
Contributions of Ronald V. Book to the Theory of

String-Rewriting Systems�

Robert McNaughtony

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180-3590, U.S.A.

mcnaught@cs.rpi.edu

November, 1996

1. Introduction. Ron Book's interest in string-rewriting systems was stimulated
by Maurice Nivat [12], who, in the 1970's, investigated Thue systems [15] and
semi-Thue systems for applications to formal languages and algebra. The collection of
research problems that Book was to focus on in the 1980's was, to a large extent, an
outgrowth of the collection of problems that Nivat and his collaborators had focused on
in the 1970's (see Berstell's 1977 paper [1]).

During most of the 1980's Book was intensively interested in research in this area.
He is to be lauded for carrying out his research on a broad front, maintaining an
interest in several di�erent research questions, developing his own thoughts and paying
careful attention to the results of others. He had many research collaborators,
including several doctoral students and people who spent some fruitful post-doctoral
years at Santa Barbara. He was, in e�ect, the leader of a group that included all or
most of these. Part of our appreciation of the impact that he had on the �eld of
rewriting systems was what these students and post-docs went on to do after they left
Santa Barbara. I would like to interject a personal remark at this point and mention
how much I have gained from this group. I have pro�ted not only from the clear
research orientation that Book has provided, but also from the contact I have had with
him and with those who have acquired this orientation from him.

�This review was written for a celebration of Book's sixtieth birthday, to take place at the University
of Minnesota on April 12, 1997. I regret that I could not complete it in time for it to appear in the
Festschrift volume (edited by Ding-Zhu Du and Ker-I Ko).

ySupported by Grant No. CCR-9500182 from the National Science Foundation.

1

Book was joined by Friedrich Otto in 1993 in writing a monograph [8] that has a
fairly complete account of this area of research, including most of Book's contributions.
Because of its importance, I shall often refer to it informally rather than by its location
in the list of references at the end of the review.

The plan for the remainder of this review is to look at various research questions
as Book and his collaborators originally posed them, and, in some cases, to trace their
history. Readers who want more technical detail will �nd most of what they want in
the monograph. This short review is not intended to serve either as a complete survey
or as a technical introduction. I regret that time has not permitted even a mention of
the work of most of his followers.

2. Thue systems [15] and semi-Thue systems. These are the two basic
abstract concepts used in the study of string rewriting, and are presented here brie
y.
From them a mixed system is de�ned, which is a mixture of a Thue system and a
semi-Thue system related in a certain way. The concept of mixed system, o�ered as an
explication of the concept of string rewriting system, is not found outside this review; it
is used to explain ideas in the evolving literature.

A Thue system is an ordered pair (�; Q), where � is a �nite alphabet and Q is a
set of unordered pairs of strings over �. The set Q, which is usually �nite, is called the
\set of rules." For (y1; y2) 2 Q and x; z 2 �� one writes xy1z $ xy2z and xy2z $ xy1z;
thus the rules are symmetric. One writes x$� y to assert the existence of a sequence
x0 = x; x1; : : : ; xp = y (p � 0) such that for each i � p� 1, xi $ xi+1. When x$� y

holds one says that x and y are equivalent.

A semi-Thue system is an ordered pair (�; Q) for � a �nite alphabet and Q a set
of ordered pairs of strings. Again Q is usually �nite, but the rules of Q are not
necessarily symmetric. When (y1; y2) 2 Q and x; z 2 ��, one now writes xy1z ! xy2z,
but not xy2z ! xy1z. And one writes x!� y to assert the existence of a sequence
x0; x1; : : : xp (p � 0) such that, for each i � p� 1, xi ! xi+1. When x!� y holds one
says various things, e.g., \y is derivable from x" and \x reduces to y."

A string-rewriting system frequently involves a semi-Thue system; x! y means
\x is (or can be) rewritten as y." But rewriting in practice is mostly of two kinds,
reduction and generation. If x! y is a reduction then y is somehow simpler or smaller
than x, e.g., jyj < jxj. If it is generative then y is generally more complex or larger than
x, e.g., jyj > jxj. (The notation jxj means the length of the string x.) In the rewriting
literature, x! y frequently means \x reduces to y in one step." In Book's papers, it
frequently implies that jyj < jxj, and sometimes merely that jyj � jxj.

Thue systems are important as presentations of monoids, in which the derivation
of an equivalence x$� y is a proof that x and y represent the same object in the

2

monoid. Thus Thue systems are in essence the basis of combinatorial monoid theory
(of which combinatorial group theory is a well known subtheory).

A mixed system is an ordered triple (�; E; R) in which (�; E) is a Thue system,
(�; R) is a semi-Thue system, and (de�ning $ from E and ! from R as above) x! y

implies x$� y. In a mixed system, $� is called the equivalence relation and !� the
reduction relation. The relation $ is called the equivalence-step relation and ! the
reduction-step relation.

A certain kind of mixed system predominated in Book's papers in the 1980's
(although he did not refer to it as a \mixed system"). This system begins as a Thue
system (�; E) from which the relations $ and $� are de�ned. Then, from it, a
semi-Thue system is de�ned as (�; R) where R is the set of all (y1; y2) where jy2j < jy1j
and either (y1; y2) 2 E or (y2; y1) 2 E, with ! and !� de�ned as above. Verbally, !�

is the reduction relation based on length. The relationship between $ and ! in this
system may be complicated by the presence of length-preserving rules in E, i.e., rules
(y1; y2) 2 E such that jy1j = jy2j.

Another kind of mixed system begins with what is called an abstract reduction

system in the recent literature, which is a semi-Thue system (�; R) whose ! (as
de�ned) is to be thought of as a reduction-step relation. Some semi-Thue systems are
more appropriate for being thought of as reduction systems than others. For example,
it is generally assumed that the reduction-step relation should be noetherian; that is,
there should be no in�nite sequence of strings x1; x2; : : : such that xi ! xi+1 holds for
all i. One implication of this property is that we can never have both x! y and
y ! x. Another implication is the existence of at least one irreducible string, i.e., an
x 2 �� for which there is no y such that x! y. Therefore, if ! is appropriate for
being a reduction-step relation then the relation !� is a transitive, re
exive,
antisymmetric relation, whose converse is a partial well ordering.

We can get a mixed system from such an existing semi-Thue system (�; R) by
putting E = f(x; y)j(x; y) 2 R or (y; x) 2 Rg. This type of mixed system is, in e�ect,
what was used in a 1988 monograph by Jantzen [10] and in the very �rst chapter of the
1993 monograph by Book and Otto. More will be said about it in the next section.

In this review, a rewriting system will always be a mixed system. In some cases we
can think of equivalence as coming �rst and reduction as an instrument in proving
equivalence. In other cases we can think of reduction as coming �rst and equivalence as
being de�ned from it.

3. The Church-Rosser property. This was the most eminent of the properties
of Thue systems that Book studied. But the concept as Book used it in the early
1980's is not precisely the same as the concept as it usually appears now. The earlier

3

concept is based on the length of strings, the later one is more abstract. In this review
both concepts will be subsumed under one.

A mixed system (�; E; R) has the Church-Rosser property if, for every x 2 ��,
there is a sequence x0; x1; : : : ; xn; n � 0, such that (1) x0 = x, (2) xi ! xi+1 for each i,
and (3) xn is the unique irreducible string equivalent to x. The string xn is thus a
canonical form of x. The sequence x0; x1; : : : ; xn we call a reduction sequence for x.
(The term \Church-Rosser" honors work by Alonzo Church and Barkley Rosser [9] on
the lambda calculus.)

Note that if we have x = x0 ! x1 ! � � � ! xi, and both xi ! xi+1 and xi ! x0

i+1

hold, then we can take either xi+1 or x
0

i+1 as the (i+ 1)st string in a reduction sequence
for x. The two strings xi+1 and x0

i+1, being equivalent to x, have the same canonical
form as x, which implies that there are reduction sequences to it both from xi+1 and
from x0

i+1. Consequently, whenever we are constructing a reduction sequence from a
given string, we can always take as the next string any string to which the last string
reduces. Thus a reduction sequence from any x can be obtained in a straightforward
way, with no need for back-tracking.

A mixed system (�; E; R) has the length-based Church-Rosser property, if it has
the Church-Rosser property and reduction is always accompanied by a decrease in
length, viz., (x; y) 2 R implies jyj < jxj, and hence x! y implies jyj < jxj. In such a
system, the reduction of a string to its canonical form is expeditious for two reasons:
not only is backtracking avoidable in obtaining the reduction sequence, as already
noted, but each new string in the sequence is shorter in length than its predecessor.
Thus the reduction of a string to its canonical form in a system with the length-based
Church-Rosser property can be done in linear time (as will be demonstrated in detail in
the next section). Book made much of this fact.

Book was also impressed with the fact that it was computationally simple to tell
whether a given Thue system (�; Q) for �nite Q has the length-based Church-Rosser
property. With O'Dunlaing [7] he noted that the decision procedure for this problem,
discovered by Nivat and Cochet [12], could be made to run in polynomial time.

When length-preserving rules play an important rôle, it may be appropriate to
consider a property that is considerably weaker than the length-based Church-Rosser
property. A rewriting system is preperfect if it satis�es two conditions:

(a) For every x 2 ��, there is a sequence x0 = x; x1; : : : ; xn such that
xi $ xi+1 and jxi+1j � jxij for every i, and xn has minimal length of all
strings equivalent to x (but may not be uniquely so).

(b) For x; y 2 ��, if jxj = jyj, x$� y and x and y have minimal length in
their equivalence class, then there exist n � 0 and a sequence of
equal-length strings x0 = x; x1; : : : ; xn = y such that xi $ xi+1 for each i.

4

This de�nition varies from the one Book gives, but is equivalent to it. Note that there
is no reference in the de�nition to a reduction relation. Book and his collaborators did
not investigate or use the preperfect property as much as they did the length-based
Church-Rosser property.

There is a similarity and a di�erence between preperfectness and the length-based
Church-Rosser property. Systems of both kinds o�er the computational advantage that
any given string can be reduced to an equivalent string of minimal length. However,
the reduction is more expeditious if the system has the length-based Church-Rosser
property. In general, the algorithm to reduce a given string to its minimal length in
preperfect systems is computationally more complex.

The procedure to reduce a string to an equivalent string of minimal length in a
system is useful in the solution of the string equivalence problem for that system, i.e.:
given strings w1 and w2, is w1 $

� w2? (This problem is also known as the word
problem for the monoid presented by the Thue system.) To decide whether w1 and w2

are equivalent, one simply reduces the strings to their canonical forms and tests for
equivalence.

The string equivalence problem for Church-Rosser systems and preperfect systems
is therefore solvable. However, the algorithm is more complex for preperfect systems
than for Church-Rosser systems. As we have noted, even the procedure for obtaining a
minimal-length string equivalent to a given string is more complex for preperfect
systems. For Book's discussion of alternatives to the length-based Church-Rosser
property for systems with viable reduction procedures, the reader is referred to pp.
65{66 of [6].

In cases where a system does not have the length-based Church-Rosser property, it
is sometimes possible to revise the system so that it has some other Church-Rosser
property. Usually this would require �nding another reduction relation not based
wholly on length. One idea along these lines is to re�ne the \shorter than" relation over
strings to include alphabetic comparisons. Assuming the alphabet � is ordered, we can
de�ne x < y for x; y 2 �� to mean that either jxj < jyj or jxj = jyj and x precedes y in
alphabetic order. Then, following [11], we can de�ne a mixed system (�; E; R) to be
lexicographically con
uent if (1) x < y for all (y; x) 2 R and (2) (�; E; R) has the
Church-Rosser property. The value of this idea rests on the fact that < is a complete

ordering of ��: we always have either x < y or y < x, for distinct strings x and y.

Thus there are variants to the length-based Church-Rosser property, which is the
reason the de�nition o�ered at the beginning of this section does not involve length at
all. That de�nition is a generalization of the length-based concept, which Book most
often used in the 1980's. However, in their 1993 monograph, Book and Otto have put
the abstract concept in the very �rst chapter, not discussing the length-based concept
until Chapter 3 (where, however, it is studied quite thoroughly).

5

In the mathematical sciences, abstract concepts are often preferred to concrete
concepts because they are more general. Let us make some observations along this line
about Church-Rosser rewriting systems before closing this section.

If a mixed system S1 = (�; E; R) has the Church-Rosser property then it is
possible to de�ne

E 0 = f(x; y)j(x; y) 2 R or (y; x) 2 Rg

whereupon the system S2 = (�; E 0; R) is equivalent to S1; that is to say, x$� y holds
in S1 if and only if x$� y holds in S2. (The proof is left to the reader.) This shows
that any mixed system with the Church-Rosser property could have started out as an
abstract reduction system, and explains in part the motivation behind the use of
abstract reduction systems in recent rewriting theory.

Theorists who prefer to work with abstract reduction systems like to focus on the
con
uence property of such systems. Where (�; R) is an abstract reduction system and
E is de�ned from R as E 0 was de�ned in the preceding paragraph, then (�; R) has the
con
uence property if and only if (�; E; R) has the Church-Rosser property (see, e.g.,
Lemma 1.1.7 of [8]). For the purposes of this paragraph this result can serve as a
de�nition of \con
uence." Because of the closeness in meaning of \con
uence" and
\Church-Rosser," the former term is not discussed in this review outside this
paragraph, even though it is at present the more popular term.

In the next section we shall return to the more concrete Church-Rosser concept of
the early 1980's in order to describe one of Book's most important ideas.

4. Linear-time string reduction. Perhaps the most impressive of Book's
results about rewriting systems from an applications point of view is that systems with
the length-based Church-Rosser property have a highly e�cient method of reduction of
a string to a canonical form. In [2] he shows how to construct, for any such system, an
automaton with two pushdown stores that can reduce any string over the alphabet to
its canonical form in time that is linear in the length of the string. This method of
reduction will now be described in detail, although the treatment will be discursive
rather than technical. We assume that we have a mixed system (�; E; R) with the
length-based Church-Rosser property.

To execute the �rst reduction step of a given string, we must �nd a factor of that
string that is the left member of a rule of R; such a factor let us call a \handle." There
may be several handles in the string, so we must decide both how we should begin our
search for handles and which handle should be the �rst to be rewritten. We might
locate all the handles, and chose to reduce according to which rule yields the greatest
reduction in length. But it turns out that it would be quite uneconomical of time to
locate all possible handles before each new step in the reduction. It could in many
cases result in a reduction with a small number of reduction steps, but each step would
require much time in deciding which is the optimal handle to rewrite.

6

Let us give up on this idea. Instead, let us reduce as soon as we �nd the �rst
handle. Arbitrarily, we can search from left to right, and rewrite the �rst handle we
�nd. Having completed the reduction step we can then do the same thing to the new
shorter string, and so on. In this manner we shall at each new step be reducing the
string that results from the previous step by rewriting its leftmost handle. Eventually
we shall come to a string without a handle, at which point the reduction is complete:
the �nal string is an irreducible equivalent of the original string. And, since the system
has the Church-Rosser property, it is the only irreducible equivalent string.

But there is another point of e�ciency to be gained. Suppose in a given step of
the procedure that we have reduced w1xw2 to w1yw2, where (x; y) 2 R, and where w1 is
long. In order to �nd the leftmost handle in w1yw2, we do not have to begin our search
at the left end of w1. We can be sure from what has happened so far that w1 has no
handle. (We omit the proof of this fact, which is by mathematical induction on the
number of reduction steps that have taken place.)

More precisely, let h be the length of the longest left side of a rule of R minus 1. If
jw1j > h then, taking w1 = w12w13 where jw13j = h, we can con�ne our search to
w13yw2, ignoring w12 completely for this step. If jw1j � h then, of course, we must
begin our search at the left end of w1.

This completes our description of the algorithm, from which it can be proved that
it will always result in the unique irreducible string equivalent to the original, provided
that the system has the Church-Rosser property. Everything that has been said so far
about the algorithm holds even if the Church-Rosser property is not the length-based
property. However, the analysis that follows, showing that it is a linear-time algorithm,
requires the length-based property. If the system is not Church-Rosser at all, an
equivalent irreducible string will be found, but there is no guarantee that it will be
unique or have minimal length.

In order to analyze the algorithm it is convenient to modify the notion of \step."
Let us stipulate that the algorithm begins at time 0 with a pointer at the leftmost
character of the input string. Thereafter, the string will be modi�ed and the pointer
will be moved. At any time t, when t steps have been executed, let w1(t)w2(t) be the
string, w2(t) being the su�x that begins with the character that has the pointer. Thus
at time 0, w1(0) is null and w2(0) is the entire input string.

The strings w1(t+ 1) and w2(t+ 1) are obtained from w1(t) and w2(t) as follows:
Between time t and time t+ 1, the rules of R are considered in order, selecting the �rst
one whose left member is a pre�x of w2(t). (For the analysis we need not specify how
the rules of R are to be ordered, although some orderings might have small gains in
e�ciency over others.) If such a rule is found, that handle is rewritten according to
that rule and the pointer is moved h places to the left on the string, or, to the
beginning of the string if that is not possible. Thus if w1(t) = z1z2 and w2(t) = x1x2,
where jz2j = min(jw1(t)j; h) and the rule is (x1; y), then w1(t + 1) = z1 and

7

w2(t+ 1) = z2yx2. If this action occurs the step is called a step of type 1. If there is no
rule whose left member is a pre�x of w2(t) then the pointer is moved one place to the
right; if this action occurs the step is called a step of type 2.

The algorithm ends when jw2(t)j is smaller than the length of the shortest left
member of a rule. Note that the amount of time for each step is limited by a constant
depending only on the system itself. Thus it can be proved that the execution time for
the algorithm is bounded by a linear function of the length g of the original string, by
proving that the number of steps is so bounded. Accordingly, let k1 (k2) be the number
of steps of type 1 (type 2) in the execution of the algorithm.

Since jyj < jxj for all (x; y) 2 R, the length of the string, which never increases, is
diminished at least by 1 for each step of type 1. Consequently, k1 < g.

The pointer, during the course of the computation, moves across almost the entire
string. During a step of type 1 it moves left at most h characters, h being a constant
for the system. During a step of type 2 it moves right one character. Where r = the
total net movement rightward in the course of the algorithm, we have k2 � hk1 � r < g,
and hence k2 < g + hk1 < (1 + h)g. This gives us an upper bound on the total number
of steps:

k1 + k2 < k1 + (1 + h)g < (2 + h)g

And so we are able to conclude that the computation time for the algorithm is bounded
by a linear function of g.

This algorithm would be easily implemented as a computer program, which, if
care is taken in the writing, runs in linear time. In [2], Book chose to implement the
algorithm as a pushdown automaton with two pushdown stores (see also the proof of
Theorem 2.2.9 in [8]).

5. Monoid presentation. As mentioned in Section 2, a Thue system (�; E) in
which E (as well as �) is �nite can be regarded as a �nite presentation of a monoid,
where � is the set of generators and E is the set of relators. (The relators in a monoid
presentation are unlike the relators in a group presentation, in that they cannot always
be reduced to the form (w; e), where w is a word over � and e is the null word
representing the monoid or group identity.) Thus various questions about monoids can
be identi�ed with questions about Thue systems. Book sought results about
combinatorial monoid theory that could be obtained by a study of rewriting systems.

A good example is the string equivalence problem for Thue systems, discussed in
Section 3. It is well known that this problem, whose domain covers all Thue systems, is
undecidable. An important subproblem of the string equivalence problem is the
nulli�ability problem: given a Thue system T = (�; E) and w 2 ��, does w$� e hold
in T ? (The symbol e represents the null string, which represents the monoid identity.)
This problem is also undecidable.

8

There are many problems about Thue systems that are unsolvable when the
domain is the class of all Thue systems. One of Book's research objectives has been to
�nd interesting subclasses of the class of all Thue systems for which these problems are
decidable. He achieved certain results along these lines in the early 1980's, on which
Otto made improvements in 1986 ([13], [14]).

Two such problems are: (1) The free-monoid problem: does a given Thue system
represent a free monoid (or, if you prefer, a monoid isomorphic to a free monoid)?
(2) The group problem: does a given Thue system represent a group (or a monoid
isomorphic to a group)?

Of course, every free monoid can be represented in a way that makes it apparent
that it is a free monoid: if it has n generators, take (�; E) where � = fa1; : : : ; ang and
E is the empty set. The same holds for groups: if the group has n generators take
� = fa1; a

0

1; : : : ; an; a
0

ng and E = E1 [E2 where

E1 = f(a1a
0

1; e); (a
0

1a1; e); : : : ; (ana
0

n; e); (a
0

nan; e)g

and E2 is the set of group relators expressed appropriately. The free-monoid problem
and the group problem are undecidable for the class of all Thue systems because the
free-monoid structure and the group structure can be disguised.

Book used the Church-Rosser property and another property, known as the
monadic property, to de�ne subclasses of the class of Thue systems for which the
free-monoid problem and the group problem are solvable. A Thue system (�; E) is
monadic if, for every rule (u; v) 2 E, jvj � 1 and juj > jvj. The utility of this concept
was that it provided access to the theory of context-free grammars and the theory of
regular grammars, which have decidability results that can sometimes be applied to
monadic Thue systems.

Although Book often had in mind the length-based Church-Rosser property, the
results discussed in this section are valid for the more general Church-Rosser property.

Book was able to prove in 1983 that the free-monoid problem was decidable for
the class of all monadic Church-Rosser Thue systems with the cancellative property. (A
Thue system has the cancellative property if, for all x; y; z 2 ��, xz $� yz implies
x$� y, and zx$� zy implies x$� y.) This result, although not stated in [4], follows
by methods used in that paper (see p. 172 of [8]). Otto's improvement on this result
[13] implies that the free-monoid problem is decidable for the class of Church-Rosser
Thue systems (�; E) where E is �nite.

In 1982 Book proved [3] that the group problem is decidable for the class of
monadic Thue systems with the Church-Rosser property (cancellativity was not
needed). Otto's improvement [14] implies that this result (as in the case of the
free-monoid problem) holds when the class of Thue systems is the class of
Church-Rosser Thue systems (�; E) with �nite E.

9

The last chapter of the monograph by Book and Otto gives a complete and well
written technical exposition of the problems discussed in this section. The end of that
chapter surveys a number of other algebraic problems about Thue systems: the
conjugacy problem, the cancellativity problem, and the problem of the existence of a
nontrivial idempotent, which are not discussed here.

6. Another of Book's results about monoids [5]. This last section will
consider another problem about the monoids represented by Thue systems. An element
of such a monoid can be thought of as an equivalence class of strings. Since the
equivalence classes can be multiplied to get other equivalence classes, they are called
congruence classes. A congruence class can be identi�ed by any of its members; the
notation [x], which for any x 2 �� represents the set of all strings congruent to x, can
be used conveniently to represent the elements of the monoid.

In the monoid of every Thue system, [e] is the monoid identity (e being the null
string). A concept of interest to Book was the group of units of a monoid, i.e., the
largest subgroup of the monoid whose identity is the identity of the monoid. The
elements of this subgroup are called the units of the monoid. A unit can be identi�ed
as the congruence class of any element that has both a left inverse and a right inverse
with respect to the monoid identity.

Book was interested in the various properties of monoids that could be discerned
from their groups of units, including the question about whether or not a monoid
presentation had the length-based Church-Rosser property. He managed to give a
complete solution to this problem for monoids de�ned by a Thue system (�; E) in
which E has just one rule of the form (w; e), w 2 ���. His result broke down into four
cases depending on the string w. He used the following concepts from a �eld of study
known as \the combinatorics on words": The root of the string w is the shortest string
x such that w = xk for some positive integer k. If w is its own root (k = 1) then w is
primitive. If there are nonnull strings u; v; z such that w = uz = zv then z is an overlap

of w. Book's result [5] (see also pp. 62{63 of [6]) about a Thue system
T = (�; f(w; e)g), the monoid MT presented by T and the group UT of units of MT

states:

(a) If w is primitive and has no overlap then UT is trivial (meaning that [e]
is the only member of UT), and T has the length-based Church-Rosser
property.

(b) If the root of w is x, w = xk for some k � 2, and x has no overlap then
UT is a nontrivial �nite cyclic group of order k, and T has the length-based
Church-Rosser property.

(c) If w is primitive and has overlap then UT is in�nite and T does not have
the length-based Church-Rosser property.

10

(d) If w is not primitive and its root has overlap then T does not have the
length-based Church-Rosser property and UT is in�nite with a nontrivial
�nite cyclic subgroup.

Example for Case (b): Let T = (fa; bg; f(ababab; e)g). Then w = (ab)3 has root
ab, which has no overlap. Using well known methods (see, e.g., [7]), it is easy to see
that T has the length-based Church-Rosser property with the one reduction rule
(ababab; e). It is not di�cult to see that [ab]; [abab]; [e] 2 UT and that no two of these
three are equal. It is somewhat more di�cult to verify that these three are the only
elements of UT , and that, therefore, UT is a cyclic group of order 3. (One way of
carrying through this veri�cation is to prove that any reduced string that is not e or ab
or abab has one of the following forms: (1) (ab)ibu (0 � i � 2, u 2 ��), in which case it
has no right inverse; (2) ua(ab)i (0 � i � 2, u 2 ��), in which case it has no left inverse;
or (3) (ab)iaaubb(ab)j (0 � i � 2, 0 � j � 2, u 2 ��), in which case it has neither a left
inverse nor a right inverse.)

Example for Case (c): Let T = (fa; bg; f(abbab; e)g). Then w = abbab is
primitive and has the overlap ab. First note that ab and b commute:

abb$ abbabbab$ bab

Hence babab, abbab, ababb and e are all equivalent in T . From this we see that [b] has
the two-sided inverse [abab] in MT . Thus [b] 2 UT , and [bi] 2 UT for all i � 0.

Observe that, for x1; x2 2 ��, if x1 $
� x2 then, for some integer k,

jx1j � jx2j = 5k, jx1ja � jx2ja = 2k and jx1jb� jx2jb = 3k. (The notation jx1ja means the
number of occurrences of the letter a in the string x1, etc.) From this it follows that,
for i 6= j, bi and bj are not equivalent, and hence [bi] 6= [bj] in UT ; thus UT is in�nite. It
also follows that abb and bab, which are equivalent in T , are not equivalent to any
shorter string; thus T does not have the length-based Church-Rosser property.

The reader is warned that the the proofs of Cases (b) and (c) of Book's theorem
are considerably more involved than the proofs sketched above for the two examples.

Book was interested in the question about what could be done and what could not
be done by Church-Rosser rewriting systems. The theorem examined in this section
turns out to be helpful in answering this question in certain cases. For Book's detailed
discussion of this matter, see pp. 62{64 of [6].

This ends my brief and incomplete review of Ron Book's work on rewriting
systems during the 1980's. Since I have not attempted to cover all of his
accomplishments in the area, and have not given an account of the results of his
disciples, I can claim to have described only a small part of his impact on the theory of
rewriting systems.

11

References

[1] J. Berstel, Congruences plus que parfaites et langages alg�ebriques, Seminaire

d'Informatique Th�eorique, Institute de Programmation (1976{77), pp. 123{147.

[2] R. Book, Con
uent and other types of Thue systems, J. Association Computing

Machinery, Vol. 29 (1982), pp. 171{182.

[3] R. Book, When is a monoid a group? The Church-Rosser case is tractable,
Theoretical Computer Science, Vol. 18 (1982), pp. 325{331.

[4] R. Book, Decidable sentences of Church-Rosser congruences, Theoretical Computer

Science, Vol. 24 (1983), pp. 301{312.

[5] R. Book, Homogeneous Thue systems and the Church-Rosser property, Discrete
Mathematics, Vol. 48 (l984), pp. 137{145.

[6] R. Book, Thue systems as rewriting systems, J. Symbolic Computation,

Vol. 3 (1987), pp. 39{68.

[7] R. Book and C. �O'Dunlaing, Testing for the Church-Rosser property, Theoretical
Computer Science, Vol. 16 (1981), pp. 223{229.

[8] R. Book and F. Otto, String-rewriting systems, Springer-Verlag, 1993.

[9] A. Church and J.B. Rosser, Some properties of conversion, Trans. Am. Math. Soc.,

Vol. 39 (1939), pp. 472{482.

[10] M. Jantzen, Con
uent string rewriting, EATCS Monograph No. 14,
Springer-Verlag, 1988.

[11] D. Kapur and P. Narendran, The Knuth-Bendix completion procedure and Thue
systems, SIAM J. Computing, Vol. 14 (1985), pp. 1052-1072.

[12] M. Nivat and M. Benois, Congruences parfaites et quasi-parfaites, Seminaire

Dubreil, Vol. 25 (1971{72), 7{01{09.

[13] F. Otto, Church-Rosser Thue systems that present free monoids, SIAM J.

Computing, Vol. 15 (1986), pp. 786{792.

[14] F. Otto, On deciding whether a monoid is a free monoid or is a group, Acta
Informatica, Vol. 23 (1986), pp. 99-110.

[15] A. Thue, Probleme �uber Ver�anderungen von Zeichenreihen nach gegebenen
Regeln, Skr. Vid. Kristiania, I Mat. Natuv. Klasse, No. 10 (1914), 34 pp.

12

