
Completing the Compilation of SuchThat v0.7

H. Gast1 S.Schupp R.Loos

fgasth,loosg@informatik.uni-tuebingen.de

Wilhelm-Schickard-Institut f�ur Informatik

Universit�at T�ubingen, Germany

schupp@cs.rpi.edu

Department of Computer Science

Rensselaer Polytechnic Institute

1On leave of absence from the university of T�ubingen

Contents

1 Introduction 4

1.1 Summary . 4

1.2 An Overview over the Translator . 5

1.3 The Frontend { st2scm . 5

1.4 Attribute Association { staa . 5

1.5 The Type Checker { sttype . 6

1.6 The BackEnd { scm2cpp . 6

2 Translation of Examples 6

2.1 Invocation of the Translator . 7

2.2 Bindings and Substitution . 7

2.3 Interpreting Error Messages . 12

3 Structure of the Module sttype 12

3.1 Running sttype . 12

3.2 Reports and Errors . 13

3.3 Reading the Input File . 16

3.3.1 The Pattern Language for Specifying the Input File . 17

3.3.2 Semantics of a Pattern . 17

3.4 Creating a Pattern Speci�cation . 20

3.5 The Structure of the Input File . 20

3.5.1 The File Level . 20

3.5.2 The Algorithm Body . 22

3.6 Special Functions for Particular Parts of the File . 26

3.6.1 Global Tables . 26

4 Interpreting Structure Patterns 28

4.1 The Top-level Procedure { interpret-pattern . 28

4.2 The Procedure interpret-spatterns . 29

4.3 The EBNF-like Productions . 31

4.4 The Procedure use-pattern . 34

5 Handling Declarations in the Input 34

5.1 Allowed Input Structures for Types and Aliases . 35

5.1.1 Preprocessing the Structures . 37

5.2 Alias Declarations . 38

5.3 Structure Declarations . 41

5.4 Variable and Constant Declarations . 46

5.5 Algorithm De�nitions and Prototypes . 49

6 Aliases in SuchThat 53

2

6.1 The Semantics of Aliases . 54

6.2 Structural Matching for Aliases . 54

6.2.1 The Procedure struct-match . 54

6.3 Expanding Aliases to Structures . 56

6.4 Lookup for Aliases in Tables . 57

7 An Interface to stgentz 58

7.1 The Function structure-implication? . 58

7.2 Connect to stgentz . 59

7.3 Caching Results of Structure Implications . 59

8 Instantiation of Structures 60

8.1 The Notion of instantiation . 60

8.2 Semantics of Structure Declarations . 61

8.3 Weaving Implication and Instantiation . 62

8.4 Error Messages . 63

9 The Connection to scm2cpp 65

9.1 Adjusting the Output . 65

10 Acknowledgments 68

A The Translator st2cpp 69

B Examples 71

B.1 Computing the GCD . 71

B.2 Henrici-Brown Addition for Fraction Fields . 73

B.3 Demonstration of the Instantiation . 76

C The Implications Used 77

D Index 78

D.1 Files . 78

D.2 stweb Macros . 78

D.3 Identi�ers . 80

3

1 Introduction

1.1 Summary

SuchThat is a new programming language for generic programming. It combines the power of parameterization
with the safety of type checking. In SuchThat it is possible to write

hdecl.sth 4i �

Let R be a ring, R commutative;

let P be the polynomials over R;

p 2 P; p is prime;3

Macro never referenced.

and to treat the sentence as a declaration. As such declaration the sentence has to undergo the usual processing
for declarations|starting from a scanning and parsing procedure and ending up with type checking and code
generation. Programming in abstract concepts is perfectly possible.

SuchThat was proposed by the last two authors ([12]) who also agreed on implementing the language together
with an entire system for generic programming. The SuchThat system under development includes a generic
library, but also other components such as a veri�er and an on-line documentation environment.

After a �rst prototype implementation it was decided in the late Fall 1996 to write a compiler from SuchThat

to C++, called st2cpp. The compiler construction was split into three parts, the syntactic analysis, the semantic
analysis, and a back-end that translates to C++. The language Scheme served as intermediate language. When
the completion project, the project described here, was started, both the parser and the back-end were �nished.
For the semantic analysis|the major challenge for the SuchThat language|only single modules were available.
There was a module to normalize so-called attributed structures, a module to process the complex SuchThat
declarations, and a module to prove generic implications (in)correct. These modules were separately developed,
partly by di�erent people. It was unclear how smoothly they would �t together and whether major gaps in
the speci�cation of the compiler project or the language would appear. The task of the completion step was to
integrate all existing modules into an executable compiler.

Achievements st2cpp was �nished successfully in December 97. The experiments run with the translator
allow to check and to re�ne decisions regarding the language design. It is now possible to give a formal de�nition
of the language. Besides providing an executable program the major insight during the completion phase of
st2cpp is the insight how implications, SuchThat's type checking paradigm, and instantiation have to work
together.

Restrictions st2cpp does not translate the full SuchThat language. Language features that are currently
either not supported or not yet publicly available are memory management, overload resolution, exception
handling, and higher order functions. Furthermore, the SuchThat module language was entirely neglected.

Next Steps The immediate next steps are to integrate the SuchThat garbage collection module, under active
development, and to perform overload resolution for which the st2cpp program is fully prepared already. At the
level of type checking st2cpp clari�ed how instantiation and implication have to be weaved. As a consequence,
the implication module, stgentz, has to be modi�ed correspondingly.

All parts of st2cpp, including the last completion steps, were developed in close cooperation of the two
SuchThat groups at RPI and T�ubingen, Germany. During the project described here the �rst author vis-
ited RPI. Parts of the project constitute his Studienarbeit, presented in T�ubingen in December 1997.

4

1.2 An Overview over the Translator

The main goal of this project has been to integrate the existing modules of a translator from SuchThat to C++

and complete the implementation with the type-checking module.

Before we describe the latter part, we would like to give the reader an impression of the translation process as
a whole and highlight the connecting points that had been speci�ed beforehand.

stdecl

sttype

scm2cpp

all function calls are legal
type-checked scm - code

C code
++

st2scm

staa

attributes associated

scm - Representation

SuchThat

stgentz

to corresponding structure

Figure 1: Structure of the SuchThat to C++ translator

The translator itself is mostly written in Scheme[1] and most naturally also the intermediate representation of
the SuchThat program have the form of Scheme lists. This makes reading and writing results particularly
easy and encourages the division of the translator into separate stages.

1.3 The Frontend { st2scm

The language SuchThat has been designed to resemble the writing style found in mathematical textbooks. For
this implementation, conventional tools, i.e. flex++ and bison++, have been used to translate the SuchThat
source into its intermediate representation. [9] contains the technical details.

As a broad summary we can say that the task of parsing a formalized, yet almost natural, language, yields the
expected problems when speci�ed as a LALR(1) grammar. The crucial points turned out to be the context-
dependent meaning of tokens, which leads to the conclusion that LL parsing might be the more appropriate
method, because of its inherent context-dependency of subexpressions.

1.4 Attribute Association { staa

One of the important features of the SuchThat structures sublanguage is the ability to give attributes to
structures, which allows for a very detailed speci�cation in particular of requirements of function parameters.
An example is:

Let T be a group, T is commutative.

Here commutative is an attribute of T .

Since these expressions are clearly context sensitive, they cannot be directly incorporated into a LALR(1) parser.
staa[10] associates the attribute commutative with T and expresses their relation in the closed form

5

(with T commutative)

1.5 The Type Checker { sttype

A major part of this report is concerned with the type-checking process which guarantees type-safe calls to
generic functions. Therefore at this point we only point out the questions answered in completing this project:

� To use stgentz in the process of type-checking it has to be extended to deal with bindings, i.e. extract
the subexpressions which stand for type-variables in generic functions.

� An experimental implementation of this process, which is capable of demonstrating the requirements has
been given in the function instantiate1.

� The grounds for an implementation of overload resolution have been laid by �nding all possible interpre-
tations of an expression with respect to a given set of prototypes2.

� Unlike e.g. in C++ template implementations, error and report messages give an intuitive and high-level
understanding of type-errors; this demonstrates the usefulness of the both the approach of constrained
generic functions and the particular implementation given here (see 2.2).

Since sttype also connects staa to scm2cpp, the intermediate code generated must match the input speci�-
cations of the backend. The code reecting the necessary changes has been incorporated using stweb macros
whose names have the pre�x output adjust:. Their de�nitions are given in section 9.

1.6 The BackEnd { scm2cpp

The target language of our translator is C++, which makes the produced code executable on many systems in an
e�cient way. It is intended that the underlying library will use STL containers to implement the representations
for the SuchThat structures; these containers and algorithms will also be available to the user.

The major challenges scm2cpp[18] had to cope with are the exible generation of type-expressions, in particular
the generation of (template) function headers. Modi�cations to to the calling semantics (call-by-reference/value)
as well as the descriptions of implemented C++ data-structures, including the needed header �les and the number
of template parameters, can be speci�ed external to the code in con�guration �les.

2 Translation of Examples

In this section we demonstrate the features of the completed translator. The examples will show its ability to
check constraints on calling generic functions e�ectively and ensure that minimal preconditions, which are stated
as the type of parameters, are ful�lled.

The code in this section has been deliberately chosen from well-known focal points of generic programming to
help the reader appreciate the decisions involved in accepting or rejecting a function call. We hope that the
intuitive syntax of SuchThat will support understanding and make a detailed explanation of the notion of
instantiation unnecessary at this very point (see section 8).

1The code of instantiate is not part of this report due to natural uncertainty about future modi�cations in the language design

process.
2This process will be subject to changes and therefore the code will be contained in a separate report

6

2.1 Invocation of the Translator

The shell script st2cpp as described in section A integrates the di�erent modules of the translator. The usage
is

st2cpp [-p] �le

where �le is the name without extension .sth of the SuchThat source. To translate the example in �le gcd.sth
run

st2cpp gcd

The -p option stops the translation process after the parser stage which will be useful for incrementally building
syntactically correct SuchThat programs �rst and circumvent the time consuming type check during this phase.

2.2 Bindings and Substitution

The underlying concept of instantiation is the idea of pattern matching and substitution. However, in our case,
the variables are constrained in what particular expressions they can be bound to and within these constraints, we
can have further variables again. Why we need such a recursive understanding of substitutions is best explained
by giving a comprehensive example. The writing style might remind the reader of Louis Reasoner [2] and the
compiler corrects his mistakes.

Bindings Let us start with this problem: We want to write a function BubbleSort which can deal with �nite
sequences, sorting them in ascending order. Our �rst try looks like this:

� Declare �nite sequences as a structure (=type).

� Point out that for sorting we need an ordered set.

� Introduce some local abbreviations.

"exinst.sth" 7a �

Global: Structure FiniteSequence over Set is abstract.

Algorithm: BubbleSort(a ; b)

Let O be Set with O is ordered;

Let FSQ(O) be FiniteSequence over O.

Input: a 2 FSQ(O).

Output: b 2 FSQ(O). ||

Algorithm: main()

Local: A 2 Array(Integer).

(1) BubbleSort(A ; A) ||

3

We get the message:

hexample output 7bi �

warning: in algorithm (main)

in expression (call1 bubblesort a out a)

in subexpression (bubblesort a)

(Implication not found

((app_par array integer) (over finitesequence (with set ordered)) . #t))3

7

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

We want to assert that this implication holds and copy the given Scheme list into cache.imp., hoping that now
the code compiles. It turns out though, that our function call is still not correct:

hexample output 8ai �

warning: in algorithm (main)

in expression (call1 bubblesort a out a)

(Implication not found

((over finitesequence (with set ordered)) (app_par array integer) . #t))

warning: in algorithm (main)

in expression (call1 bubblesort a out a)

(Output signature mismatch in

(b (over finitesequence @o)) |= (a (app_par array integer)))

error: in algorithm (main)

in expression (call1 bubblesort a out a)

(No prototypes matching output signature

(a)

in pass 2)3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

What has happened ? We have not been precise enough ! Our generic function is to return a structure that is
the very same �nite sequence that it received as an input structure. We therefore have to introduce a binding

(F) for that sequence and rewrite the code as

"exinst2.sth" 8b �

Global: Structure FiniteSequence over Set is abstract.

Algorithm: BubbleSort(a ; b)

Let O be Set with O is ordered;

Let FSQ(O) be FiniteSequence over O;

Let F be FSQ(O).

Input: a 2 F.

Output: b 2 F. ||

Algorithm: main()

Local: A 2 Array(Integer).

(1) BubbleSort(A ; A) ||

3

This compiles without errors. Looking at the reports generated, we �nd the messages:

hexample output 8ci �

*** report 2 #80 ***

(prototypes found for subexpressions are #42)

*** report 2 #81 ***

((bubblesort a) :

((((bubblesort ((a @f)) out ((b @f)))

out

(((b (app_par array integer))))

bindings

((((be f (over finitesequence @o)) (app_par array integer))

))))))3

8

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

But where is the binding of O, our ordered set ? Let's examine the .err �le again:

hexample output 9ai �

warning: in algorithm (main)

in expression (call1 bubblesort a out a)

in subexpression (bubblesort a)

(simplies-explicit? used structure-implication?

(app_par array integer) => (over finitesequence (with set ordered))

=> no bindings found)

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

The O has not been bound, because the instantiation procedure was not able to match an array with a
finite sequence. We could bind the whole structure to F (by the implication entered to the cache earlier),
but we could not bind the substructure O.

This problem is a direct consequence of the separate treatment of implication and instantiation pointed out
earlier. Therefore it will vanish as soon as the concepts are reunited.

Attributes The following example deals with lists and functions to manipulate them. It shows how attributes
can be used to express preconditions.

We �rst introduce the notion of a homogeneous list and represent a (dense) univariate polynomial as a list of its
coe�cients. This is done to show how bindings carry over to the right hand side when referring to a structure
declaration.

"exattr.sth" 9b �

Global: Structure List(Set) is implemented;

Let R be Ring;

Structure UnivariatePolynomial(R) is List(R).

Algorithm: f:=first(l)

Let S be Set.

Input: l 2 List(S) with l is nonNull.

Output: f 2 S. ||

Algorithm: r:=red(l)

Let S be Set.

Input: l 2 List(S) with l is nonNull.

Output: r 2 List(S). ||

Algorithm: c:=cons(f,r)

Let S be Set.

Input: f 2 S;

r 2 List(S).

Output: c 2 List(S) with c is nonNull. ||

Algorithm: main()

Local: a 2 UnivariatePolynomial(Integer);

b 2 List(Integer) with b is nonNull;

c 2 List(Integer);

9

x 2 Float.

(1) a:=first(a).

(2) b:=red(b).

(3) c:=red(cons(3,b)).

(4) c:=cons(x,b) ||

3

Obviously the statement (1) is wrong: a is a polynomial over the integers and thus a list of integers by declaration,
but we miss the attribute notNull3.

Here the way the instantiation puts it:

hexample output 10ai �

warning: in algorithm (main)

in expression (first a)

in subexpression (first a)

(Instanstantiation

(app_par univariatepolynomial integer) |= (with (app_par list @s) nonnull)

failed because of missing attributes

(nonnull))3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

The second expression is a legal function call, since b has the required attribute, however, the return value of red
can be null even though the input was not. red destroys this property. Correspondingly we �nd the remarks:

hexample output 10bi �

warning: in algorithm (main)

in expression (red b)

(Instanstantiation

(app_par list integer) |= (with (app_par list integer) nonnull)

failed because of missing attributes

(nonnull))

error: in algorithm (main)

in expression (red b)

(No prototypes matching desired type

((with (app_par list integer) nonnull))

in pass 2)

error: in algorithm (main)

in expression (red b)

(No prototypes with matching input signature)

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

The statement in (3) is perfectly �ne: cons returns non empty lists and red expects them. Here are the generated
reports:

hexample output 10ci �
3However, such a property might follow from the context, for example from applying the Hoare calculus to the procedure. If we

give the programmer the possibility to state such assertions, we can go ahead and include run-time requirements into the speci�cation

of the procedures. This would force the user to make explicit his assumptions and think about e.g. invariants.

10

*** report 2 #582 ***

(prototypes found for subexpressions are #396)

*** report 2 #583 ***

((red (cons 3 b)) :

((((red ((l (with (app_par list @s) nonnull))) out ((r (app_par list @s))))

out

(((r (app_par list integer))))

bindings

((((be s set) integer)

))))))

*** report 2 #584 ***

((cons 3 b) :

((((cons ((f @s) (r (app_par list @s))) out ((c (with (app_par list @s) nonnull

))))

out

(((c (with (app_par list integer) nonnull))))

bindings

((((be s set) integer)

))))))

*** report 2 #585 ***

(3 :

(((((3 integer) () out ())

out

(((3 integer)))

bindings

()))))

*** report 2 #586 ***

(b :

(((((b (with (app_par list integer) nonnull)) () out ())

out

(((b (with (app_par list integer) nonnull))))

bindings

()))))

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

The statement (4) is wrong for the reason that we try to insert a Real into a list of integers:

hexample output 11i �

warning: in algorithm (main)

in expression (cons x b)

in subexpression (cons x b)

(Inconsistent binding occured during merge of

((((be s set) real)

))

11

and

((((be s set) integer)

)))

error: in algorithm (main)

in expression (cons x b)

in subexpression (cons x b)

(No matching prototype found for expression

(cons x b))

error: in algorithm (main)

in expression (cons x b)

(No prototypes with matching input signature)

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

2.3 Interpreting Error Messages

The only two stages of compilation whose error messages are relevant to the user because they emerge from
mistakes in the input, are the parser and the type-checker. The attribute association does not issue any messages
and the back end, logically, gets only error free code.

The parser messages can be handled by scanning the line given with the error for syntactical mistakes. Keep in
mind that sometimes an error emerges because of a forgotten delimiter in the previous declaration or statement.

sttype splits its messages into errors and warnings with the implicit connection that warnings without a following
error can be ignored. Warnings indicate weak points which might lead to errors. In analyzing the source of an
error the user can scan sttype.err backwards from the point of the error.

An explanation of the messages issued and the procedures they emerge from will be given together with a short
description of the instantiation procedure in section 8. You can also �nd an piece of SuchThat code pointing
out subtleties in the use of the language there.

3 Structure of the Module sttype

In the style of literate programming, we weave the source code and its documentation in the remaining sections.
Also we will present the concepts in a top down approach, beginning with the basic input and output strategies
of the whole module and de�ning the procedures used herein later on.

In the following sections we use the term \type" when referring to the general concept known from programming
languages and the term \structure" when talking about the speci�c type system of SuchThat (see section 5.1).

3.1 Running sttype

We will describe the input sttype expects in terms of the high-level pattern language, which implements basically
an LL(1) parser, taking advantage of the pre�x notation of the intermediate language.

The \driver function" for using sttype as a �lter becomes extremely simple: We �rst read the input via the
standard input into a list and then analyze it using interpret-pattern with a description of the expected
structure.

hthe driver function 12i �

(define the-file

(do ((res '() res)

12

(next (read) (read)))

((eof-object? next)

(reverse res))

(set! res (cons next res))))

(define result (interpret-pattern staa-out the-file #t))

(define output-port (open-output-file "sttype.out"))

houtput adjust: write output as sequence 68di
3

Macro never referenced.

3.2 Reports and Errors

The issue of error and warning messages will be addressed by describing the environment in which the error
occurred as precise as possible. Since line numbers etc. are lost in the intermediate representation, this is the
only way to go in the current prototype implementation.

We will write reports and errors to these �les:

herror and report handling 13ai �
(define error-port (open-output-file "sttype.err"))

(define report-port (open-output-file "sttype.log"))

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

These �les will be written to using the functions report,issue-error and issue-warning. In order to allow
the report output to be suppressed in a �ne tuned way, we introduce report levels which generally correspond to
certain functions.

Since the procedures involved into the type checking process are highly recursive, there must be a way to �nd
corresponding procedure calls and coherent pieces of information. We introduce the unique-report-number for
this purpose. It is printed in the form #no into the header of each report. The procedures keep a local copy
of the number that corresponds to their �rst report and repeat it when issuing others. In this way the reports
corresponding to one function call can be traced by using search facilities of a pager for example.

Algorithm: report
Input: level The numerical value describing the report

level. report-level-level has to be defined
globally.

R The report, which may be any Scheme object.
Side e�ects: R together with a report header is writ-

ten to the �le speci�ed by report-port if
report-level-level is #t. The global vari-
able unique-report-nr is incremented.

herror and report handling 13bi �

(define report

(lambda (level . R)

(if (eval (string->symbol

(string-append "report-level-" (number->string level))))

(begin

(display "\n*** report " report-port)

13

(display level report-port)

(display " #" report-port)

(display unique-report-nr report-port)

(display " ***\n" report-port)

(display R report-port)

(display "\n" report-port)

(set! unique-report-nr (+ 1 unique-report-nr))))))

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

Errors and warnings concerning the compilation of the source code itself are written to the error-port using
the following functions. As a general rule, errors show the consequence of previous warning messages. When
receiving an error which is not immediately clear, the user should examine the warnings going backwards from
the point of error.

Algorithm: issue-error
Input: E Any Scheme object.
Side e�ects: E together with an error header is written to

error-port. The counter for errors is incre-
mented.

Algorithm: issue-warning
Input: W Any Scheme object.
Side e�ects: W together with a warning header is written

to the error-port. The counter for errors is
incremented.

herror and report handling 14i �

(define issue-warning

(lambda W

(display "warning: " error-port)

(issue-where error-port)

(display W error-port)

(display "\n" error-port)

(set! warning-count (+ 1 warning-count))))

(define issue-error

(lambda E

(display "error: " error-port)

(issue-where error-port)

(display E error-port)

(display "\n" error-port)

(set! error-count (+ 1 error-count))))

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

Algorithm: issue-where
Side e�ects: Write current location in the source �le as

close as possible as substitute for line num-
bers.

14

herror and report handling 15ai �

(define issue-where

(lambda (port)

(if cur-algorithm

(begin

(display "in algorithm " port)

(display cur-algorithm port)

(display "\n" port)))

(if cur-decl

(begin

(display "in declaration " port)

(display cur-decl port)

(display "\n" port)))

(if cur-expr

(begin

(display "in expression " port)

(display cur-expr port)

(display "\n" port)))

(if cur-subexpr

(begin

(display "in subexpression " port)

(display cur-subexpr port)

(display "\n" port)))))

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

Since line numbers of the original SuchThat program are not copied into the intermediate �les, errors and
warning messages will be described to the user in terms of the environment in the source �le, that they appeared
in. When entering a new declaration, a new algorithm or expression during the traversal of the input, the
following variables will be set correspondingly:

herror and report handling 15bi �

(define cur-decl #f)

(define cur-algorithm #f)

(define cur-expr #f)

(define cur-subexpr #f)

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

As mentioned earlier, we will count errors and warnings and keep track of the current unique report number.

herror and report handling 15ci �
(define warning-count 0)

(define error-count 0)

(define unique-report-nr 1)

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

To suppress parts of the report messages, we de�ne the following ags. A report message for level x will be
issued only if report-level-x is #t.

herror and report handling 15di �

15

(define report-level-0 #t)

(define report-level-1 #t)

(define report-level-2 #f)

(define report-level-3 #t)

(define report-level-4 #f)

(define report-level-5 #f)

(define report-level-6 #t)

(define report-level-7 #f)

(define report-level-8 #f)

(define report-level-9 #f)

(define report-level-10 #f)

(define report-level-11 #t)

(define report-level-12 #f)

(define report-level-13 #f)

(define report-level-21 #f)

3

Macro de�ned by scraps 13ab, 14, 15abcd.
Macro never referenced.

The following table describes the relation between functions and report levels. Note that some of the procedures
are not described in detail in this document. Most important to the user of st2cpp will be levels 0,1,2 and 12
to examine the source of errors more carefully.
If report level 2 is enabled, the produced messages will be copied into the output �le with su�x .imp.

report level output categories

0 debug messages / internal errors
1 found questions to the implication calculus
2 found function calls & matching prototypes
3 the recursive way through the �le
4 processing of structure declarations
5 the lookup-be-decl function
6 the instantiate function
8 apply-bindings-to-output

7 the fully-expand function
9 expansion and lookup of aliases
10 matching a prototype's signature
11 trace of procedure interpret-pattern
12 trace of overload resolution
13 application of bindings
2x examples

3.3 Reading the Input File

As mentioned earlier, the intermediate representation of the SuchThat program will be in a pre�x format. This
means that it can be easily \parsed" using LL(1) parsing techniques. We therefore describe a general and exible
approach to read the input �le, in which the structure of a �le can be directly described by patterns that are
matched. Matching ends at procedures, which the user supplies and which are called with any object which is
found in the position in the input �le corresponding to the position of the procedure.

Since this is a prototype translator the speci�cation of the input is likely to change, we have decided to implement
a high level description of the input and match it against the actual �le rather than provide a hard-coded
procedural hierarchy.

16

3.3.1 The Pattern Language for Specifying the Input File

Since the input �le is given in pre�x notation, we can decide how to interpret it based on the �rst element of
every single substructure. For example in the sequence

hexample for pre�x notation 17i �

(if (< x y) (set! y 0))

(while (i<10) (set! i (+ i 1)))

3

Macro never referenced.

we know that the �rst list is an if statement just by seeing the if and can distinguish its interpretation from
the second one, since here we �nd while as the �rst element of the list.

So we can de�ne the structure of the input �le in the style of an LL-grammar, where every non-terminal (=list)
is recognizable by its �rst element using the following language:4

pattern ! '(' pattern-procedure sub-patterns ')'
sub-patterns ! sub-patterns choice-list

j sub-patterns handle-procedure
j �

choice-list ! '(' times default-proc choices ')'
choices ! choices '(' tag match-procedure sub-patterns ')

j �
times ! 'iterate'

j 'once'
j 'optional'

tag ! SCHEME-STRING
default-proc ! SCHEME-PROCEDURE

j �
pattern-procedure ! SCHEME-PROCEDURE
handle-procedure ! SCHEME-PROCEDURE
match-procedure ! SCHEME-PROCEDURE

3.3.2 Semantics of a Pattern

A pattern (see above) is a grammar describing the expected structure of the input. Interpreting such a pattern
means analyzing a given expression with respect to the productions of that grammar.

A short example for a pattern matching a Scheme expression with \+" and \-" as operators is given below.

The pattern-procedurewill be called whenever the reading of the pattern is completed, i.e. after all sub-patterns
are recognized.

The sub-patterns describe a sequence of structures. Each one of them is either passed to a handle-procedure
in the corresponding place in the pattern or matched with a choice out of a choice list.

Choice-lists correspond to the EBNF notations

{ S1 | S2 | ... }* for 'iterate
[S1 | S2 | ...] for 'optional
{ S1 | S2 | ... } for 'once

where the choice, which of the Si will be used, is taken by the tag, i.e. the �rst element of the list. Given an list
of choices (S1; :::; Sn) with tags (t1; :::; tn) and a expression (t:::) represented as a Scheme list, the choice Si0 is
taken if string! symbol(ti0) = t.

4As usual, upper-case strings denote terminals, lower-case string non-terminals and � is the empty string.

17

If no match is obtained this way, the default-proc is called with the expression. If default-proc is not speci�ed,
an error condition occurs for once patterns.

The matching of sub-structures in the input �le against choices of a list will be interrupted when �nding a
non-list in the input or the input item does not match any of the choices given. In case of once, this is an error
condition, for iterate we may want to achieve this.

An iteration is aborted if a non-list in the input is found as the next item. This is done to allow iterate descriptions
with default-procs that still will terminate.

If there are no sub pattern entries in a choice, this shortcut will lead to calling the match-procedure with the
entire original input. This may be used to simulate the procedure being called before the substructures are
matched (see implementation in of \de�ne" in the input description).

Example for iteration, the short-cut and choice lists:

hexample for choice lists 18ai �

Choice list:

(iterate

("A" proc1)

("B" proc2))

Input:

((A 1)

(B 2)

(A 3)

(C 4))

3

Macro never referenced.

In the given choice list, we do not �nd a default-proc. We �nd however, that one of the choices, "A", matches
the �rst input non-terminal. The procedure proc1 is called with input (A 1) (short-cut, the whole structure is
passed). Since the choices are applied iteratively here, we can also match the second input and call proc2 with
(B 2) and again call proc1 for the third item. However, the last element in the input list does not match any
choices and no default-procedure is given, so the iteration stops, leaving (C 4) to be matched by the subpattern
following our choice list in the pattern.

But how can recursive structures in the input �le be matched ?

So far we are able to describe the �le structure up to a �nite level of depth. Truly recursive lists, i.e. patterns
that are named and used within themselves, would lead to circular structures. The answer to our problem is
lazy evaluation, meaning that references inside of a pattern to the same pattern are expanded only when needed.
The delay and force concept (see [1, Sec.6.9] is not applicable however, since there is no predicate such as
delayed-object? in the Scheme standard.

Another Scheme object, which delays the evaluation, is the lambda object, i.e. a procedure, whose body will not
be evaluated until the function call and it happens to be the case that procedures are used to express recursion.

We therefore introduce a procedure use-pattern to be placed into a pattern as a handle-procedure and demon-
strate its application in the following example, postponing the de�nition to section 4.

hexample 18bi �

(define ex-expression

`(,unchanged ; don't treat the whole expression

(once

,(lambda (x)

(report 21 "Found leaf :" x)

(list x))

18

("+" ,unchanged

,(use-pattern "ex-expression" #t)

,(use-pattern "ex-expression" #t))

("-" ,unchanged

,(use-pattern "ex-expression" #t)

,(use-pattern "ex-expression" #t)))))

(report 21 "example for use-pattern\n"

((use-pattern "ex-expression" #t) '(+ (- a b) c)))

3

Macro never referenced.

This example produces the output:

hexample-output 19ai �

*** report 21 ***

(Found leaf : a)

*** report 21 ***

(Found leaf : b)

*** report 21 ***

(Found leaf : c)

*** report 21 ***

(example for use-pattern

((+ (- a b) c)))3

Macro never referenced.

Any procedure supplied in patterns must conform to this speci�cation:

Algorithm:
Input: x x is the Scheme object found in the input

position corresponding to the position of the
procedure.

Output: y y is a list (list z) where z is the output
the procedure wants to be placed in the spot
where the input x was found. y may be empty
(see cut-out)

Side e�ects: The procedure may update and change any
global variables.

The return values of the procedures called in matching a sequence of sub-structures are appended, which allows
the user to cut out parts of the input that are not used in later stages of compilation.

Examples on how to use this feature are given below:

hprede�ned handler procedures 19bi �

(define unchanged

(lambda (x) (list x)))

(define cut-out

(lambda (x) '()))

(define ignore

(lambda (x) (list x)))

3

Macro de�ned by scraps 19b, 34.
Macro never referenced.

19

3.4 Creating a Pattern Speci�cation

Since it is assumed that modi�cations to the current state of the translator or a reuse of the pattern language
will take place in the future, we include the following paragraphs, which are meant to provide the reader with
hints and instructions on how to use the structure patterns as a useful tool. The reader who only wants to
understand the present state may skip these remarks.

For describing a new input structure or to modify an existing pattern, we propose the following procedure:

1. Write down a LL(1) description in EBNF.
This ensures that the method is appropriate and points out where special cases have to be treated.

Pay attention to that a pattern can get ambiguous in the following case: For a pair of consequent choice
lists which share a tag for some choice, the �rst list does not know about the second one.

2. Express the top-level structure as a pattern, using the short-cut for every sub pattern as unchanged. Also
place unchanged in any spot that you would like to treat by a special procedure later.

Make sure all the mandatory procedures are in place and none of the inserted procedures can be taken as
an optional one. In this case set the optional procedure as unchanged.

3. Design the interface to read the �le, call interpret-pattern and write the output.

4. Turn on report levels 11 and 0 and run the program on some sample input, that is surely correct. Internal
errors that might occur indicate that something is wrong. You can get a hint by looking at the .log

�le: The last message is a report 0. Pay attention to the \(Choice ... returning ...)" messages, since
they state, whether your sub patterns have been found and to the messages issued at the beginning of
interpret-x.

5. Re�ne your description without semantic procedures such that your whole input is matched and returned.
Think particularly about the wrap-feature, since mistakes are likely to happen.

6. Replace the unchanged procedures by the functions implementing the semantic check. Sharing data between
two distinct function calls can be achieved by global variables, which might have to hold stacks, etc.

Pay attention to the fact, that structure procedures (the ones after choices) are executed after parsing
the substructures. For an example how to call a procedure before treating the substructures, look at the
description of \de�ne" which needs to save the header in the prototype table \before" scanning the body
of the function.

7. Design the output as you want it, think especially of wrapping the results of your procedures into lists.

3.5 The Structure of the Input File

We are now going to describe the input to sttype using a pattern as described above. We hope that the
structure of this meta language makes it easy to follow the implementation.

3.5.1 The File Level

On the top level of the input �le we �nd global and algorithm de�nitions, which contain variable, alias,
and type declarations.

We describe these in the following Scheme list.

hde�ne the structure of the input �le 20i �

20

(define stdecl-out

`(,unchanged

,(use-pattern "file-structure" #f)

,unchanged ; global symbol-table)))

(define staa-out

`(,unchanged

,(use-pattern "file-structure" #f)))

(define file-structure

`(,unchanged

(iterate ; choice list on file level: algorithms or global decl's

("global" houtput adjust: rename tag and delete empty "global" 68ai
(iterate

("\\in" ,handle-global-var-decl

,unchanged ; left hand side

,unchanged ; right hand side

)

ha global be declaration 40ai
ha global type declaration 45ai
))

("algorithm" ,handle-algorithm

,(lambda (x) ; read header to obtain algorithm name

(set! cur-algorithm x)

(list x))

(iterate

hread local declarations 22ai
))

("define" ,(lambda (x)

(let ((ret x))

houtput adjust: set signature in ret 68fi
hclear local tables for next algorithm 52ai
(list ret)))

,(lambda (x) ; read header to obtain algorithm name

(set! cur-algorithm x)

(set! define-ilst (cdr x))

(set! define-name (car x))

(list x))

(iterate

hread local declarations 22ai
)

; handle body: different from 'algorithm

,(lambda (x)

; all of the header has been read

; -> put to prototype table for recursive algorithms

(handle-define-body x)

(interpret-pattern

`(,unchanged

(once hstructure of the algorithm body 22bi))
x #t))))))

3

Macro never referenced.

21

Inside the algorithm header, we �nd internal,input, output, and local declarations. A pattern describing
one such section is:

hread local declarations 22ai �

("internal" houtput adjust: throw away internal declarations 65bi
(iterate

,(lambda (x) (error "Not implemented\n" x "\nin internal section"))

ha local be declaration 39ai
ha local type declaration 43bi

))

("local" houtput adjust: rename tag to st-local 65di
(iterate

,unchanged ; default-proc

("\\in" ,(bind2nd handle-local-var-decl 'l)

,unchanged

,unchanged ; right hand side

)))

("input" houtput adjust: rename tag to st-input 65ei
(iterate

,unchanged ; default-proc

("\\in" ,(bind2nd handle-local-var-decl 'i)

,unchanged

,unchanged ; right hand side

)))

("output" houtput adjust: rename tag to st-output 65fi
(iterate

,unchanged ; default-proc

("\\in" ,(bind2nd handle-local-var-decl 'o)

,unchanged

,unchanged ; right hand side

)))3

Macro referenced in scrap 20.

Note that basically, the sections di�er only in the handle procedure to be called.

3.5.2 The Algorithm Body

staa passes the body of an algorithm de�nition unchanged and so the grammar for the input is derived from
the description of the parser in the paper A Translator SuchThat to Scheme (see [9]). All we have to do is
an almost literal translation of the bison++ rules into our pattern language.

Due to a peculiarity in the parser a single return value is entered at the end of the algorithm body rather than
in the output signature itself, which makes the code a legal Scheme function call. We have to retrieve it now.

hstructure of the algorithm body 22bi �

("call-with-current-continuation" ,unchanged

(once

("lambda" ,unchanged

,unchanged ; parameter list

(once

("let" ,unchanged

,unchanged ; initialization of local variables

; Following : Statements of the body. They are all lists

22

hstructure of a statement list 23ai
(optional ; there might be a return value, which is the output-list

,(lambda (x) ; the output list

(report 3 "Output list found:\n" x)

(list x)

houtput adjust: parser generated return value 68ci
)))))))

3

Macro referenced in scrap 20.

As a list of statements, corresponding to a compound statement, is a recursive structure in the way that it may
contain compound statements, we de�ne the following:

hstructure of a statement list 23ai �

(iterate

,(use-pattern "statement-structure" #t))3

Macro referenced in scraps 22b, 23b, 24b.

A compound statement is either a single statement or a list of statements in a (begin ...) block.

hstructure of a compound statement 23bi �
(once

,(use-pattern "statement-structure" #t)

("begin" ,unchanged

hstructure of a statement list 23ai
))3

Macro referenced in scrap 24b.

In certain positions in statements we require return types from expressions, such as in if or while constructs
we need a boolean return type.

hde�ne the structure of a statement 23ci �

(define boolean-expression

(lambda (x)

(next-expression-desired-types! '(bool) type-be-decls-l)

(handle-expression x)))

;(trace boolean-expression)

3

Macro de�ned by scraps 23cde, 24b.
Macro never referenced.

hde�ne the structure of a statement 23di �

(define integer-expression

(lambda (x)

(next-expression-desired-types! '(integer) type-be-decls-l)

(handle-expression x)))

;(trace integer-expression)

3

Macro de�ned by scraps 23cde, 24b.
Macro never referenced.

hde�ne the structure of a statement 23ei �

23

(define check-variable-type

(lambda (v var-env type type-env)

(let ((lu (if (symbol? v) (find-var-lhs v var-env) #f)))

(cond ((not lu)

(issue-error "Declared variable of type "

(nice-type-structure type) " expected\n"

"found was " v))

((not (simplies-explicit? type type-env

(get-var-decl-rhs lu)

(get-var-decl-environment lu)))

(issue-error "Variable " v " of wrong type\nexpected "

(nice-type-structure type)

"\nfound "

(nice-type-structure (get-var-decl-rhs lu))))))

(list v)))

;(trace check-variable-type)

3

Macro de�ned by scraps 23cde, 24b.
Macro never referenced.

Since we have to refer to a type found in one location, e.g. in a case statement, in other sub-structures, we use
the global variables

hglobal variables 24ai �

(define expression-desired-types #f)

(define expression-desired-type-e '())

(define next-expression-desired-types!

(lambda (T env)

(set! expression-desired-types T)

(set! expression-desired-type-e env)))

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

to communicate types and the corresponding environments (see section 8.2) across the borders of recursion.
They are evaluated in the function second-pass.

Now that we have the special expression types de�ned, we may describe the structure of a statement very close
to the input grammar as presented in [9].

hde�ne the structure of a statement 24bi �

(define statement-structure

`(,unchanged

(once

; Anything without a tag is a normal

; Scheme function call

,(lambda (x)

(report 2 "Found statement-level function call " x)

(handle-expression x))

("list"

; the parser generated return value

,(lambda (x)

(let ((ret houtput adjust: parser generated return value 68ci))

24

ret

)))

("if" ,unchanged

,boolean-expression

hstructure of a compound statement 23bi
(optional

,(use-pattern "statement-structure" #t)

("begin" ,unchanged

hstructure of a statement list 23ai
)))

("display" ,unchanged)

("while" ,unchanged

,boolean-expression

hstructure of a compound statement 23bi
)

("for1" ,unchanged

;variable identifier (must be Integer)

,(lambda (x)

(check-variable-type x (append symbol-table-l symbol-table-g)

'Integer type-be-decls-l))

,integer-expression ; first value (must be integer)

,integer-expression ; last value (must be integer)

hstructure of a compound statement 23bi
)

("for" ,unchanged

;variable identifier (must be Integer)

,(lambda (x)

(check-variable-type x (append symbol-table-l symbol-table-g)

'Integer type-be-decls-l))

,integer-expression ; first value (must be integer)

,integer-expression ; next value (must be integer)

,integer-expression ; last value (must be integer)

hstructure of a compound statement 23bi
)

("case" ,unchanged ; check that type of expression matches

,unchanged ; expression must be of type char / integer

(iterate

; case clauses, each one is list of labels followed by (begin ...)

(iterate

,(lambda (x) (report 3 "New case label" x) (list x))

("begin" ,unchanged

hstructure of a statement list 23ai
))))

("set!" ,unchanged

; variable : its type determines the possible

; return types of handle-expression in pass 2

,find-set!-lhs-type

,handle-expression ; the expression

)

("return" ,unchanged

,unchanged ; return parameter == variable. Done be parser, not user.

)

("exit" ,unchanged))))

3

Macro de�ned by scraps 23cde, 24b.

25

Macro never referenced.

3.6 Special Functions for Particular Parts of the File

The structure of the �le has now been described down to the parts that we must actually deal with in a exible
and extensible way, which facilitates future updates and changes.

3.6.1 Global Tables

All type and alias declarations will be held in global tables. Since in a declaration previously de�ned types and
aliases, which are called the environment of the declaration, may be used, we have to extend the tables and still
make visible to each declaration only those types and aliases, which have been de�ned before. In this process of
course copying should be avoided, which leads to the following de�nition:

Algorithm: extend-environment
Input: environment a list of type and alias declarations.

be-structure-decl a single alias or type declaration con-
structed by the functions make-be-decl or
make-type-decl.

Output: extended the environment environment augmented by
the given declaration with

� No copying has been done.

� No existing references into environment

can be used to access the new entry.

� When searching through the whole out-
put, the new entry will be found before
any entry present in environment.

hthe structure be-decl 26ai �

(define extend-environment

(lambda (environment be-structure-decl)

(cons be-structure-decl environment)))

3

Macro de�ned by scraps 26ab, 27c, 38.
Macro never referenced.

All alias and type declarations will be held in a common environment, which forces us to append a tag to each
declaration stating its type. This tag may be retrieved using the following function:

Algorithm: get-decl-tag
Input: be-structure-decl An alias or type declaration constructed by

the corresponding make functions.
Output: tag the tag of the declaration specifying its type,

i.e. either 'be or 'type

hthe structure be-decl 26bi �

(define get-decl-tag

(lambda (be-structure-decl)

(car be-structure-decl)))

3

26

Macro de�ned by scraps 26ab, 27c, 38.
Macro never referenced.

We also provide the following useful functions:

hthe structure type-decl 27ai �

(define type-be-decl?

(lambda (x)

(and (pair? x) (or (eq? (car x) 'be)

(eq? (car x) 'type)))))

(define type-decl?

(lambda (x)

(and (pair? x) (or (eq? (car x) 'type)))))

(define be-decl?

(lambda (x)

(and (pair? x) (or (eq? (car x) 'be)))))

3

Macro de�ned by scraps 27ab, 42ab.
Macro never referenced.

Due to shadowing, the same list structure might still refer to di�erent types or aliases. Therefore these are
compared for equality using the functions:

Algorithm: equal-structure-decls?
Input: A, B are declarations with type-decl? == #t

Output: bool #t if A and B refer to the same declaration,
#f otherwise.

hthe structure type-decl 27bi �

(define equal-structure-decls?

(lambda (A B)

(eqv? A B)))

3

Macro de�ned by scraps 27ab, 42ab.
Macro never referenced.

Algorithm: equal-be-decls?
Input: A, B are declarations with be-decl? == #t

Output: bool #t if A and B refer to the same declaration,
#f otherwise.

hthe structure be-decl 27ci �

(define equal-be-decls?

(lambda (A B)

(eqv? A B)))

3

Macro de�ned by scraps 26ab, 27c, 38.
Macro never referenced.

Before actually reading in the declarations from the input, we need to create the global tables to hold the
declarations:

hglobal variables 27di �

27

(define type-be-decls-g '())

(define type-be-decls-l '())

(define type-be-decls-d '())

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

where the �l environment is always an extension in the above sense of the �g environment to handle shadowing
in a convenient way and �d is the set di�erence of �l n �g.

4 Interpreting Structure Patterns

In section 3.3.2 we have described the semantics of a structured language to specify the input grammar in a very
natural and easy-to-modify form. Now we are concerned with implementing an interpreter for this language.

4.1 The Top-level Procedure { interpret-pattern

The following procedure corresponds to the production

pattern ! '(' pattern-procedure sub-patterns ')'

It handles in particular the pattern-procedure and calls interpret-spatterns.

Algorithm: interpret-pattern
Input: p A pattern as described in the grammar for pat-

terns.
x The input to be parsed using the p.
wrap? If x is a single item, not a list of items to be

matched against p, then it need to be wrapped
in a list before matching to meet the speci�-
cation of interpret-spatterns. This will be
done if wrap=#t.

Output: out Depending on the user-supplied procedures as
described in section 3.3.2. In general it is a
concatenation of the returned values, which
are inserted in the place corresponding to ob-
ject, with which the user procedure had been
called.

Side e�ects: The pattern procedure gets called with
the entire return value of the call to
interpret-spatterns

hinterpreter for the structure list 28i �

(define ip-enter "interpret-pattern begin")

(define ip-leave "interpret-pattern end")

(define interpret-pattern

(lambda (p x wrap?)

(report 11 ip-enter "\nuse\n" (nice-pattern p) "\nfor\n" x)

; check for valid syntax in pattern

(if (and (pair? p)

(procedure? (car p)))

28

(let ((ret (interpret-spatterns (if wrap? (list x) x) (cdr p))))

((car p) ret)

(report 11 ip-leave x "\n->\n" ret)

ret

)

(begin

(report 0 "Ill formed pattern, expected "

"(procedure ...)\nfound\n"

p

)

(error "Internal error")))))

3

Macro de�ned by scraps 28, 29.
Macro never referenced.

4.2 The Procedure interpret-spatterns

interpret-spatterns handles the productions

sub-patterns ! sub-patterns choice-list
j sub-patterns handle-procedure
j �

choice-list ! '(' times default-proc choices ')'
choices ! choices '(' tag match-procedure sub-patterns ')

j �

The last one however is simply dispatched to the procedure
interpret-once-optional-iterate and the second production is contained in the stweb macro
interpret first subpattern.

The description of the algorithm is contained in the semantics assigned to the productions: Items in the input
are matched up against the grammar according to the de�nition of sub patterns.

Algorithm: interpret-spatterns
Input: expr The input to be matched by the sub patterns.

It is a list of Scheme symbols.
spatterns sub patterns as described in the grammar for

patterns
Output: out concatenated return values of the user-

speci�ed functions or recursive calls to the in-
terpreter procedures.

hinterpreter for the structure list 29i �

(define interpret-spatterns

(lambda (expr spatterns)

(report 11 "Interpret-spatterns\nexpr=\n"

(if (null? expr)

expr

`(,(car expr) ...))

"\nsubpatterns=\n"

(nice-pattern

(if (null? spatterns)

spatterns

`(,(car spatterns) ...))))

(cond ((and (null? expr) (null? spatterns)) ; we're done

29

'())

((and (null? spatterns)

(not (null? expr))) ; spatterns is to short

(begin

(report 0 "Syntax: spatterns too short\n"

spatterns

"\nExpression was left:\n"

expr

)

(error "Internal error")))

(; if expr null, check if no more procedure / once

; block occurs in spatterns which would be an error

(and (null? expr)

(not (null? spatterns))

(do ((p spatterns (cdr p)))

((or (null? p)

(procedure? (car p))

(and (pair? (car p))

(eq? (caar p) 'once)))

(not (null? p)))

; empty body

))

(begin

(report 0 "Syntax: too short expression\n" expr)

(error "Internal error")))

(#t ; match first sub-pattern and recurse

hinterpret �rst subpattern 30i))))
3

Macro de�ned by scraps 28, 29.
Macro never referenced.

The following macro decides, which production for subpattern to apply based on the �rst subpattern found. Its
de�nition again is obvious from the description of the productions: We just have to distinguish the cases:

� procedure

� optional element

� match a single element

� iteratively match elements

hinterpret �rst subpattern 30i �

(cond

; call to user-provided procedure

; call procedure with first item in expr and

; delete procedure & item in recursion

((procedure? (car spatterns))

(report 11 "interpret-spatterns: calling procedure" (car spatterns)

"\nfor expression\n" (car expr))

; append used to allow cutting out

(append ((car spatterns) (car expr))

(interpret-spatterns (cdr expr) (cdr spatterns))))

; (optional ...) sub structure : choose once if possible

30

; no break on (car e) not list

((and (pair? (car spatterns))

(eq? (caar spatterns) 'optional))

(interpret-once-optional-iterate

'optional

(get-default-proc-from-subpattern (car spatterns))

(get-choices-from-subpattern (car spatterns))

expr

(cdr spatterns)))

; (once ...) same as (optional ...), match must be found though

((and (pair? (car spatterns))

(eq? (caar spatterns) 'once))

(interpret-once-optional-iterate

'once

(get-default-proc-from-subpattern (car spatterns))

(get-choices-from-subpattern (car spatterns))

expr

(cdr spatterns)))

; iterate: recurse as long as possible over expr

; break on non-list as subpattern & non-match

((and (pair? (car spatterns))

(eq? (caar spatterns) 'iterate))

(interpret-once-optional-iterate 'iterate

(get-default-proc-from-subpattern (car spatterns))

(get-choices-from-subpattern (car spatterns))

expr

(cdr spatterns)))

(#t (report 0 "Found unexpected element in spatterns\n"

(car spatterns))

(error "Internal error")))

3

Macro referenced in scrap 29.

4.3 The EBNF-like Productions

It seems obvious to handle all choice productions similarly, since they basically di�er in the breaking and error
conditions. So now we deal with the productions:

choices ! choices '(' tag match-procedure sub-patterns ')
j �

times ! 'iterate'
j 'once'
j 'optional'

tag ! SCHEME-STRING
default-proc ! SCHEME-PROCEDURE

j �

The shortcut referred to later is the production where sub-patterns from the grammar above is empty, i.e. the
entire substructure of the input is matched by calling the match-procedure which would normally be invoked
with the return value of recursive matching.

which 2 fiterate,once,optionalg, default-proc and choices as described earlier, expr the expression to be matched
and rest-pattern the pattern which follows the choice and is to be used for later items in expr which are not

31

contained in choices.

hinterpret (car expr) which is optional / once / iterate block 32i �

(define interpret-once-optional-iterate

(lambda (which default-proc choices expr rest-pattern)

(report 11 "interpret-once-optional-iterate"

"\n\nwhich = " which

"\n\ndefault-proc = " default-proc

"\n\nchoices = " (let ((res '()))

(do ((c choices (cdr c)))

((null? c) res)

(set! res (cons (caar c) res))))

"\n\nexpr = " (if (null? expr)

expr

`(,(car expr) ...))

"\n\nrest-pattern = " (nice-pattern rest-pattern))

(cond ((and (null? expr)

(or (eq? which 'iterate)

(eq? which 'optional)))

'() ; we're done

)

((null? expr) ; an error case, since 'once in subpattern

(report 0 "Syntax of input: Expected\n" choices

"\nor call default procedure\n" default-proc)

(error "Internal error"))

(#t ; expr is not empty

; find the choice to be used

(let* ((choice (if (and (pair? (car expr))

(symbol? (caar expr)))

(assoc (symbol->string (caar expr)) choices)

#f))

(short-cut-used #f))

(cond ; "break" iterate on finding a non-list

((and (eq? which 'iterate)

(not (pair? (car expr))))

(interpret-spatterns expr rest-pattern))

; interpret choice & default-proc

(choice

(report 11 "Made choice:\n" (nice-pattern (car choice))

"\nfor\n" (car expr))

; found entry => match sub-pattern

; and apply user-defined handler for pattern

(if (not (and (pair? (cdr choice))

(procedure? (cadr choice))))

(begin

(report 0 "Ill-formed subpattern\n" choice)

(error "Internal error")))

(set! short-cut-used (null? (cddr choice)))

(report 11 "Calling structure procedure " (cadr choice)

32

"\nwith\n" (car expr))

(let ((r (append

((cadr choice) ; handler for structure

(cons (caar expr)

(if short-cut-used

(cdar expr)

(interpret-spatterns (cdar expr)

(cddr choice)))))

; match next element in expression

; use same default-proc & choices if iterate

(if (eq? which 'iterate)

(interpret-once-optional-iterate

which default-proc choices (cdr expr) rest-pattern)

(interpret-spatterns (cdr expr)

rest-pattern)))))

(report 11 "Choice " (nice-pattern (car choice))

"\nreturning\n" r)

r

))

(default-proc ; default-proc if present

(report 11 "Using default proc " default-proc

"\nfor\n" (car expr)

"\nchoices were\n" (nice-pattern choices))

(append

(default-proc (car expr))

; match next element in expression

; use same default-proc & choices if iterate

(if (eq? which 'iterate)

(interpret-once-optional-iterate

which default-proc choices (cdr expr) rest-pattern)

(interpret-spatterns (cdr expr)

rest-pattern))))

(#t ; couldn't match, ok if optional / iterate

(if (or (eq? which 'optional)

(eq? which 'iterate))

(interpret-spatterns expr

rest-pattern)

(begin

(report 0 "Syntax error in input:"

"Couldn't find match in\n"

choices

"\nfor\n"

(car expr))

(error "Internal error"))))))))))

3

Macro never referenced.

The following procedures are used just to clarify the access to the used parts of the pattern language here,
because the access depends on the optional default procedure, which will be called whenever none of the choices
match (default-proc ! �).

hchoice list and default proc from subpattern 33i �

(define get-choices-from-subpattern

(lambda (spattern)

33

(if (and (pair? (cdr spattern))

(procedure? (cadr spattern)))

(cddr spattern)

(cdr spattern))))

(define get-default-proc-from-subpattern

(lambda (spattern)

(if (and (pair? (cdr spattern))

(procedure? (cadr spattern)))

(cadr spattern)

#f)))

3

Macro never referenced.

4.4 The Procedure use-pattern

To introduce recursive structures into our input, we may simply add a \virtual" non-terminal procedure that
switches to another pattern. It may be used in place of a user-de�ned handler, since it returns a procedure with
one argument, which takes the expression to be read. If wrap? is #t x will be put into a list, which allows
processing of single structures with a choice-list.5

hprede�ned handler procedures 34i �

(define up-begin "use-pattern: matching\n")

(define up-end "use-pattern return:\n")

(define use-pattern

(lambda (p1 wrap?)

(if (not (string? p1))

(begin

(report 0 "use-pattern expected string")

(error "Internal error")))

(lambda (x)

(report 11 up-begin p1)

(let ((p ; and here's the delayed evaluation

(eval (string->symbol p1))))

(report 11 up-begin x "\nwith\n" (nice-pattern (cdr p)))

(let ((ret (interpret-pattern p x wrap?)))

(report 11 up-end ret)

ret

)))))

3

Macro de�ned by scraps 19b, 34.
Macro never referenced.

5 Handling Declarations in the Input

In this part, we have to implement part of the functionality of stdecl. Declaration processing for a language
as SuchThat involves more decisions than are obvious for most programming languages.

We introduce the technical side primarily in this section, i.e. questions about which parts to expand when, and
leave semantic de�nitions for the later sections.

5This is necessary whenever a single item of the input is to be matched to any item out of a choice list due to the speci�cation

of interpret-spatterns which requires its �rst argument to be a list of input items.

34

5.1 Allowed Input Structures for Types and Aliases

We give a description of the allowed input structures �rst to enable the reader to estimate the expressiveness
of SuchThat. The structures recognized here are a subset of those accepted by the parser. However we have
tried to pick an ample set of those and are con�dent, that other structures may be easily added.

structure ! IDENTIFIER
j (with structure IDENTIFIER-LIST)
j (of �rst-structure structure)
j (over �rst-structure structure)
j (app square �rst-structure structure-list)
j (�rst-structure structure-list)
j (^ �rst-structure structure)
j (_ �rst-structure structure)

structure-list ! structure-list structure
j structure

�rst-structure ! IDENTIFIER
j structure

If
�rst-structure! IDENTIFIER

then in the instantiate and lookup-xxx functions these identi�ers of two structures being matched have to
be eq? and will not be looked up in the environment.

This prevents the user from \renaming" built-in data types without referring to their entire de�nition in a proper
alias-declaration.

Examples for structures could be

(with ring commutative zero_divisor_free)

(over array (with set ordered))

(app_square map (with S ordered) T)

The last one is the translation of
Map[S,T] with S is ordered

where S and T are declared earlier to be e.g. sets.

De�nition 1 For the left hand side of a be declaration we impose the following constraints:

� Parameters of structures may not be parameterized structures.

� No abstract types6 may be used in parameters.

� Any bindable identi�er7 may be only used once.

Obviously the �rst two conditions are equivalent as to say:

The production �rst-structure! IDENTIFIER may be applied only once in a left hand side of a be declaration

and

every identi�er that is not a �rst-structure, must be a bindable identi�er.

Intuitively, this gives us all linear, i.e. non-nested structures on the SuchThat level, which seems appropriate
to enforce the use the be declaration for aliases and macros. We incorporate this into the following predicate,
simple top level identi�ers being bindable identi�ers which have to be accepted.

6Identi�ers which have not been introduced by a declaration.
7An identi�er introduced in a Let declaration

35

hcheck constraint upon left hand side of a be declaration 36i �

(define check-be-lhs

(lambda (lhs env)

(cond ((symbol? lhs) #t)

(#t ; a structure, def. applies.

(and (check-be-lhs1 lhs env)

(check-be-lhs2 lhs))))))

; return symbol if first structure is found,

; #t if ok structure, #f if constraint violated

(define check-be-lhs1

(lambda (s env)

(cond ((symbol? s) ; must be bindable

(not (not (lookup-alias s env))))

((pair? s)

(let ((first-structure (if (symbol? (cadr s)) (cadr s) #f))

(res #t))

(for-each

(lambda (sub)

(let ((r (check-be-lhs1 sub env)))

(if (symbol? r)

(if first-structure

(set! res #f)

(set! first-structure r))

(set! res (and res r)))))

(if (symbol? (cadr s)) (cddr s) (cdr s)))

(if (and res first-structure)

first-structure

res)))

(#t #f))))

; check if identifiers are not used twice

; pre: all non-first-structure identifiers are bindable

; ret: list of ids or #f

(define check-be-lhs2

(lambda (lhs)

(cond ((symbol? lhs) (list lhs))

(#t (let ((res '()))

(for-each

(lambda (sub)

(set! res

(union-of-disjunctive-id-sets

res

(check-be-lhs2 sub))))

(if (symbol? (cadr lhs))

(cddr lhs)

(cdr lhs))))))))

(define union-of-disjunctive-id-sets

(lambda (A B)

(cond ((or (not A) (not B)) #f)

((null? A) B)

((memq (car A) B) #f)

(#t (let ((rec (union-of-disjunctive-id-sets (cdr A) B)))

(if rec

36

(cons (car A) rec)

#f))))))

3

Macro never referenced.

In several places, we will have to separate attributes introduced by the with tag and deal with them separately.
The following procedures generalize the approach:

hstrip o� the with tags from structures 37ai �

(define attributed?

(lambda (s)

(and (pair? s) (eq? (car s) 'with))))

(define strip-with

(lambda (s)

(if (attributed? s)

(cadr s)

s

)))

(define get-with-attributes

(lambda (s)

(if (attributed? s)

(cddr s)

'())))

3

Macro never referenced.

De�nition 2 In declarations introducing variables, bindable identi�ers and structures without parameters pos-

sible attributes are transferred from the left hand side to the right hand side.

This enables us to attach attributes to the whole structure on the right hand side of a be declaration, which
would otherwise be syntactically impossible on the SuchThat level.

5.1.1 Preprocessing the Structures

Note that all of the allowed structures carry a unique (car) �eld if they are not identi�ers, except for

(�rst-structure structure-list)

which is the translation for

�rst-structure (structure-list)

Thus we translate an input expression with the following function, which analogously to the tag app_square

appends the tag app_par(entheses) to these structures.

hpreprocessor for structures to force unique tags 37bi �

(define known-structure-tags '(with of over app_square app_par ^ _))

(define preprocess-structure

(lambda (e)

37

(cond ((not (pair? e)) e)

((member (car e) known-structure-tags)

(do ((res (list (car e)) res)

(l (cdr e) (cdr l)))

((null? l) (reverse res))

(set! res (cons (preprocess-structure (car l))

res))))

(#t (do ((res (list 'app_par) res)

(l e (cdr l)))

((null? l) (reverse res))

(set! res (cons (preprocess-structure (car l))

res)))))))

3

Macro never referenced.

5.2 Alias Declarations

Although the exact semantics of an alias in SuchThat will be discussed later in section 6 we can already read
in declarations at this point assuming an intuitive idea about the meaning of expand-aliases

Aliases are short-cuts for longer structure declarations. In this way they are also appropriate to deal with partial

instantiation .

In expanding all aliases we obtain a structure.

We decide to rather group together all procedures for reading in the �le than to scatter them about the whole
of the text. However, the reader is encouraged to read about the semantics of aliases before continuing in this
section.

We de�ne the syntactic structure of a be-declaration:

1. the left hand side, which is a structured type.

2. the right hand side, which is a structured type and has been expanded using earlier be-declarations.

3. the types and be declarations de�ned earlier in the �le, as they provide the basis for expanding aliases and
the constraints upon binding. These are also called the environment.

We abbreviate a declaration

Let A be B.

by
A$ B

Be-declarations can be used transitively as the right hand side will be expanded on reading.

As we will hold types and be-declarations in one list, the current environment, we have to attach a tag to
distinguish them.

We require, that both the left and right hand side of a be declaration be expanded. This way aliases are applied
transitively.

hthe structure be-decl 38i �

(define make-be-decl

(lambda (lhs rhs environment)

(list 'be lhs rhs environment)))

38

(define get-be-decl-lhs

(lambda (be-decl)

(cadr be-decl)))

(define get-be-decl-rhs

(lambda (be-decl)

(caddr be-decl)))

(define get-be-decl-environment

(lambda (be-decl)

(cadddr be-decl)))

3

Macro de�ned by scraps 26ab, 27c, 38.
Macro never referenced.

We read in the actual declaration from the input with the following part of a pattern:

ha local be declaration 39ai �

("be" ,handle-local-be-decl)3

Macro referenced in scrap 22a.

hreading a local be-declaration 39bi �

(define handle-local-be-decl

(lambda (x)

(let ((urn (string-append "#" (number->string unique-report-nr))))

(report 4 "reading local be declaration " urn "\n" x)

(set! cur-decl x)

(let ((lhs (preprocess-structure (cadr x)))

(rhs (expand-aliases (preprocess-structure (caddr x))

type-be-decls-l))

(rhs-known? #f))

htransfer 'with from lhs to rhs 44ai
hlookup rhs for be declaration 41ai
(cond hcheck legal be declaration 41bi

(#t

(if (not (symbol? lhs))

(set! lhs (expand-bindable-ids lhs type-be-decls-l)))

(if (bindable-identifier? lhs) ; return to old state

(set! lhs (get-be-decl-lhs lhs)))

(report 4 urn " expanded to\n"

(nice-type-structure lhs) " BE "

(nice-type-structure rhs))

(set! type-be-decls-l

(extend-environment type-be-decls-l

(make-be-decl lhs rhs

type-be-decls-l)))

(set! type-be-decls-d

(extend-environment type-be-decls-d

(make-be-decl lhs rhs

type-be-decls-l)))

39

(set! cur-decl #f)

; (list x) commented because of output adjust

)))) ; let ((urn))

houtput adjust: throw away "be" declarations 67ci
))

3

Macro never referenced.

ha global be declaration 40ai �

("be" ,handle-global-be-decl)

3

Macro referenced in scrap 20.

hreading a global be-declaration 40bi �

(define handle-global-be-decl

(lambda (x)

(set! cur-decl x)

(let ((urn (string-append "#" (number->string unique-report-nr))))

(report 4 "reading global be declaration " urn "\n" x)

(let ((lhs (preprocess-structure (cadr x)))

(rhs (expand-aliases (preprocess-structure (caddr x))

type-be-decls-g))

(rhs-known? #f))

htransfer 'with from lhs to rhs 44ai
hlookup rhs for be declaration 41ai
(cond hcheck legal be declaration 41bi

(#t

(if (not (symbol? lhs))

(set! lhs (expand-bindable-ids lhs type-be-decls-l)))

(report 4 urn " expanded to\n"

(nice-type-structure lhs) " BE "

(nice-type-structure rhs))

(set! type-be-decls-g

(extend-environment type-be-decls-g

(make-be-decl lhs rhs type-be-decls-g)))

(set! type-be-decls-l type-be-decls-g)

(set! type-be-decls-d '())

(set! cur-decl #f)

;(list x))))) ; (let ((urn)))

houtput adjust: throw away "be" declarations 67ci
))

3

Macro never referenced.

The expanding of bindable identi�ers is indeed a special case of the regular expand procedure and we could intro-
duce a parameter to expand-aliases restricting its work to identi�ers. However, for a prototype implementation
it seems more appropriate to keep procedures separate.

hexpanding bindable identi�ers 40ci �

40

(define expand-bindable-ids

(lambda (s env)

(cond ((symbol? s)

(let ((lu (lookup-alias s env)))

(if lu

(car lu)

s)))

(#t (if (symbol? (cadr s))

(append (list (car s) (cadr s))

(map (bind2nd expand-bindable-ids env)

(cddr s)))

(cons (car s)

(map (bind2nd expand-bindable-ids env)

(cdr s))))))))

3

Macro never referenced.

hlookup rhs for be declaration 41ai �

(set! substructure-undefined-user-error #t)

(set! rhs-known? (not (not (lookup-type rhs type-be-decls-l))))

(set! substructure-undefined-user-error #f)

3

Macro referenced in scraps 39b, 40b.

hcheck legal be declaration 41bi �

((and (not rhs-known?) (not (abstract-type? rhs)))

(issue-error "type of right hand side unknown")

'())

((not (check-be-lhs lhs type-be-decls-l))

(issue-error "Constraints upon alias lhs violated")

(set! cur-decl #f)

'())

3

Macro referenced in scraps 39b, 40b.

5.3 Structure Declarations

Again we have to postpone the exact meaning of a structure in SuchThat to be able to present the procedures
in a compact way. The reader is referred to section 8.2 for a discussion of the concepts.

The lookup-type function, which is used to determine the meaning of the right hand side of declarations roughly
speaking tries to �nd a type declaration in an environment such that the given structure is a particular instance
of the left hand side of that declaration.

Again we �rst describe the syntactical structure of a type declaration. A type declaration consists of the following
parts:

� The left hand side, i.e. the structure to be declared.

� The right hand side, i.e. a already known structure used to de�ne the left hand side.

� The declaration, that the right hand side refers to (its lookup) or #f if the right hand side is an abstract
type, i.e. an identi�er not previously declared.

41

� The environment in which the declaration takes place. This is simply a list of other structure declarations
which determine the set of known structures.

For a structure declaration

Structure A is B.

we write

A! B

We describe the syntactical structure by introducing make-structure-decl:

hthe structure type-decl 42ai �

(define make-structure-decl

(lambda (lhs rhs lookup environment)

(list 'type lhs rhs environment lookup)))

3

Macro de�ned by scraps 27ab, 42ab.
Macro never referenced.

Note that lhs and rhs have a yet unde�ned structure. They are supposed to be user structures. In case of the
right hand side this also includes built-in types of course.

hthe structure type-decl 42bi �

(define get-structure-decl-lhs

(lambda (type-decl)

(cadr type-decl)))

(define get-structure-decl-rhs

(lambda (type-decl)

(caddr type-decl)))

(define get-structure-decl-environment

(lambda (type-decl)

(car (cdddr type-decl))))

(define get-structure-decl-lookup

(lambda (type-decl)

(car (cddddr type-decl))))

3

Macro de�ned by scraps 27ab, 42ab.
Macro never referenced.

Reading a type declaration coarsely consists of the following steps:

1. Expand the left and right hand side using aliases.

2. Check for re-declaration.

3. Check that the right hand side is known or an abstract type.

4. Enter the declaration in the corresponding table(s).

42

The following variable is necessary, since we normally consider it an invariant that all substructures of a type
are known and it is thus an internal error due to the violation of this invariant if they are not. When reading
declarations however, the user is responsible for referring to de�ned types only.

hglobal variables 43ai �

(define substructure-undefined-user-error #f)

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

The overall structure looks as follows:

ha local type declaration 43bi �

("type" ,(lambda (x)

(let ((env type-be-decls-l)

(lhs (cadr x))

(rhs (caddr x))

(urn (string-append "#" (number->string unique-report-nr))))

(report 4 "reading local type-decl\n" x)

hpreprocess and expand declaration 43ci
(set! substructure-undefined-user-error #t)

(let* (

hlookup type declarations of left and right hand side 44bi
)

(set! substructure-undefined-user-error #f)

(cond hcheck type redeclaration 44ci
henter local type declaration to environment 44ei
herror : right hand side unknown 44di

)))

houtput adjust: throw away "type" declarations 68bi
))3

Macro referenced in scrap 22a.

The steps laid out above are implemented in the following macros. Aliases are expanded when �nding them, so
before entering the declaration into our table we modify it this way:

hpreprocess and expand declaration 43ci �

(set! cur-decl x)

; preprocess structures to a uniform tagging

(set! lhs (expand-aliases (preprocess-structure lhs)

type-be-decls-l))

(set! rhs (expand-aliases (preprocess-structure rhs)

type-be-decls-l))

; any with attributes of the left hand side go to the right hand side

; type declarations are NOT structure implications

htransfer 'with from lhs to rhs 44ai
(report 4 urn "after expanding " (list (nice-type-structure lhs)

(nice-type-structure rhs)))

3

43

Macro referenced in scraps 43b, 45a.

Due the de�nition of attributes on page 35 we de�ne the following:

htransfer 'with from lhs to rhs 44ai �

(if (and (attributed? lhs)

(symbol? (strip-with lhs)))

(let ((attr (filter-list symbol?

(append (get-with-attributes lhs)

(get-with-attributes rhs)))))

(set! lhs (strip-with lhs))

(if (not (null? attr))

(set! rhs (append (list 'with (strip-with rhs)) attr)))))

3

Macro referenced in scraps 39b, 40b, 43c, 48.

hlookup type declarations of left and right hand side 44bi �

(lu1 (lookup-type rhs env))

(decl (if lu1 (car lu1) #f))

(lu2 (lookup-type lhs env))

(redecl? (if lu2 (car lu2) #f))

3

Macro referenced in scraps 43b, 45a.

hcheck type redeclaration 44ci �

(redecl? (issue-error "Redeclaration in\n" x)

(set! cur-decl #f)

'())

3

Macro referenced in scraps 43b, 45a.

herror : right hand side unknown 44di �

(#t (issue-error "Unknown type used in declaration\n"

(list (nice-type-structure lhs)

(nice-type-structure rhs)))

(report 4 "Unknown type used in declaration\n"

(list (nice-type-structure lhs)

(nice-type-structure rhs)))

(set! cur-decl #f)

'()) ; cut it out => lhs is undeclared

3

Macro referenced in scraps 43b, 45a.

henter local type declaration to environment 44ei �

; strip with before comparing:

; attributes are always allowed.

((or (abstract-type? (strip-with rhs)) decl)

; enter the decl into the local environment

(report 4 urn "entering to local environment")

(set! type-be-decls-l

(extend-environment type-be-decls-l

44

(make-structure-decl lhs

rhs

decl

type-be-decls-l)))

(set! type-be-decls-d

(extend-environment type-be-decls-d

(make-structure-decl lhs

rhs

decl

type-be-decls-l)))

(report 4 urn "environment is now "

(nice-environment type-be-decls-l))

(set! cur-decl #f)

(list x))

3

Macro referenced in scrap 43b.

In the global case we almost do the same, except that entering the new declaration into the tables is di�erent.
We therefore may reuse the macros de�ned earlier.

ha global type declaration 45ai �

("type" ,(lambda (x)

(let ((env type-be-decls-g)

(lhs (cadr x))

(rhs (caddr x))

(urn (string-append "#" (number->string unique-report-nr))))

(report 4 "reading global type-decl\n" x)

hpreprocess and expand declaration 43ci
(set! substructure-undefined-user-error #t)

(let* (

hlookup type declarations of left and right hand side 44bi
)

(set! substructure-undefined-user-error #f)

(cond hcheck type redeclaration 44ci
henter global type declaration to environment 45bi
herror : right hand side unknown 44di
)))

houtput adjust: throw away "type" declarations 68bi
))3

Macro referenced in scrap 20.

Extending the global environment and making the local an extension of the global environment are carried out
in the next piece of code:

henter global type declaration to environment 45bi �

((or (abstract-type? (strip-with rhs)) decl)

; enter the decl into the global environment

(report 4 urn "entering to global environment")

(set! type-be-decls-g

(extend-environment type-be-decls-g

(make-structure-decl lhs

45

rhs

decl

type-be-decls-g)))

(report 4 urn "environment is now \n"

(nice-environment type-be-decls-g))

; make local environment extension

(set! type-be-decls-l type-be-decls-g)

(set! type-be-decls-d '())

(set! cur-decl #f)

(list x))

3

Macro referenced in scrap 45a.

5.4 Variable and Constant Declarations

Variables are represented by identi�ers and do have a type, that describes the value they may hold more precisely
than in conventional programming languages.

In SuchThat numbers can be constants and have to be declared for a precise de�nition of the semantics of
expressions.8 We de�ne therefore:

hde�nition of a SuchThat constant 46ai �

(define is-st-constant? number?)

3

Macro never referenced.

We use global tables to hold global and local declarations since SuchThat has got only 2 scopes. We need
to partition the local declarations in a way that we may distinguish input and output parameters. The -i and
-o lists will contains the input and output parameters. They are subsets of the -l table which will be used
whenever the section, in which a variable is declared, does not matter.

hglobal variables 46bi �
(define symbol-table-g '())

(define symbol-table-l '())

(define symbol-table-i '()) ; for input

(define symbol-table-o '()) ; for output

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

The right hand sides of variable declarations will be expanded using aliases as any declaration is expanded upon
reading.

As an invariant, the lists whose names end with -i and -o are subsets of -l. The -l list contains local declarations
together with links to the input and output parameters.

They hold lists of the structure var-decl which is de�ned by the following functions:

hthe structure of a variable declaration 46ci �

(define make-var-decl

(lambda (lhs rhs type-environment)

8Integer constants can be used without declaration, since they are common as indexes for loops, etc.

46

(list lhs rhs type-environment)))

(define get-var-decl-lhs

(lambda (vd)

(car vd)))

(define get-var-decl-rhs

(lambda (vd)

(cadr vd)))

(define get-var-decl-environment

(lambda (vd)

(caddr vd)))

3

Macro de�ned by scraps 46c, 47.
Macro never referenced.

The following access functions will be used when searching a table for a variable / constant declaration.

hthe structure of a variable declaration 47i �

(define find-var-lhs

(lambda (lhs decls)

(cond ((null? decls) #f)

((eq? lhs (get-var-decl-lhs (car decls)))

(car decls))

(#t (find-var-lhs lhs (cdr decls))))))

(define find-var-rhs

(lambda (rhs decls)

(cond ((null? decls) #f)

((eq? rhs (get-var-decl-rhs (car decls)))

(car decls))

(#t (find-var-rhs rhs (cdr decls))))))

; find all definitions

; return #f if none is found, else the list

(define find-var-lhs-all

(lambda (lhs decls)

(cond ((null? decls) #f)

((eq? lhs (get-var-decl-lhs (car decls)))

(let ((r (find-var-lhs-all lhs (cdr decls))))

(if r

(cons (car decls) r)

(list (car decls)))))

(#t (find-var-lhs-all lhs (cdr decls))))))

3

Macro de�ned by scraps 46c, 47.
Macro never referenced.

In reading a variable or constant de�nition we perform the four steps:

1. If we deal with a variable, we check for redeclaration.9

9Constants can be overloaded, so they might be declared more than once.

47

2. We expand the aliases on the right hand side to obtain the type.

3. If the right hand side is a parameterized structure, it must have been declared previously.

4. We enter the declaration into either the local or global environment.

hfunctions for special �le parts 48i �

(define handle-global-var-decl

(lambda (x)

(set! cur-decl x)

(let ((urn (string-append "#" (number->string unique-report-nr)))

(res '()))

(report 3 "reading global variable decl: " urn "\n" x)

; (1)

(if (and (find-var-lhs (cadr x) symbol-table-g)

(not (is-st-constant? (cadr x))))

(issue-error "Redeclaration of variable " (cadr x))

; (2)

(let ((lhs (cadr x))

(rhs (expand-aliases (preprocess-structure (caddr x))

type-be-decls-g))

(env type-be-decls-g))

htransfer 'with from lhs to rhs 44ai
(report 3 urn "expanded rhs is " (nice-type-structure rhs))

(set! substructure-undefined-user-error #t)

; (3)

(if (and (not (lookup-type rhs env)) (not (abstract-type? rhs)))

(issue-error "Type " (nice-type-structure rhs)

" in declaration of " lhs " unknown")

; (4)

(set! symbol-table-g

(cons (make-var-decl lhs rhs env)

symbol-table-g)))

(set! substructure-undefined-user-error #f)

houtput adjust: set res in variable declaration 66ai
))

(set! cur-decl #f)

res

) ; let ((urn))))

(define handle-local-var-decl

(lambda (x type) ; where type \in { 'o, 'i, 'l }

(set! cur-decl x)

(let ((urn (string-append "#" (number->string unique-report-nr)))

(res '()))

(report 3 "reading local variable decl: " urn "\n" x "\ntype " type)

; (1)

(if (and (find-var-lhs (strip-with (cadr x)) symbol-table-l)

(not (is-st-constant? (cadr x))))

(issue-error "Redeclaration of variable " (cadr x))

; (2)

(let ((lhs (cadr x))

(rhs (expand-aliases (preprocess-structure (caddr x))

48

type-be-decls-l))

(env type-be-decls-l))

htransfer 'with from lhs to rhs 44ai
(report 3 urn "expanded rhs is " (nice-type-structure rhs))

(set! substructure-undefined-user-error #t)

; (3)

(if (and (not (lookup-type rhs env))

(not (abstract-type? rhs)))

(issue-error "Type " (nice-type-structure rhs)

" in declaration of " lhs " unknown")

; (4)

(begin

(set! symbol-table-l

(cons (make-var-decl lhs rhs env)

symbol-table-l))

(if (eq? type 'i)

(set! symbol-table-i

(cons (car symbol-table-l)

symbol-table-i)))

(if (eq? type 'o)

(set! symbol-table-o

(cons (car symbol-table-l)

symbol-table-o)))

houtput adjust: set res in variable declaration 66ai
))

(set! substructure-undefined-user-error #f)))

(set! cur-decl #f)

res

) ;let ((urn))))

3

Macro de�ned by scraps 48, 51b, 52b.
Macro never referenced.

5.5 Algorithm De�nitions and Prototypes

Algorithms and prototypes are entered into a global prototype-table. They establish the set of function identi�ers
which can be used within expressions and these identi�ers can be overloaded. This feature is extensively exploited
in SuchThat, since in the context of symbolic computation, especially operator symbols do have many meanings.
Also SuchThat aims towards a translator which is able to determine which of two functions is the \more
specialized" one with respect to input and output parameters and thus presumably the more e�cient in terms
of run time.

While \algorithms" give a complete description including the implementation, \prototypes" declare only input
and output parameters, allowing the translator to check the correct calling of these functions, but postponing
the implementation. 10

hglobal variables 49i �
(define prototype-table '())

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

In order to preprocess the found information as far as possible towards the needs of the overload resolution
process, we use the following format for the entries into the table.

10This compares to the Pascal forward keyword and the C distinction between declaration and de�nition of functions.

49

(name11 signature internal-declarations visible-variable declarations body)

and signature is

((type ...) [type ...])

for the input / output types respectively, the latter ones being possibly empty since some algorithms are just
called for side e�ects.

The reasons to memorize the internal section and the visible (= local + global up to the algorithm) variable
declarations in a designated place is that they may contain type parameters of the prototype which have to be
accessed during instantiation of the algorithm. Also for the future purpose of instantiation we write out the
body as well. It has been type checked with respect to the constraints of the template parameters. This is done
in the algorithm second-pass. body is #f for a prototype.

The body will be communicated across the recursive �le structure in the variable:

hglobal variables 50ai �
(define define-step-list #f)

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

As for the structure of an entry in the prototype table, we can de�ne:

haccess prototype table entries 50bi �

(define make-prototype-entry

(lambda (name signature internal-section visible-vars body)

(list name signature internal-section visible-vars body)))

(define get-prototype-name

(lambda (entry)

(car entry)))

(define get-prototype-signature

(lambda (entry)

(cadr entry)))

(define get-prototype-internal

(lambda (entry)

(caddr entry)))

(define get-prototype-visible

(lambda (entry)

(cadddr entry)))

(define get-prototype-body

(lambda (entry)

(car (cddddr entry))))

(define make-signature

(lambda (i-vars ovars)

(cons i-vars o-vars)))

11Note that no unique names are computed so far, which can lead to ambiguities on the C++ level; however, \name mangling"

does only make sense, if the translator resolves overloading to unambiguous expressions, which is not the case for this prototype.

50

(define get-signature-input

(lambda (S)

(car S)))

(define get-signature-output

(lambda (S)

(cdr S)))

(define get-prototype-input

(lambda (entry)

(get-signature-input (get-prototype-signature entry))))

(define get-prototype-output

(lambda (entry)

(get-signature-output (get-prototype-signature entry))))

3

Macro never referenced.

Since the name, input, and output parameters of an algorithm are picked up in di�erent places, we store them
in the following variables.

hglobal variables 51ai �
(define define-ilst '())

(define define-olst '())

(define define-name #f)

3

Macro de�ned by scraps 24a, 27d, 43a, 46b, 49, 50a, 51a.
Macro never referenced.

which is set appropriately when we �nd the output list at the end of the body.

Reading the algorithm or prototype de�nition includes expanding the signature using aliases and storing the
result in the normalized form indicated above.

hfunctions for special �le parts 51bi �

(define handle-algorithm

(lambda (x)

(report 3 "Handling prototype:\n" (caadr x))

(let ((signature (cdadr x))

(algo-name (caadr x)))

(report 3 "Signature for " (caadr x) " is " signature)

hexpand signature and enter into prototype table 52ci
)

hclear local tables for next algorithm 52ai
;(list x)

houtput adjust: throw away prototype 65ci
))

3

Macro de�ned by scraps 48, 51b, 52b.
Macro never referenced.

The global references to the local symbol tables are no longer used since these are accessible through the references
stored in the entry.

51

hclear local tables for next algorithm 52ai �

; clear the define-ilst for next use

(set! define-ilst '())

(set! define-name 'invalid)

(set! define-olst '())

; clear reporting help

(set! cur-algorithm #f)

; clear local symbol table for next algorithm

(set! symbol-table-l '())

(set! symbol-table-i '())

(set! symbol-table-o '())

(set! type-be-decls-l type-be-decls-g)

(set! type-be-decls-d '())

3

Macro referenced in scraps 20, 51b.

The handling of algorithms with bodies is only slightly more complicated since the list of output variables is
found at the end of the body.

hfunctions for special �le parts 52bi �

(define handle-define-body

(lambda (x) ; x is the algorithm-body

(report 3 "Handling algorithm definition:\n" cur-algorithm)

; make list of input and output parameters

; just like for prototypes

; get parser regenerated return value into define-olst

(let ((last (get-last-element (cddar(cddadr x)))))

(set! define-olst (cond ((symbol? last) (list last))

((and (pair? last) (eq? (car last) 'list))

(cdr last))

(#t '()))))

(let* ((signature (if (null? define-olst)

define-ilst ; input parameters

(append define-ilst (list 'out) define-olst)))

(algo-name define-name))

(report 3 "Signature for " cur-algorithm " is " signature)

hexpand signature and enter into prototype table 52ci
)

(list x)))

3

Macro de�ned by scraps 48, 51b, 52b.
Macro never referenced.

Looking up parameters in the local symbol table gives us the expansion for the signatures. We enter the
var-decls here.

hexpand signature and enter into prototype table 52ci �

(report 3 "Input: " (nice-var-decls symbol-table-i))

(report 3 "Output: " (nice-var-decls symbol-table-o))

52

(report 3 "Local: " (nice-var-decls symbol-table-l))

(set! signature

(let ((res '())

(in-out 'i))

; transform old signature to new format

(do ((s signature (if (and (pair? (cdr s))

(eq? (cadr s) 'out))

(begin

(set! res (cons res '()))

(set! in-out 'o)

(cddr s))

(cdr s))))

((null? s)

(if (eq? in-out 'o)

res

(cons res '()))) ; no output

; lookup variable declaration

(let ((a (find-var-lhs (car s)

(if (eq? in-out 'i)

symbol-table-i

symbol-table-o))))

(if a

(set! res (append res (list a)))

(issue-error "Undefined parameter in algorithm " (caadr x)

" : " (car s)))))))

(report 3 "Expanded signature is \n"

(nice-var-decls (car signature))

"out\n"

(nice-var-decls (cdr signature)))

; enter in prototype table with previously found body

(report 3 "Entering to prototype table")

(set! prototype-table

(cons (make-prototype-entry algo-name signature

type-be-decls-d

(append symbol-table-l symbol-table-g)

define-step-list)

prototype-table))

3

Macro referenced in scraps 51b, 52b.

6 Aliases in SuchThat

Aliases are introduced by be declarations. They simply serve as shortcuts or structural macros. The left and
right hand side of a be declaration have perfectly the same meaning and are expanded in variable and structure

declarations instantly, i.e. they disappear when they are used.

Concerning the relation between structures and aliases we see that aliases use structures as the base of expanding
and on the other hand, bindable identi�ers can be used in structures, for example to impose constraints upon a
generic type used in their de�nition. These identi�ers are not expanded.

The most important procedure is expand-aliases which has been used earlier.

53

6.1 The Semantics of Aliases

The algorithm to expand a structure S can be described as follows:

1. If the structure S is an identi�er, do not expand it, since it may be bound. However, the S is replaced by
its declaration to facilitate merge-bindings

2. Otherwise

(a) expand-aliases in any substructure encountered. However, the �rst-structure will not be replaced
if it is an identi�er.
Be careful in 'with structures.

(b) If the top-level-structure is known in the aliases via a structural match, expand it to the right hand
side of its declaration, carrying over any substructures bound in the matching process.

This de�nition again shows aliases as shorthands:
If there is are declarations

Let I be a set. Let vector over I be vector(I).

then subsequently for example vector over fraction�eld [integer] will be expanded into
vector(fraction�eld [integer]).

6.2 Structural Matching for Aliases

A structural match is de�ned in the usual way with one important constraint:
An identi�er in S may only be used once.

This enforces the semantics of a macro as opposed to a type, which requires consistent bindings instead of unique
identi�ers.

6.2.1 The Procedure struct-match

For the procedure struct-match we use the following algorithm: Given two structures S and T .

� If T is a bindable identi�er, bind S to T if the constraint imposed by the declaration of T is ful�lled,
otherwise return #f.

� If T is a structure, match all the substructures and check that any identi�er is used only once.

Algorithm: struct-match
Input: A,B expanded structures, B a left hand side of of

be declaration with the imposed constraints.
Aenv contains declarations of subtypes of A.

Output: bind A set of bindings (see make-binding) of bind-
able identi�ers in B to substructures of A if
the match was possible, otherwise #f.

hstructural matching 54i �

(define struct-match

(lambda (A B Aenv)

(let ((urn (string-append "#" (number->string unique-report-nr))))

(report 9 "struct-match "

54

(nice-type-structure A) " |= " (nice-type-structure B) "\nin"

(nice-decls Aenv 'be))

(cond ((bindable-identifier? B)

(let ((subb (simplies-explicit? A Aenv

(get-be-decl-rhs B)

(get-be-decl-environment B))))

(if (not subb)

(begin

; this might be useful at some point

;(issue-warning "Rejected binding because of constraints\n"

;(nice-be-decl B) " |-> "

;(nice-type-structure A))

#f)

(list (make-binding B A Aenv subb)))))

((and (pair? A) (not (memq (car A) known-structure-tags))

(not (bindable-identifier? A)))

(report 0 "Ill formed structure in match: "

(nice-type-structure A))

(error "internal error"))

((and (pair? B) (not (memq (car B) known-structure-tags))

(not (bindable-identifier? B)))

(report 0 "Ill formed structure in match: "

(nice-type-structure B))

(error "internal error"))

; structural matching

((and (pair? A) (pair? B)

(memq (car A) known-structure-tags)

(eq? (car A) (car B))

(pair? (cdr A)) (pair? (cdr B))

(or (and (symbol? (cadr A)) (symbol? (cadr B))

(eq? (cadr A) (cadr B)))

(and (pair? (cadr A)) (pair? (cadr B)))))

(report 9 urn "matching substructures")

; match substructures

(do ((aa (if (symbol? (cadr A)) (cddr A) (cdr A)) (cdr aa))

(bb (if (symbol? (cadr B)) (cddr B) (cdr B)) (cdr bb))

(res '() res))

((or (not res)

(null? aa) (null? bb))

(report 9 urn "result is " (nice-bindlist res))

(if (and (null? aa) (null? bb))

res

#f))

(set! res (struct-match-merge res

(struct-match (car aa) (car bb)

Aenv)))))

(#t #f)))))

(define struct-match-merge

(lambda (sigma tau)

(cond ((or (not sigma) (not tau)) #f)

((null? sigma) tau)

((find-binding (car sigma) tau)

55

(issue-error "Constraint upon macros violated.\n"

"Identifier " (caar sigma) " used twice")

#f

)

(#t (let ((r (struct-match-merge (cdr sigma) tau)))

(if r

(cons (car sigma) r)

#f))))))

;(trace struct-match-merge)

3

Macro never referenced.

6.3 Expanding Aliases to Structures

The following algorithm is very much alike the instantiation case which for S j= T uses the declaration, which S
refers to.

Algorithm: expand-aliases
Input: S a pre processed structure

aliases an environment, of which only the be declara-
tions will be used.

Output: S0 where all the aliases in aliases applicable to S
or substructures of S have been expanded.

hexpanding aliases 56i �

(define expand-aliases

(lambda (s aliases)

(let ((urn (string-append "#" (number->string unique-report-nr))))

(report 9 "expand-aliases: " (nice-type-structure s)

"\nin\n" (nice-decls aliases 'be))

(cond ((symbol? s)

(let ((lu (lookup-alias s aliases)))

(if lu

(car lu) ; (cdr lu) = '()

s

)))

((pair? s)

; expand all substructures

(set! s

(cond ((attributed? s)

(cons (car s)

(cons (expand-aliases (cadr s) aliases)

(cddr s))))

((symbol? (cadr s))

(cons (car s)

(cons (cadr s)

(map (bind2nd expand-aliases aliases)

(cddr s)))))

(#t (cons (car s)

(map (bind2nd expand-aliases aliases)

(cdr s))))))

(report 9 "after expanding substructures " urn "\n"

(nice-type-structure s))

(let ((l (lookup-alias s aliases)))

56

(if l

(begin

(set! s (apply-bindings (cdr l) (get-be-decl-rhs (car l))))

(report 9 "top-level alias found " urn))))

(report 9 "after expanding top-level alias " urn "\n"

(nice-type-structure s))

s

)

(#t s))) ; let ((urn))))

3

Macro de�ned by scraps 56, 57.
Macro never referenced.

6.4 Lookup for Aliases in Tables

The lookup function is implemented the obvious way: We walk the environment and return the �rst alias
declaration whose left hand side does structurally match the given S with all constraints ful�lled.

Algorithm: lookup-alias
Input: S a structure where all the substructures have

been expanded
aliases an environment

Output: out A pair of the �rst be declaration in the list of
aliases that is applicable to S and the bindings
found in the structural matching used. If no
such match is obtained for any declaration in
aliases, out = #f.

hexpanding aliases 57i �

(define lookup-alias

(lambda (s aliases)

(let ((urn (string-append "#" (number->string unique-report-nr))))

(report 9 "lookup-alias for " (nice-type-structure s)

"\nin\n" (nice-decls aliases 'be))

(do ((a aliases (cdr a))

(res #f res))

((or (null? a)

res)

(report 9 urn " finished lookup-alias with result\n"

(if res

(nice-decl (car res) 'both)

#f

))

res)

(cond ((not (eq? (get-decl-tag (car a)) 'be)))

((symbol? s)

(if (eq? s (get-be-decl-lhs (car a)))

(set! res (cons (car a) '()))))

((and (pair? s) (pair? (get-be-decl-lhs (car a))))

(set! res (cons (car a) (struct-match s

(get-be-decl-lhs (car a))

aliases)))

(if (not (cdr res))

(set! res #f)))

57

(#t #f)))) ; let ((urn))))

3

Macro de�ned by scraps 56, 57.
Macro never referenced.

7 An Interface to stgentz

Now we have to answer the question

structure-implication?

We will do this by using the tool for algebraic resolution, stgentz by R�udiger Loos and Sibylle Schupp ([11]).
However, since we expect the same questions to arise more than once, we also provide a cache for implications
already found to be #t or #f.12

7.1 The Function structure-implication?

For statistical purposes, we de�ne a counter for the questions, which may later be compared to the counter for
cache hits.

The procedure itself contains three steps:

1. If the structures are equal? return #t.

2. Lookup the implication cache.

3. Forward the question to stgentz.

The third step is not yet contained in the following procedure but the necessary changes can be easily accom-
plished.

hthe structure-implication? predicate 58i �

(define calls-to-structure-implication 0)

(define structure-implication?

(lambda (A B)

(set! calls-to-structure-implication

(+ 1 calls-to-structure-implication))

(report 1 "Question to structure-implication? :\n"

A " => " B)

(cond ((equal? A B) (report 1 "Syntactic equivalence") #t)

(#t (let ((res (lookup-implication-cache A B)))

(if (null? res) ; not found in cache

(begin

(report 1 "Implication not found; assuming #f")

(issue-warning "Implication not found\n"

(list A B "." #t) "\n"

))

(report 1 "Answer is: " res))

(and res (not (null? res))))))))

3

Macro never referenced.

12For testing of overload resolution, we use this cache as a single basis for structure implications. We describe however the general

measures to be taken to connect to stgentz.

58

7.2 Connect to stgentz

We give an outline of the procedure stgentz? by means of literate programming without �lling out the details
at this time.

houtline of an interface to stgentz 59ai �

(define stgentz?

(lambda (A B)

htranscribe A and B to the stgentz syntax ?i
hcall the entry function of the tool ?i
))

3

Macro never referenced.

Although in this module we have used the structures almost as they were delivered by the parser, this was enough
to compare two structures, since if they look the same in the source code, the intermediate representation will
also look alike.

stgentz however needs in a sense more structural information. It requires the substructures to be assigned to
a structure in a linear form, i.e. we have the structure's name plus a set of attributes plus a set of parameters
to describe the structure:

(from (to map field) set)) map{from:set}{to:field}

and
(to (from map set) field)) map{from:set}{to:field}

This assignment partially undoes the work of the parser in that it recovers the linear structure, which the user
sees when typing the source code from the recursive intermediate representation. This transformation thus
depends on details of the grammar used to generate the parser, such as left or right associativity.

Also, there must be some way of distinguishing the di�erent structure declarations used, although we needn't
fear loopholes, since the constraints have been checked in fully-expand.

7.3 Caching Results of Structure Implications

Since programs typically deal with only few types it is very likely that the same structure implications have to
be decided several times.

Be aware though, that the cache must be cleaned upon a database change. This might occur in a later version of
the translator, when declarations and type checking are done in the same pass. Right now it is of no importance.

hA cache for implications 59bi �

(define found-in-cache 0)

(define cache-file (open-input-file "cache.imp"))

(define implication-cache (read cache-file))

(report 1 "Using cache:\n" implication-cache)

(define lookup-implication-cache

(lambda (A B)

(let ((res '()))

(do ((c implication-cache (cdr c)))

((or (null? c)

(not (null? res)))

(if (not (null? res))

59

(set! found-in-cache (+ 1 found-in-cache)))

res

)

(if (and (equal? A (caar c))

(equal? B (cadar c)))

(set! res (cddar c)))))))

(define cache-implication

(lambda (A B holds?)

(set! implication-cache

(cons (cons A (cons B holds?))

implication-cache))))

3

Macro never referenced.

8 Instantiation of Structures

In the previous section, the conceptual design of an interface to stgentz has been presented. However stgentz
lacks a notion of substitution and bindings, which makes it necessary to specify and implement a separate pro-
cedure. At this point, the function instantiate performs this task. Since it is an experimental implementation
and the details are likely to change, we do not give the code here.

However, we want to both motivate and describe the overall design by particular examples demonstrating
situations instantiate has to deal with. These examples also give a guideline for what has to be accomplished
in incorporating the idea of bindings into the Gentzen system.

8.1 The Notion of instantiation

Besides intuition, the implementation has to be based on the de�nitions given in [13] and be consistent with the
calculus presented. However the interpretation of the structure declaration (see below) is not included in these
de�nitions and the implementation cannot follow previous intentions here.

The main idea of instantiation is a recursive structural matching between two structures S and T . Type-
variables are introduced using the Let...be... declaration where the left hand side is a symbol. The type-
variables occurring in T may be bound corresponding subexpressions in S i� the subexpression itself instantiates
the right hand side of the type-variable declaration. This e�ectively introduces constraints on bindings and
ensures the check of preconditions in algorithm calls. As always in the situation of pattern matching, seen as
one-sided uni�cation, we have to pay attention to the questions of

� Consistency

� Occurrence checking

Examples:

Let R be Ring.
Let P be Polynomial over Ring.
a) Matrix over P
b) Matrix over Polynomial of Z/4Z

Now structure b) is an instance of structure a) by the following reasoning:

1. A Matrix matches a Matrix in case the element types match.

60

2. P is a Polynomial, so it matches the Polynomial in b) if the coe�cients match.

3. Z=4Z is a Ring

The bindings we �nd are:

P 7! Polynomial over Z/4Z
R 7! Z/4Z

Consistency is mainly needed for function calls:

Algorithm: q := operator *(a,p)
Let C be Ring;
Let P be Polynomial over C.

Input: a 2 C;
p 2 P.

Output: q 2 P.

We have to make sure that we use the right coe�cient domain for the polynomials. Another example constructing
homogenous lists can be found in section 2.2. A few remarks conclude this subsection:

� The identi�ers, which can be bound to some structure, are introduced by Let...be... declarations.

� Global declarations of this kind are treated as if copied to the internal section of every algorithm that
refers to them.

� The order in which the actual parameters are matched against the formal parameters is not signi�cant,
since consistency is a property of the (set) union of all sets bindings found in the individual matchings.

� Attributes are treated the following way (we use the internal representation for easier display): Can we
instantiate

(with (sequence over Ring) �nite)
by
(with (sequence over Integer) �nite nonempty)

The answer is (see [13]): Yes we can, as we can instantiate (without any bindings) sequence over Ring by
sequence over Integer since the integers form a ring and furthermore the set f�niteg is a subset of f�nite,
nonemptyg.

8.2 Semantics of Structure Declarations

In section 5.3 we have introduced a declaration for structures. Examples are:

a) Structure Integer is implemented;

b) Structure Array(Set) is implemented;

c) Structure Module over Ring is abstract;

d) Let S be SemiGroup;
Structure Vector over S is Array(S).

61

Let's go through these declarations: a) states, that a structure Integer exists without any parameters. The word
implemented is not a keyword but simply a remark to the human reader.

b� d introduce 3 parameterized structures: An array, which can be used with any set, the concept of a module,
which is de�ned over a ring only and �nally the concept of a vector, which is de�ned in terms of an array, but
unlike this data structure, requires its parameter to be a semi group.

Suppose now that we want to call a function, whose formal parameter is a Array(Integer) with a Vector over

Natural. Obviously, they do not match directly, but looking at the declaration of vector, we �nd that when
binding S to Natural, which is possible since natural numbers are a semi group, our actual parameter refers to
declaration d). Substituting this binding on the right hand side gives us that actually a Vector over Natural is
equal to a Array(Natural). Now we can match Array(Integer) with Array(Natural) since the natural numbers are
simply the positive (or non-negative) integers and we get a legal function call.

For the current implementation, the instantiation procedure requires structures, which are not simply identi�ers,
to be declared before use. When two structures are matched, they need not only correspond syntactically,
but also need to refer to the same declaration. This restriction has been introduced for the following reason:
In declaration d) above, we require vectors to be constructed over a SemiGroup. If a local declaration of an
algorithm introduces another vector structure with di�erent constraint, we want to keep these structures apart.

8.3 Weaving Implication and Instantiation

Since a merging of structure implication and instantiation has not been accomplished so far, we interconnect
them as closely as possible by the procedure simplies-explicit? which �rst tries to instantiate two structures
and upon failure asks a decision from the structure implication.

The instantiation procedure is in general more restrictive and gives more precise results, so this two step procedure
is justi�ed.

Algorithm: simplies-explicit?
Input: x,y structures with aliases expanded down to the

bindable identi�ers
x-env,y-env the environments describing the possible sub-

structures of x and y
Output: out

� #f if not x)S y

� '() if the structure implication has been
used and returned #t

� The binding list that instantiate re-
turned if it succeeded in matching the
structures.

hthe predicate simplies? 62i �

(define simplies-explicit?

(lambda (x x-env y y-env)

(let ((res (instantiate x x-env y y-env))

(fex '())

(fey '()))

(if res

res

(begin

(set! fex (fully-expand x x-env))

62

(set! fey (fully-expand y y-env))

(report 1 "simplies? using structure-implication?\n"

fex " => " fey)

(if (structure-implication? fex fey)

(begin

(issue-warning "simplies-explicit? used structure-implication?\n"

fex " => " fey

"\n=> no bindings found")

'())

#f

))))))

3

Macro never referenced.

8.4 Error Messages

With the introduction in this section we are now able to give the user of st2cpp hints from where possible errors
emerge.

"type of right hand side unknown"
A variable, structure or alias is declared in terms of an unknown structure. Parameterized structures need
to be de�ned before they are used.

"Constraints upon alias lhs violated"
One of the bindings which occurred when expanding an alias was not legal.

"Redeclaration of variable " x
Variables cannot be overloaded.

"Type " S " in declaration of " x " unknown"
See "type of right hand side unknown"

"Left hand side of assignment unknown"
The variable that is to be assigned a value is not declared.

"Unde�ned parameter in algorithm"
All input and output parameters in an algorithm header have to be declared in the input and output
section resp.

"Couldn't �nd prototypes with name " name " and " n "input parameter(s)" Before matching types
of parameters, the set of all prototypes with the right name and number of parameters is collected. Probably
the name is misspelled.

"No matching prototype found for expression"
Check the preceding warnings and errors for hints where an instantiation might have failed.

"non-supported number format"
SuchThat assumes all constants to be declared before use. For convenience, the prototype assumes the
default interpretation for integer literals. If they are positive, also a natural interpretation is o�ered.

"Undeclared constant / variable"
All constants and variables except integers must be declared.

63

"Output variable not de�ned"
In a function call the type of an output parameter of the called algorithm could not be determined. This
message is preceded by an "Unde�ned parameter in algorithm"

"No prototypes matching output signature"

"No prototypes matching desired type"
Certain locations of expressions in the input require a particular type to be returned, for example boolean
expressions in while or if statements or integer expressions for for loops. None of the possible interpretations
in terms of prototypes returned a structure implying the desired one. This mechanism is also used for
assignments.

"Declared variable of type " T " found, expected " S
The variable used in a for statement was not declared.

"Variable " v " of wrong type"
In for statements, only variables with a structure implied by Integer may be used.

"Redeclaration in " declaration
Right now structures may not be redeclared. A structure, which can be instantiated by the left hand side
has been given before.

"Constraint upon macros violated. Identi�er used twice"
See section 5.1.

"Unde�ned structure used"
During instantiation a substructure was undeclared.

The warnings issued are self-explanatory:

"Rejected binding because of constraints" One of the bindings (see above) could not be accomplished
because the limitation introduced by the be declaration of the identi�er was not ful�lled.

"Implication not found" The translator could prove the implication neither right nor wrong based on its
knowledge base cache.imp. Enter the given implication to the �le. If the implication does not hold,
change the #t to #f.

"Instantiation failed because of missing attributes"
When instantiating attributed structures like (with T B) by (with S A) then according to [13] it is
su�cient to demand that S must be an instance of T and B be a subset of identi�ers of A. The second
condition is violated.

"Inconsistent binding occured during merge" If a structure contains the same identi�er, which is intro-
duced in a be declaration in two substructures, these bindings must be consistent.

"Inconsistent binding occured extracting" If the same identi�er is used in di�erent input parameters to
an algorithm, the bindings must be consistent.

"simplies-explicit? used structure-implication?" This condition issues a warning because bindings have
not taken place, which might mean that inconsistencies within a function call are not discovered. How-
ever, the instantiation can discover bindings in one subpart of a structural match and use the structure
implication in another. This means that probably the warning can be ignored.

64

"Output signature mismatch" A prototype could not be used because of its output parameters, i.e. the
actual parameters matched the formal ones, but the return values could not be stored in the given variable
because the returned structure did not imply the variables declaration. This can only happen if the function
call is of the form

f(x ; y)

9 The Connection to scm2cpp

This section describes the modi�cations done to the output of the type checker in order to match the speci�cations
of the backend and the customizations made inside of the backend.

9.1 Adjusting the Output

Here is the place where we collect all the changes made to the output of the typechecker. All of these will be
done using stweb macros such that when reading the code in the former sections the reader may quickly retrieve
the relevant information by looking at the crossreferences given by stweb.

Most of the following macros rename tags, where the backend expects something else than is currently there or
throw away information it cannot deal with, such as declarations of structures and aliases.

houtput adjust: output the original expression 65ai �

(list e)3

Macro never referenced.

houtput adjust: throw away internal declarations 65bi �

,cut-out3

Macro referenced in scrap 22a.

houtput adjust: throw away prototype 65ci �

'()3

Macro referenced in scrap 51b.

houtput adjust: rename tag to st-local 65di �

,(lambda (x)

(list (cons 'st-local (cdr x))))

3

Macro referenced in scrap 22a.

houtput adjust: rename tag to st-input 65ei �

,(lambda (x)

(list (cons 'st-input (cdr x))))

3

Macro referenced in scrap 22a.

houtput adjust: rename tag to st-output 65fi �

,(lambda (x)

(list (cons 'st-output (cdr x))))

3

Macro referenced in scrap 22a.

65

houtput adjust: set res in variable declaration 66ai �

(set! res

(if (not (is-st-constant? lhs))

(list (cons lhs (postprocess-structure

(convert-bindable-to-ids

(expand-structure-decls

(strip-attributes rhs)

env)))))

'()))

3

Macro referenced in scrap 48.

Of course we have to undo the changes by preprocess-structure

hinverse operation of preprocess structure 66bi �

(define postprocess-structure

(lambda (T)

(cond ((symbol? T) T)

((bindable-identifier? T) T)

((and (pair? T) (eq? (car T) 'app_par))

(map postprocess-structure

(cdr T)))

((and (pair? T) (memq (car T) known-structure-tags))

(cons (car T)

(map postprocess-structure

(cdr T))))

(#t (report 0 "Ill formed structure in post-processing " T)

(error "internal error")))))

;(trace postprocess-structure)

3

Macro never referenced.

The backend does not know bindings and the special role of identi�ers here. It simply treats any identi�er it
does not know as a template parameter.

houtput auxiliary functions 66ci �

(define convert-bindable-to-ids

(lambda (T)

(cond ((symbol? T) T)

((bindable-identifier? T)

(get-be-decl-lhs T))

((and (pair? T) (memq (car T) known-structure-tags))

(do ((res (list (car T)) res)

(l (cdr T) (cdr l)))

((null? l) (reverse res))

(set! res (cons (convert-bindable-to-ids (car l))

res))))

(#t (report 0 "Ill formed structure in convert-bindable-to-ids\n"

T)

(error "internal error")))))

;(trace convert-bindable-to-ids)

3

Macro de�ned by scraps 66c, 67b.
Macro never referenced.

66

Structure declarations are useful to express a concept and its constraints. The backend does not need to know
them. By expanding the structure declarations as if they were macros, we do output storable types in case no
abstract structures have been used.

hexpanding structure declarations 67ai �

(define expand-structure-decls

(lambda (type-struct env)

(if (not (bindable-identifier? type-struct))

(let ((lu (lookup-type type-struct env)))

(if (and lu (get-structure-decl-lookup (car lu)))

(expand-structure-decls

(apply-bindings (cdr lu)

(get-structure-decl-rhs (car lu)))

(get-structure-decl-environment (car lu)))

; else

(if (symbol? type-struct)

type-struct

(if (symbol? (cadr type-struct))

(append (list (car type-struct) (cadr type-struct))

(map (bind2nd expand-structure-decls env)

(cddr type-struct)))

(append (list (car type-struct))

(map (bind2nd expand-structure-decls env)

(cdr type-struct)))))))

type-struct

)))

;(trace expand-structure-decls)

3

Macro never referenced.

Since attributes, similar to structure declarations, are not expressible in C++, we have to dispose of them for
the �nal output.

houtput auxiliary functions 67bi �

(define strip-attributes

(lambda (type)

(cond ((bindable-identifier? type) type)

((symbol? type) type)

((attributed? type)

(strip-attributes (cadr type)))

(#t (if (symbol? (cadr type))

(append (list (car type) (cadr type))

(map strip-attributes

(cddr type)))

(append (list (car type))

(map strip-attributes

(cdr type))))))))

;(trace strip-attributes)

3

Macro de�ned by scraps 66c, 67b.
Macro never referenced.

houtput adjust: throw away "be" declarations 67ci �

'()3

67

Macro referenced in scraps 39b, 40b.

houtput adjust: rename tag and delete empty "global" 68ai �

,(lambda (x)

(if (null? (cdr x))

'()

(list (cons "st-global" (cdr x)))))

3

Macro referenced in scrap 20.

houtput adjust: throw away "type" declarations 68bi �

'()3

Macro referenced in scraps 43b, 45a.

houtput adjust: parser generated return value 68ci �

(if (not (list? x))

(list (list 'return x))

'() ; C++ can`t return multiple values

)

3

Macro referenced in scraps 22b, 24b.

The backend does not expect the �le to contain one list but a sequence of Scheme objects.

houtput adjust: write output as sequence 68di �

(do ((r result (cdr r)))

((null? r))

(display (car r) output-port))

3

Macro referenced in scrap 12.

houtput adjust: multiple return values 68ei �

(set! e1 (append (list (cadr e)) input output))3

Macro never referenced.

houtput adjust: set signature in ret 68fi �

(set! ret

(cons 'define

(cons (append (list (caadr x)) ; name

define-ilst

define-olst)

(cddr x))))

3

Macro referenced in scrap 20.

10 Acknowledgments

We like to acknowledge all who were members of the core SuchThat groups at RPI and in T�ubingen at the
time of the work on st2cpp. In alphabetical order this is Stephen A. Cerniglia, Albrecht Haug, Uwe Kreppel,
Gor Nishanov, Christoph Schwarzweller, Quincy Stokes, Sebastian Wedeniwski, Roland Weiss.

68

References

[1] Revised4 Report on the Algorithmic Language Scheme, 1991.

[2] Herold Abelson and Gerald Sussman. Structure and Interpretation of Computer Programs. MIT Press,
1985.

[3] Alfred V. Aho, Ravi Sethi, and Je�rey D Ullman. Compilers, principles, techniques, and tools. Reading,
Mass. : Addison-Wesley Pub. Co., 1986.

[4] T. P. Baker. A one-pass algorithm for overload resolution in Ada. ACM Transactions on Programming

Languages and Sytems, 4(4):601{614, October 1982.

[5] Preston Briggs. nuweb a simple literate programming tool. preston@cs.rice.edu, May 1989.

[6] Harald Ganziger and Knuth Ripken. Operator identi�cation in Ada: Formal speci�cation, complexity, and
concrete implementation. ACM SIGPLAN Notices, pages 30{42, Feb. 1980.

[7] Holger Gast. With scheme from SuchThat to c++. Studienarbeit, 1997.

[8] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1986.

[9] R�udiger Loos. A SuchThat Translator to Scheme, 1997. Internal Report.

[10] R�udiger Loos and Sibylle Schupp. Associating SuchThat Structures with their Attributes. Internal Report,
1997.

[11] R�udiger Loos and Sibylle Schupp. An implementation of structure implication sequents. Internal Report,
1997.

[12] Sibylle Schupp. Generic Programming { SuchThat One Can Build an Algebraic Library. PhD thesis,
University of T�ubingen, 1996.

[13] Sibylle Schupp. Deciding structure implications. 1997.

[14] Sibylle Schupp. Processing SuchThat declarations. Internal Report, May 1997.

[15] Alexander Stepanov and Meng Lee. The Standard Template Library. Hewlett-Packard Company, Palo Alto,
1995.

[16] Bjarne Stroustrup. The C++ Programming Language. Addidson-Wesley Publishing Company, 2nd edition,
1991.

[17] Holger Szillat. Finding the SuchThat-Expressions to Statically type-check. Studienarbeit, 1997.

[18] Roland Weiss. ScmToCpp : A con�gurable, intelligent back end for SuchThat. Diplomarbeit, 1997.

A The Translator st2cpp

The following script for the bourne shell basically calls every part with the output of the previous stage. It
integrates the modules into a translator from SuchThat to C++.

The variables SCM and STWEB

"st2cpp" 69 �

69

#!/bin/sh

SCM=scm

STWEB=~/bin/stweb

PARAM=$1

if test $1 = "-p"

then shift

fi

: sh $STWEB -t sttype.w

if test -z "$1";

then echo Usage is st2cpp [-p] '"name"';

elif test ! -r $1.sth;

then echo Input file '"'$1.sth'"' not found;

else

echo Parsing SuchThat input $1.sth "->" $1.scm;

rm -f $1.scm

if st2scm $1.sth > $1.scm

then

if test $PARAM = "-p"

then

echo Aborting translation with -p flag

exit

else

echo Attribute association $1.scm "->" $1.staa $1.pp1;

rm -f $1.staa $1.pp1

cat $1.scm|$SCM sta1.scm sta1main.scm> $1.staa;

cat $1.staa|$SCM pretty.scm > $1.pp1;

:

echo Typecheck $1.staa "->" \

$1.type $1.pp2 $1.imp sttype.err sttype.log;

: remove stale files

rm -f sttype.log sttype.err sttype.out $1.type $1.pp2;

cat $1.staa|$SCM sttype.scm;

: Process some log messages;

grep -A 1 Quest sttype.log > $1.imp;

grep -c Quest sttype.log >> $1.imp;

: Pretty print the output;

cat sttype.out|$SCM pretty.scm > $1.type;

cat $1.type|$SCM pretty.scm > $1.pp2;

:

echo sttype.err contains `grep warning: sttype.err|wc -l` \

warnings and `grep error: sttype.err|wc -l` errors.;

:

if test ! `grep error sttype.err|wc -l` -eq 0;

then echo "Compilation stopped because of errors";

else

echo Generating C++ output $1.type "->" $1.cpp

scm2cpp -ac $1.type

mv $1.type.cpp $1.cpp

fi

fi

else echo Parse error;

fi

fi

70

3

B Examples

Some of the examples that st2cpp has been used on, are given here. They roughly correspond to those used
in [18] augmented with the function declarations necessary to type check the bodies. Furthermore, we include
demonstrations of the instantiation procedure including attributes and parameterized structures.

B.1 Computing the GCD

Please note the the warnings indicated by st2cpp are not all relevant. As described in section 2 they contain
hints to possible explanations of occuring errors and can be ignored if no errors are signaled.

"gcd.sth" 71 �

Global: Let I be integral domain;

Structure AmpleSet of I is I.

Algorithm: t:=operator =(x,y)

Let S be Set.

Input: x,y 2 S.

Output: t 2 bool. ||

Algorithm: t:=operator !=(x,y)

Let S be Set.

Input: x,y 2 S.

Output: t 2 bool. ||

Global: let E be EuclideanRing;

let Amp be AmpleSet of E.

Algorithm: QR(x,y;q,r)

Input: x,y 2 E such that y 6= 0.

Output: q,r 2 E such that x = q*y+r and (r = 0 or deg(r) < deg(y)). ||

Global: let I be integral domain;

let Amp be AmpleSet of I.

Algorithm: y := NF(x)

Input: x 2 I.

Output: y 2 I. ||

Algorithm: d:=deg(e)

Input: e 2 E.

Output: d 2 Integer. ||

Global: 0 2 E. // with 0 is additive identity of E.

Algorithm: c := GCD(a,b)

Input: a,b 2 E.

Output: c 2 E. // such that //c 2 Amp and c = gcd(a,b).

Local: u,v,s,t 2 E.

(1) //Initialization

u := a;

71

v := b.

(2) //a = 0

if u = 0 then {c := NF(v); return}.

(3) //Loop

while v 6= 0 do

{ QR(u,v;s,t);

u := v;

v := t }.

(4) //Normalization

c := NF(u) ||

Algorithm: main()

Local: x 2 Integer.

(1) x:=gcd(35,14);

print x;

newline ||

3

For the C++ output please note that we consider the function nf() a library function, since it implements a
normalization for the given domain. Furthermore the use of

e (*c) = new e;

does not cause memory leaks because we work in a garbed-collected environment. The C++ output generated
was

hGCD C
++ output 72i �

// File created by scm2cpp

// gcd.type -> gcd.type.cpp

#include <iostream.h>

template<class e>

e & gcd(const e & a, const e & b) {

e u;

e v;

e s;

e t;

e (*c) = new e;

u = a;

v = b;

if ((u == 0)) {

(*c) = nf(v);

return (*c);

}

while ((v != 0)) {

qr(u, v, s, t);

u = v;

v = t;

}

(*c) = nf(u);

return (*c);

}

void main() {

int x;

72

x = gcd(35, 14);

}

// --- EOF by scm2cpp ---

3

Macro never referenced.

B.2 Henrici-Brown Addition for Fraction Fields

The second example is the Henrici-Brown algorithm for addition in fraction�elds of gcd domains.

"hb+.sth" 73 �

// Prefixes to specify details

Global: Let I be a gcddomain;

Structure FractionField of I is abstract;

Structure AmpleSet of I is abstract.

Algorithm: t:=operator !=(x,y)

Let S be a set.

Input: x,y 2 S.

Output: t 2 bool. ||

Algorithm: t:=operator =(x,y)

Let S be a set.

Input: x,y 2 S.

Output: t 2 bool. ||

Algorithm: z:=operator and(x,y)

Input: x,y 2 bool.

Output: z 2 bool. ||

Algorithm: z:=operator +(x,y)

Let J be a gcddomain.

Input: x,y 2 J.

Output: z 2 J. ||

Algorithm: z:=operator *(x,y)

Let J be a gcddomain.

Input: x,y 2 J.

Output: z 2 J. ||

// original example

Global: Let I be a gcddomain;

Let Q be a FractionField of I;

0 2 I with 0 is normalized;

1 2 I with 1 is normalized;

0 2 Q with 0 is normalized;

1 2 Q with 1 is normalized;

Let A be AmpleSet of I.

Algorithm: r1 := num(r)

73

Input: r 2 Q.

Output: r1 2 I. // r1 the numerator of r
||

Algorithm: r2 := denom(r)
Input: r 2 Q.

Output: r2 2 I. // r2 the denominator of r
||

Algorithm: r := fract(r1, r2)
Input: r1; r2 2 I with r2 6= 0.
Output: r 2 Q with r = r1=r2 , r is normalized.

||

Algorithm: r := operator/(r1, r2)
Input: r1; r2 2 I such that r2 6= 0, r2 % r1 = 0.

Output: r 2 I with r = r1=r2.
||

Algorithm: r := gcd(r1, r2)
Input: r1; r2 2 I.
Output: r 2 I. //with r is the g.c.d. of r1 and r2.
||

Algorithm: t := operator+(r, s)
Input: r; s 2 Q such that r is normalized, s is normalized.

Output: t 2 Q such that t = r + s, t is normalized.

Local: r1,r2,s1,s2,t1,t2,r2?,s2?,
t1?,t2?, d,e 2 I.

(1) // r = 0 or s = 0 ?

if r = 0 then { t := s; return };

if s = 0 then { t := r; return }.

(2) // get numerators and demominators

r1 := num(r); r2 := denom(r);
s1 := num(s); s2 := denom(s).

(3) // r and s 2 I
if (r2 = 1 /\ s2 = 1) then { t := fract(r1 + s1, 1); return }.

(4) //r or s 2 I
if r2 = 1 then { t := fract(r1 � s2 + s1, s2); return };

if s2 = 1 then { t := fract(s1 � r2 + r1, r2); return }.

(5) //general case

d := gcd(r2, s2);
if d = 1 then { t := fract(r1 � s2 + r2 � s1, r2 � s2); return };

if d 6= 1 then {

r2? := r2=d; s2? := s2=d;
t1 := r1 � s2? + s1 � r2?; t2 := r2 � s2?;
if t1 = 0 then { t := 0; return };

if t1 6= 0 then {

e := gcd(t1, d);
t1? := t1=e; t2? := t2=e;
t := fract(t1?, t2?) }} ||

3

hHenrici-Brown-Output 74i �

// File created by scm2cpp

74

// hb+2.type -> hb+2.type.cpp

#include <iostream.h>

template<class q, class i>

q & operator+(const q & r, const q & s) {

i r1;

i r2;

i s1;

i s2;

i t1;

i t2;

i r2_H__BS_star;

i s2_H__BS_star;

i t1_H__BS_star;

i t2_H__BS_star;

i d;

i e;

q (*t) = new q;

if ((r == 0)) {

(*t) = s;

return (*t);

}

if ((s == 0)) {

(*t) = r;

return (*t);

}

r1 = num(r);

r2 = denom(r);

s1 = num(s);

s2 = denom(s);

if (((r2 == 1) && (s2 == 1))) {

(*t) = fract((r1 + s1), 1);

return (*t);

}

if ((r2 == 1)) {

(*t) = fract(((r1 * s2) + s1), s2);

return (*t);

}

if ((s2 == 1)) {

(*t) = fract(((s1 * r2) + r1), r2);

return (*t);

}

d = gcd(r2, s2);

if ((d == 1)) {

(*t) = fract(((r1 * s2) + (r2 * s1)), (r2 * s2));

return (*t);

}

if ((d != 1)) {

r2_H__BS_star = (r2 / d);

s2_H__BS_star = (s2 / d);

t1 = ((r1 * s2_H__BS_star) + (s1 * r2_H__BS_star));

t2 = (r2 * s2_H__BS_star);

if ((t1 == 0)) {

(*t) = 0;

75

return (*t);

}

if ((t1 != 0)) {

e = gcd(t1, d);

t1_H__BS_star = (t1 / e);

t2_H__BS_star = (t2 / e);

(*t) = fract(t1_H__BS_star, t2_H__BS_star);

}

}

return (*t);

}

// --- EOF by scm2cpp ---

3

Macro never referenced.

During translation the following was displayed on the terminal

hHenrici-Brown display 76ai �

Parsing SuchThat input hb+2.sth -> hb+2.scm

Attribute association hb+2.scm -> hb+2.staa hb+2.pp1

Typecheck hb+2.staa -> hb+2.type hb+2.pp2 hb+2.imp sttype.err sttype.log

sttype.err contains 81 warnings and 0 errors.

Generating C++ output hb+2.type -> hb+2.cpp

scm2cpp v1.0

Errors while parsing: 0

Errors during code generation: 0

compilation took .36 seconds

3

Macro never referenced.

B.3 Demonstration of the Instantiation

The following example has been included in section 2.2 in full length and with detailed explanations. We list it
here for completeness of this section.

hExample for the instantiation process 76bi �

Global: Structure FiniteSequence over Set is abstract.

Algorithm: BubbleSort(a ; b)

Let O be Set with O is ordered;

Let FSQ(O) be FiniteSequence over O;

Let F be FSQ(O).

Input: a 2 F.

Output: b 2 F. ||

Algorithm: main()

Local: A 2 Array(Integer).

(1) BubbleSort(A ; A) ||

3

Macro never referenced.

The following messages mean that our function call has been accepted:

hexample output 76ci �

76

*** report 2 #80 ***

(prototypes found for subexpressions are #42)

*** report 2 #81 ***

((bubblesort a) :

((((bubblesort ((a @f)) out ((b @f)))

out

(((b (app_par array integer))))

bindings

((((be f (over finitesequence @o)) (app_par array integer))

))))))

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

C The Implications Used

Since stgentz has not been connected to the type checker yet, we are forced to state all implications explicitly.
Whenever no prototype can be found (which is an error condition) for an expression, the warnings preceding the
error messages contain the implications that could not be looked up:

hexample output 77ai �

warning: implication not found

(field ring . #t)

3

Macro de�ned by scraps 7b, 8ac, 9a, 10abc, 11, 76c, 77a.
Macro never referenced.

They can be cut-and-pasted into the following �le, stating whether they are #t or #f.

"cache.imp" 77b �

(

(Integer Set . #t)

(Integer Ring . #t)

(Integer Field . #f)

(Integer IntegralDomain . #t)

(Integer Natural . #f)

(Integer Real . #t)

(Integer gcddomain . #t)

(integer (of fractionfield gcddomain) . #f)

(integer (with (of fractionfield gcddomain) normalized) . #f)

(integer euclideanring . #t)

(Field Ring . #t)

(Ring Integer . #f)

(Ring Field . #f)

(Ring Set . #t)

(Natural Integer . #t)

77

(Natural Set . #t)

(Natural gcddomain . #t)

(natural (of fractionfield gcddomain) . #f)

(natural (with (of fractionfield gcddomain) normalized) . #f)

(natural euclideanring . #t)

(Real Set . #t)

(Real (with Set has_plus_op) . #t)

(Real Ring . #t)

(Real Field . #t)

(Rational Ring . #t)

(Rational Field . #t)

(FractionField Ring . #t)

(FractionField Field . #t)

(FractionField Set . #t)

(IntegralDomain Set . #t)

; for the hb example

((of FractionField gcdDomain) Set . #t)

(gcdDomain Set . #t)

(gcddomain (of fractionfield gcddomain) . #f)

((with gcddomain normalized)

(with (of fractionfield gcddomain) normalized) . #f)

(euclideanring gcddomain . #t)

(euclideanring set . #t)

(euclideanring integral_domain . #t))

3

D Index

D.1 Files

"cache.imp" De�ned by scrap 77b.

"exattr.sth" De�ned by scrap 9b.

"exinst.sth" De�ned by scrap 7a.

"exinst2.sth" De�ned by scrap 8b.

"gcd.sth" De�ned by scrap 71.

"hb+.sth" De�ned by scrap 73.

"st2cpp" De�ned by scrap 69.

"typing.bib" De�ned by scrap ?.

D.2 stweb Macros

hA cache for implications 59bi Not referenced.
hExample for the instantiation process 76bi Not referenced.
hGCD C

++ output 72i Not referenced.
hHenrici-Brown display 76ai Not referenced.
hHenrici-Brown-Output 74i Not referenced.

78

ha global be declaration 40ai Referenced in scrap 20.

ha global type declaration 45ai Referenced in scrap 20.

ha local be declaration 39ai Referenced in scrap 22a.

ha local type declaration 43bi Referenced in scrap 22a.

haccess prototype table entries 50bi Not referenced.
hcall the entry function of the tool ?i Referenced in scrap 59a.

hcheck constraint upon left hand side of a be declaration 36i Not referenced.
hcheck legal be declaration 41bi Referenced in scraps 39b, 40b.

hcheck type redeclaration 44ci Referenced in scraps 43b, 45a.

hchoice list and default proc from subpattern 33i Not referenced.
hclear local tables for next algorithm 52ai Referenced in scraps 20, 51b.

hdecl.sth 4i Not referenced.
hde�ne the structure of a statement 23cde, 24bi Not referenced.
hde�ne the structure of the input �le 20i Not referenced.
hde�nition of a SuchThat constant 46ai Not referenced.
henter global type declaration to environment 45bi Referenced in scrap 45a.

henter local type declaration to environment 44ei Referenced in scrap 43b.

herror : right hand side unknown 44di Referenced in scraps 43b, 45a.

herror and report handling 13ab, 14, 15abcdi Not referenced.

hexample for choice lists 18ai Not referenced.

hexample for pre�x notation 17i Not referenced.
hexample output 7b, 8ac, 9a, 10abc, 11, 76c, 77ai Not referenced.
hexample-output 19ai Not referenced.

hexample 18bi Not referenced.
hexpand signature and enter into prototype table 52ci Referenced in scraps 51b, 52b.

hexpanding aliases 56, 57i Not referenced.
hexpanding bindable identi�ers 40ci Not referenced.
hexpanding structure declarations 67ai Not referenced.
hfunctions for special �le parts 48, 51b, 52bi Not referenced.
hglobal variables 24a, 27d, 43a, 46b, 49, 50a, 51ai Not referenced.
hinterpret (car expr) which is optional / once / iterate block 32i Not referenced.
hinterpret �rst subpattern 30i Referenced in scrap 29.

hinterpreter for the structure list 28, 29i Not referenced.
hinverse operation of preprocess structure 66bi Not referenced.

hlookup rhs for be declaration 41ai Referenced in scraps 39b, 40b.

hlookup type declarations of left and right hand side 44bi Referenced in scraps 43b, 45a.

houtline of an interface to stgentz 59ai Not referenced.

houtput adjust: multiple return values 68ei Not referenced.
houtput adjust: output the original expression 65ai Not referenced.
houtput adjust: parser generated return value 68ci Referenced in scraps 22b, 24b.

houtput adjust: rename tag and delete empty "global" 68ai Referenced in scrap 20.

houtput adjust: rename tag to st-input 65ei Referenced in scrap 22a.

houtput adjust: rename tag to st-local 65di Referenced in scrap 22a.

houtput adjust: rename tag to st-output 65fi Referenced in scrap 22a.

houtput adjust: set res in variable declaration 66ai Referenced in scrap 48.

houtput adjust: set signature in ret 68fi Referenced in scrap 20.

houtput adjust: throw away "be" declarations 67ci Referenced in scraps 39b, 40b.

houtput adjust: throw away "type" declarations 68bi Referenced in scraps 43b, 45a.

houtput adjust: throw away internal declarations 65bi Referenced in scrap 22a.

houtput adjust: throw away prototype 65ci Referenced in scrap 51b.

houtput adjust: write output as sequence 68di Referenced in scrap 12.

houtput auxiliary functions 66c, 67bi Not referenced.
hprede�ned handler procedures 19b, 34i Not referenced.
hpreprocess and expand declaration 43ci Referenced in scraps 43b, 45a.

hpreprocessor for structures to force unique tags 37bi Not referenced.

79

hread local declarations 22ai Referenced in scrap 20.

hreading a global be-declaration 40bi Not referenced.
hreading a local be-declaration 39bi Not referenced.
hstrip o� the with tags from structures 37ai Not referenced.

hstructural matching 54i Not referenced.
hstructure of a compound statement 23bi Referenced in scrap 24b.

hstructure of a statement list 23ai Referenced in scraps 22b, 23b, 24b.

hstructure of the algorithm body 22bi Referenced in scrap 20.

hthe structure-implication? predicate 58i Not referenced.
hthe driver function 12i Not referenced.
hthe predicate simplies? 62i Not referenced.
hthe structure be-decl 26ab, 27c, 38i Not referenced.
hthe structure of a variable declaration 46c, 47i Not referenced.
hthe structure type-decl 27ab, 42abi Not referenced.

htranscribe A and B to the stgentz syntax ?i Referenced in scrap 59a.

htransfer 'with from lhs to rhs 44ai Referenced in scraps 39b, 40b, 43c, 48.

D.3 Identi�ers

attributed?: 37a, 44a, 56, 67b.
be-decl?: 27a.
boolean-expression: 23c, 24b.
cache-implication: 59b.
check-be-lhs: 36, 41b.
check-variable-type: 23e, 24b.
cur-algorithm: 15a, 15b, 20, 52ab.
cur-decl: 15a, 15b, 39b, 40b, 41b, 43c, 44cde, 45b, 48.
cur-expr: 15a, 15b.
cut-out: 19b, 65b.
define-ilst: 20, 51a, 52ab, 68f.
define-name: 20, 51a, 52ab.
define-olst: 51a, 52ab, 68f.
define-step-list: 50a, 52c.
equal-be-decls?: 27c.
equal-structure-decls?: 27b.
error-count: 14, 15c.
error-port: 13a, 14.
expand-aliases: 39b, 40b, 43c, 48, 56.
expand-bindable-ids: 39b, 40b, 40c.
expand-structure-decls: 66a, 67a.
extend-environment: 26a, 39b, 40b, 44e, 45b.
file-structure: 20.
find-var-lhs: 23e, 47, 48, 52c.
find-var-lhs-all: 47.
find-var-rhs: 47.
get-be-decl-environment: 38, 54.
get-be-decl-lhs: 38, 39b, 57, 66c.
get-be-decl-rhs: 38, 54, 56.
get-choices-from-subpattern: 30, 33.
get-decl-tag: 26b, 57.
get-default-proc-from-subpattern: 30, 33.
get-prototype-body: 50b.
get-prototype-input: 50b.
get-prototype-internal: 50b.

80

get-prototype-name: 50b.
get-prototype-output: 50b.
get-prototype-signature: 50b.
get-signature-input: 50b.
get-signature-output: 50b.
get-structure-decl-environment: 42b, 67a.
get-structure-decl-lhs: 42b.
get-structure-decl-lookup: 42b, 67a.
get-structure-decl-rhs: 42b, 67a.
get-var-decl-environment: 23e, 46c.
get-var-decl-lhs: 46c, 47.
get-var-decl-rhs: 23e, 46c, 47.
get-with-attributes: 37a, 44a.
handle-algorithm: 20, 51b.
handle-define-body: 20, 52b.
handle-global-be-decl: 40a, 40b.
handle-global-var-decl: 20, 48.
handle-local-be-decl: 39a, 39b.
handle-local-var-decl: 22a, 48.
ignore: 19b.
integer-expression: 23d, 24b.
interpret-once-optional-iterate: 30, 32.
interpret-pattern: 12, 20, 28, 34.
interpret-spatterns: 28, 29, 30, 32.
is-st-constant?: 46a, 48, 66a.
issue-error: 14, 23e, 41b, 44cd, 48, 52c, 54.
issue-warning: 14, 54, 58, 62.
issue-where: 14, 15a.
known-structure-tags: 37b, 54, 66bc.
lookup-alias: 36, 40c, 56, 57.
lookup-implication-cache: 58, 59b.
make-be-decl: 38, 39b, 40b.
make-prototype-entry: 50b, 52c.
make-signature: 50b.
make-structure-decl: 42a, 44e, 45b.
make-var-decl: 46c, 48.
next-expression-desired-types!: 23cd, 24a.
preprocess-structure: 37b, 39b, 40b, 43c, 48.
prototype-table: 49, 52c.
report: 8c, 10c, 13a, 13b, 15cd, 18b, 19a, 22b, 24b, 28, 29, 30, 32, 34, 39b, 40b, 43bc, 44de, 45ab, 48, 51b, 52bc, 54, 56,

57, 58, 59b, 62, 66bc, 76c.
report-level-0: 15d.
report-level-1: 15d.
report-port: 13a, 13b.
simplies-explicit?: 9a, 23e, 54, 62.
statement-structure: 23ab, 24b.
stgentz?: 59a.
strip-attributes: 66a, 67b.
strip-with: 37a, 44ae, 45b, 48.
struct-match: 54, 57.
struct-match-merge: 54.
structure-implication?: 9a, 58, 62.
substructure-undefined-user-error: 41a, 43a, 43b, 45a, 48.
symbol-table-i: 46b, 48, 52ac.
symbol-table-l: 24b, 46b, 48, 52ac.

81

symbol-table-o: 46b, 48, 52ac.
the-file: 12.
type-be-decl?: 27a.
type-be-decls-d: 27d, 39b, 40b, 44e, 45b, 52ac.
type-be-decls-g: 27d, 40b, 45ab, 48, 52a.
type-be-decls-l: 23cd, 24b, 27d, 39b, 40b, 41ab, 43bc, 44e, 45b, 48, 52a.
type-decl?: 27a.
unchanged: 18b, 19b, 20, 22ab, 23b, 24b.
union-of-disjunctive-id-sets: 36.
unique-report-nr: 13b, 15c, 39b, 40b, 43b, 45a, 48, 54, 56, 57.
use-pattern: 18b, 19a, 20, 23ab, 24b, 34.

82

