiled with the IBM XL C compiler [19]. The 

code first initializes MPI for the user-defined number of ranks 
(parallel processes) r, and then each rank allocates memory for the 
A[I][R], B[J][R], and Ci[K/r][R] matrices, and randomly 
initializes its local copies of the B and Ci matrices. A is not 
initialized because the first step in the algorithm will derive A 
from the B and Ci matrices. The code then allocates memory for 
the local block of the tensor X[I][J][K/r], and performs a parallel 
block read of the tensor from a single input file using the 

MPI_File_read_at_all command, such that each rank reads in an 
equal-sized portion of the file into its local tensor object. The 
system captures the max file read time across the ranks, and this 
time is used to calculate the file read bandwidth. 

Once the tensor has been fully loaded across all ranks, the Parallel 
PARAFAC-ALS algorithm can begin. A ‘while’ loop is used, 
inside of which A is first solved for, and then B, and then each Ci, 
as outlined in the algorithm in Figure 5. As mentioned previously, 

these solves require the use of the Khatri-Rao product, matrix 
transpose, inverse, multiply, and unfolded matrix multiply, as 
described in the previous section. Solving for matrices A and B 
requires two matrix synchronization (sum) operations, which 
execute via the MPI_Allreduce function for each element of the 
two matrices. At the end of each iteration the local error is 
calculated for each rank, and then the cumulative error is summed 
across all ranks using another MPI_Allreduce sum operation. If 
the change in total error from one run to the next is less than the 

minimum error change ε, or the loop has executed more than N 
times, the computation completes. In this implementation, ε=10-4 
and N=50, but both values are easily changed. 

During the code execution, the compute time is captured from 
before the while loop begins to after the while loop ends (minus 
the communication time), and the MPI communication time is 
captured as the time spent performing each of the many 
MPI_Allreduce operations. The compute time is reported as part 

of the final results, and the communication time is used to 
calculate the communication bandwidth. 

At the completion of the algorithm, the final step is to write the 
three matrices to three separate files. Because each rank contains 
an identical copy of the A and B matrices there is no need for 
parallel writes, and the C command ‘fprintf’ is used to write these 
two matrices to files, with rank 0 writing the A matrix and rank 1 
writing the B matrix. As described previously, these matrices are 

both quite small and take a negligible amount of time to write. In 
these experiments the A matrix is 180 bytes and the B matrix is 
5.2KB. 

The C matrix is more complicated, as it is considerably larger and 
divided across the r ranks. In these experiments the compact C 
matrix file is 0.5MB. The code uses two methods to perform 
parallel writes of the C matrix: one approach uses a compact write 
of the matrix to a single contiguous file, and the other approach 

writes the C matrix in 2KB blocks per Ci matrix. The code 
dynamically sets the write block size as some multiple of 2KB 
based on the size of the Ci matrix. In most instances one 2KB 
block is sufficient, but in one instance the Ci matrix requires two 
2KB blocks. The command MPI_File_write_at_all is used to 
execute the parallel writes, and the code separately captures the 
time spent performing the compact and block file writes. These 
two write times are each used to calculate the file write 

bandwidths. 

5.1 Computational Complexity 
Through this algorithm, tensor X ∈ ℝIxJxK is decomposed into 

matrices A ∈ ℝIxR, B ∈ ℝJxR, and C ∈ ℝKxR. The Big-O 

computational complexity of traditional implementations of the 
matrix operations used in the Parallel PARAFAC algorithm 
assuming all matrices are NxN are in Table 1. 
 

Table 1. Computational complexity of matrix operations 

Operation Symbol O(∙) 

Khatri-Rao product ⊙ O(N3) 

matrix multiply ∗ O(N3) 

matrix inverse -1 O(N3) 

 

From the Big-O of the general operations defined in Table 1, we 
can identify the Big-O computational complexity for each 
operation in the Parallel PARAFAC algorithm. The Big-O 
complexity and the dimensions of the resulting matrices are found 
in Table 2. 

As can be seen in Table 2, the majority of the operations are 
dependent on the size of the tensor split, K/r, indicating that the 
more parallel processes r we can use, the faster the overall 
calculation will execute. The few operations that do not change 
based on the size of the tensor split are of the order R3, I*R*R and 
J*R*R, which are each expected to be reasonably small given the 

assumptions outlined prior to the development of the parallel 
algorithm, and therefore are not expected to dominate the 
calculations. 

 



Table 2. Computational complexity of matrix operations 

Operation O(∙) 
Output Matrix 

Dimensions 

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐵 K/r * J * R (K/r*J) x R 

𝑍𝑖
𝑇𝑍𝑖 (K/r * J) * R2 R x R 

𝑋(1)𝑖𝑍𝑖 I * (K/r * J) * R I x R 

(𝑍𝑇𝑍)−1 R3 R x R 

𝐴 = 𝑋(1)𝑍(𝑍𝑇𝑍)−1 I * R2 I x R 

𝑍𝑖 = 𝐶𝑖 ⊙ 𝐴 K/r * I * R (K/r*I) x R 

𝑍𝑖
𝑇𝑍𝑖 (K/r * I) * R2 R x R 

𝑋(2)𝑖𝑍𝑖 J * (K/r * I) * R J x R 

(𝑍𝑇𝑍)−1 R3 R x R 

𝐵 = 𝑋(2)𝑍(𝑍𝑇𝑍)−1 J * R2 J x R 

𝑍 = 𝐵 ⊙ 𝐴 J * I * R (J*I) x R 

𝑍𝑇𝑍  (J * I) * R2 R x R 

𝑋(3)𝑖𝑍 K/r * (J * I) * R K/r * R 

(𝑍𝑇𝑍)−1 R3 R x R 

𝐶𝑖 = 𝑋(3)𝑖𝑍(𝑍𝑇𝑍)−1 K/r * R2 K/r * R 

 

Overall, the complexity analysis confirms that the algorithm 
should scale well with more parallelism. A central question 
explored in the performance testing is how the message passing 
impacts the overall performance as the number of parallel tasks 
grows. A plot comparing the upper bound of the runtime 
calculated from the Big-O analysis to the actual runtime is 
provided in the next section. 

6. PERFORMANCE TESTING 
While PARAFAC-ALS is usually executed until a convergence 
criteria is met (e.g., the change in error is less than some constant 
ε), for performance testing we required the system to execute 
exactly 50 iterations of the algorithm. This ensured that the 
performance comparison between different numbers of nodes and 
ranks per core were comparable. For testing purposes, we have 

assumed the tensor will be decomposed into R=2 factors, but this 
is easily modified. 

6.1 Tensor Dataset 
A tensor of dimension 10x295x32,768 was generated for 
performance testing, resulting in a 0.98 GB comma-separated text 

file. The 10x295 dimensions arose from a small dataset that was 
used for initial experimentation, which came from a biomedical 
study of 295 patients with 10 biometrics captured per patient. The 
tensor was generated to simulate this same size of population and 
biometrics, with the biometrics simulated over 32,768 seconds 
(over 9 hours). This number represents the maximum number of 
parallel processes that can be used. This number was chosen 
because it would allow us to run up to 4 ranks/core across 512 
nodes in parallel. 

6.2 AMOS Blue Gene/Q 
The MPI-based Parallel PARAFAC implementation was run on 
AMOS (Advanced Multiprocessing Optimized System), an IBM 
Blue Gene/Q supercomputer that is a part of the Center for 
Computational Innovations at Rensselaer Polytechnic Institute 

(RPI). AMOS is named in homage to Amos Eaton, one of the 
founders and first teachers at RPI. 

In the November 2014 Top500 ranking of supercomputers 
(www.Top500.org), AMOS ranked #43 in the world. AMOS is 
comprised of 5 Blue Gene/Q racks and contains 5,120 nodes of 

16-core 1.6 GHz A2 processors for a total of 81,290 cores, with 
81,920 GB of RAM. It also contains 160 nodes for I/O. AMOS 
uses a 5D torus network with a 56 Gbit/s FDR Infiniband 
backbone, and includes 32 Intel servers for disk storage with 
24TB disk per server, and can achieve a peak I/O bandwidth of 5 
to 24GB/sec. 

A strong scaling study was performed on AMOS to understand 
how the performance of the algorithm for a fixed problem size (in 

this case, tensor size) changes with the number of parallel 
processes. The following metrics were captured during the 
simulation: file read time, total computation time, MPI 
communication time, block file write time, and compact file write 
time. The algorithm was run with as few as 128 parallel processes 
across 8 nodes to 16,384 parallel processes across 256 nodes. At 
this scale, each process is managing an IxJx2 tensor. 

To understand how the performance was impacted by the number 

of nodes and ranks/core, we executed the algorithm on a total of 
18 unique configurations using 6 different numbers of nodes (8, 
16, 32, 64, 128, and 256) and 3 scenarios of ranks/core (1, 2, and 
4). Each configuration was run 3 times for a total of 54 runs, and 
the median of each metric was used for plotting and analysis in 
the figures and tables below. The median was chosen to limit the 
impact of outlier readings, which occurred solely in a small 
percentage of the file read and write measurements. It is natural 

that outliers may occur for file I/O operation times, as these can 
be noticeably impacted by other jobs on the supercomputer. 

6.3 Compute Time & MPI Communication 

Bandwidth 
The compute time is defined as the amount of time spent 
performing the many matrix operations. Table 3 shows the 
compute time versus the number of nodes for the three different 
ranks/core scenarios. 

Table 3. Compute time vs. number of nodes for 1, 2, and 4 
ranks/core 

Num. 

Nodes 

1 rank/core 

(sec) 

2 ranks/core 

(sec) 

4 ranks/core 

(sec) 

8 1,014.85 380.94 193.02 

16 353.15 148.74 82.95 

32 137.95 63.96 38.05 

64 59.30 29.40 18.27 

128 27.17 14.00 8.95 

256 12.94 6.87 4.45 

 

The columns in Table 3 have been plotted versus the number of 
nodes. Figure 6 shows all values and Figure 7 shows only the 
values between 64 and 256 nodes. 

From Table 3, Figure 6, and Figure 7, we observe very consistent 
behavior across the three lines. The total execution time drops 
dramatically when increasing from 8 to 32 nodes, and then drops 
less and less substantially when increasing from 32 to 256 nodes. 
This demonstrates that doubling the number of nodes has less of 



an impact the more nodes we are already using, i.e., we are 
witnessing a ‘law of diminishing returns’ effect as we approach 
the maximum possible number of parallel processes. 

 

Figure 6. Compute Time (sec) vs. Number of Nodes 

 

Figure 7. Compute Time (sec) vs. Number of Nodes for 64 to 

256 nodes only 

Further, comparing one line to the next we see an average 53% 

decrease in compute time moving from 1 rank/core to 2 
ranks/core, and a smaller average 41% decrease moving from 2 
ranks/core to 4 ranks/core. This also highlights the law of 
diminishing returns effect when doubling the number of 
ranks/core for a fixed number of nodes, but may also be a result of 
resource contention as we overcommit the cores. 

 

Figure 8. Big-O Upper Bound Runtime and Actual Runtime 
(sec) vs. Number of Nodes for 4 ranks/core 

A plot comparing the upper bound of the runtime calculated from 
the Big-O analysis to the actual runtime is shown in Figure 8. 
Clearly, the actual runtime follows a very consistent pattern to the 
Big-O analysis, as expected. 

The MPI communication bandwidth is the amount of data 

transmitted per second during the MPI reduce operations. Table 4 
shows the communication bandwidth versus the number of 
processes for the three ranks/core scenarios. 

Table 4. MPI communication bandwidth vs. number of nodes 
for 1, 2, and 4 ranks/core 

Num. 
Nodes 

1 rank/core 
(GB/sec) 

2 ranks/core 
(GB/sec) 

4 ranks/core 
(GB/sec) 

8 0.07 0.05 0.03 

16 0.20 0.19 0.13 

32 0.51 0.54 0.44 

64 1.02 1.24 1.05 

128 2.05 2.69 2.48 

256 4.49 5.89 5.99 

 

Figure 9 plots the MPI communication bandwidth versus the 
number of nodes from Table 4. 

 

Figure 9. MPI Communication Bandwidth (GB/sec) vs. 
Number of Nodes 

In Figure 9 we observe a consistent pattern across all three 
scenarios. The communication bandwidth is quite low initially, 
when there are only 8 nodes used. Above 8 nodes, we see an 
approximately linear increase in the bandwidth. This indicates that 
we are not saturating the communication backbone, and that as we 
transmit more and more data (due to more and more parallel 
processes executing), we are able to use more and more network 

bandwidth. While the bandwidth across the three scenarios starts 
out similar, as the number of nodes increases the 1 rank/core 
bandwidth grows less than the other two, most likely because it 
benefits the least from the fastest channel—inter-process 
communication within a node. 

The total processing time, defined as the sum of the compute and 
MPI communication time, is shown in Table 5. 
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Table 5. Total processing time vs. number of nodes for 1, 2, 
and 4 ranks/core 

Num. 
Nodes 

1 rank/core 
(sec) 

2 ranks/core 
(sec) 

4 ranks/core 
(sec) 

8 1,015.30 382.05 196.81 

16 353.45 149.35 84.75 

32 138.18 64.40 39.12 

64 59.53 29.78 19.17 

128 27.40 14.35 9.71 

256 13.15 7.19 5.08 

 

Figure 10 plots the total processing time versus the number of 
nodes. We see very consistent behavior between this and Figure 6, 

indicating that the processing time is dominated by the compute 
time. In fact, at its peak (for 256 nodes, 4 ranks/core), the 
communication time only accounts for 12% of the total processing 
time. (The total communication time can be calculated as the 
difference between Table 5 and Table 3, and thus is not included 
in a separate table here.) 

 

Figure 10. Total Processing Time (sec) vs. Number of Nodes 

For the slowest runtime of 1,015.30 sec we had 8 nodes with 1 
rank/core, resulting in 128 (27) parallel tasks. For the fastest 

runtime at 5.08 sec we had 256 nodes with 4 ranks/core, resulting 
in 16,384 (214) parallel tasks. The ratio of the number of parallel 
tasks between the best and worst runtimes was 128, and the ratio 
of the associated runtimes was 200. Therefore, for 128x the 
number of processes we achieved a 200x runtime performance 
improvement. As mentioned previously, this super-linear speedup 
was expected, because operations such as matrix multiply are of 
O(n3), and so any reduction to the order n of the matrices on a 

single node will result in a greater than n reduction in the 
computation time. 

While the super-linear compute time speedup could have been 
hampered by commensurate increases in the communication time, 
from the consistent growth in the MPI communication bandwidth 
indicating a lack of network saturation and the small percentage of 
time attributed to MPI communication within the total processing 
time, we conclude that the system is CPU bound at the current 
scale (up to 256 nodes, 214 processes). If we were able to increase 

the number of parallel processes even further, it is expected that 
eventually we would saturate the network and see the 
communication bandwidth level off. At that point the 

communication time would come to dominate the total processing 
time indicating that the system had become network bound, but 
this did not become an issue at the current scale. 

6.4 File Read and Write Bandwidth 
As described previously, the file read bandwidth is calculated as 
the tensor file size divided by the time to load the file by the 
parallel processes. Table 6 shows the read bandwidth and Figure 
11 plots the same. 

Table 6. Tensor file read bandwidth vs. number of nodes for 1, 
2, and 4 ranks/core 

Num. 
Nodes 

1 rank/core 
(GB/sec) 

2 ranks/core 
(GB/sec) 

4 ranks/core 
(GB/sec) 

8 0.49 0.43 0.24 

16 0.26 0.25 0.25 

32 0.46 0.44 0.85 

64 1.86 1.20 1.17 

128 2.99 2.14 1.43 

256 0.28 1.57 0.99 

 

 

Figure 11. Tensor File Read Bandwidth (GB/sec) vs. Number 
of Nodes 

From the above table and figure, we see that the three scenarios 
exhibit very similar behavior. The read bandwidth starts out quite 
low on 8 nodes, and actually gets a bit worse for all three 
scenarios as we scale to 16 nodes. However, the bandwidth then 
improves as we grow from 16 to 128 nodes, where the bandwidth 
peaks for all three scenarios. Moving from 128 to 256 nodes, the 

bandwidth experiences a drop, which is significant in all three 
cases but most dramatic for the 1 rank/core scenario. The 1 
rank/core scenario has the best bandwidth at 128 nodes (2.99 
GB/sec), and the worse at 256 nodes (0.28 GB/sec). 

The consistent behavior across all three scenarios implies that the 
MPI read performance is contingent less on the number of 
processes, and more on the number of nodes involved in the read 
operations, and that 128 appears to be the optimal number of 
nodes for reading the tensor file. It appears that for the 0.98 GB 

file being read, above 128 nodes MPI file metadata management 
overhead begins to dominate the read performance, resulting in 
the bandwidth drops we observe across all three scenarios [20]. 

The file write bandwidth is calculated as the compact C matrix 
file size divided by the time to write the file in either a compact or 



block mode. Due to space considerations, only the block file write 
bandwidth is provided in table form, in Table 7. The block 
bandwidth is included because it consistently outperformed the 
compact write, and would almost certainly be the preferred 
approach in future efforts. 

Table 7. C matrix block file write bandwidth vs. number of 
nodes for 1, 2, and 4 ranks/core 

Num. 
Nodes 

1 rank/core 
(MB/sec) 

2 ranks/core 
(MB/sec) 

4 ranks/core 
(MB/sec) 

8 6.25 4.17 2.38 

16 3.57 2.78 1.61 

32 3.57 2.38 1.43 

64 3.33 2.00 1.14 

128 3.13 1.79 0.93 

256 1.85 0.62 0.47 

 

Figure 12 plots the block write bandwidth (from Table 7), and 
Figure 13 plots the compact write bandwidth, for the three 
scenarios. The same axes are used in both figures to facilitate 
visual comparisons between the two. 

From these two figures, we see roughly the same behavior, in that 

the file write time starts out reasonably high for 8 nodes, and then 
decreases as the number of nodes grows to 256. This is most 
pronounced for the block file writes, which start out at 6.25 
MB/sec for 1 rank/core on 8 nodes, and then decreases nearly by 
half to 3.57 MB/sec at 16 nodes. After the initial dramatic drop for 
each scenario, the write bandwidth then gradually declines as the 
number of nodes increases, with the 1 rank/core scenario reaching 
a low of 1.85 MB/sec at 256 nodes. The compact write bandwidth 
shows less consistency across the scenarios, other than the fact 

that it performs consistently worse than the block file writes and 
the performance also tends to get worse as the number of nodes 
increases. 

The write bandwidth decreases as the number of nodes increases 
most likely because the C matrix file is very small (0.5 MB). 
Therefore, each of the parallel processes is writing an extremely 
small amount of data (as few as 32 bytes to at most 4KB in these 
experiments), and so the blocks are too small for AMOS to 

efficiently parallelize the writes and we are not actually benefiting 
from truly parallel write operations. 

 

Figure 12. C Matrix Block Write Bandwidth (MB/sec) vs. 
Number of Nodes 

One interesting observation between the read and write 
bandwidths is that the 1 rank/core scenario exhibits both the best 
read and write rate. While each of the three ranks/core scenarios 
achieve the best write rate for different numbers of nodes, the 
absolute peak read bandwidth of 2.99 GB/sec (on 128 nodes) is 

experienced by the 1 rank/core scenario, as is the absolute peak 
write bandwidth of 6.25 MB/sec (on 8 nodes). Unlike the read 
bandwidth, however, for the block write bandwidth the 1 
rank/core scenario consistently outperforms the other two 
scenarios across all node counts. These imply that for the peak 
number of nodes involved in a parallel read or write operation, it 
may be preferable to minimize the number of processes executing 
on each node. 

 

Figure 13. C Matrix Compact Write Bandwidth (MB/sec) vs. 
Number of Nodes 

7. CONCLUSIONS & FUTURE WORK 
PARAFAC is a popular technique for discovering hidden 
relationships in multidimensional datasets. As data volumes grow 
within many scientific disciplines, researchers and scientists will 
require new systems to enable PARAFAC (and similar analyses) 
to execute on data that is too large to be manipulated on a single 
server with traditional tools. 

We have designed an approach to parallelize the execution of the 
PARAFAC alternating least squares algorithm, and have 

implemented it using C and MPI. A dataset was simulated and 
used to test the performance and scalability of this implementation 
on an IBM Blue Gene/Q supercomputer. The compute time, MPI 
communication bandwidth, tensor file read bandwidth, and C 
matrix file write bandwidth were all captured for three scenarios 
(1 rank/core, 2 ranks/core, and 4 ranks/core) across 6 different 
node counts. 

This study found that the implementation scaled quite well and 

specifically that increasing the number of parallel processes by a 
factor of 128 resulted in a 200x speedup in the overall execution 
time. The MPI bandwidth grew consistently as the size of the 
study grew, indicating that the communication network was never 
saturated during execution. At its peak the communication time 
only accounted for 12% of the total processing time with a peak 
bandwidth of 6 GB/sec, indicating the implementation is CPU 
bound at the current scale. The peak bandwidth achieved when 
performing a parallel read of the tensor from a file was 

approximately 3 GB/sec, and the peak write bandwidth achieved 
was 6.25 MB/sec. 

This MPI-based Parallel PARAFAC implementation will allow 
researchers to scale to considerably larger datasets, taking 



advantage of more disk, memory, and CPU available on 
supercomputers such as AMOS. In the future, we will explore 
how the performance is impacted using substantially larger 
datasets, starting in the multi-terabyte range. We also expect to 
begin analyzing a real industrial multiway dataset from GE Power 

& Water’s Remote Monitoring and Diagnostics (RM&D) Center. 
This RM&D Center has over 20TB of time series data from 
sensors on gas turbines captured over more than a 7 year period. 
To our knowledge no one has ever attempted to execute 
PARAFAC on this type of data, nor at this scale. 

Beyond new and larger datasets, we will also explore alternative 
platforms on which to implement the Parallel PARAFAC 
algorithm. In particular we will focus on Apache Hadoop and 

Apache Spark. Hadoop is a well-established Big Data platform for 
distributed data storage and parallel task execution using the 
MapReduce computing paradigm running on clusters of 
commodity hardware [21][22]. Spark is a comparatively new 
project originating from UC Berkeley that allows for iterative 
MapReduce-style operations to be run across large commodity 
clusters [23]. Spark keeps working sets of data entirely in memory 
between jobs to optimize the performance of iterative operations, 

and claims to be 100x faster than traditional Hadoop as a result. 
We plan to explore both Hadoop and Spark as alternative 
platforms on which to implement our Parallel PARAFAC 
algorithm. 
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