
THE FINITENESS OF FINITELY PRESENTED

MONOIDS�

Robert McNaughtony

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180-3590, U.S.A.

mcnaught@cs.rpi.edu

April, 1997

Introduction. It is undecidable whether a monoid given by a �nite presentation
is �nite (see, e.g., [1], pp. 157{160). On the other hand, with the mere knowledge that
the monoid is �nite, one can e�ectively construct the multiplication table of the
monoid, and thus obtain a complete understanding of its structure. This paper will
present this construction method in detail (Section 2) and o�er some remarks about its
computational complexity (Section 3). The notation here will be based on [1], whose
�nal chapter furnishes much of the background and will be referenced frequently.

It is convenient to think of a �nite monoid presentation as a Thue system, i.e., an
ordered pair (�; R), where � is a �nite alphabet (or set of generators) and R is a �nite
set of unordered pairs of strings over �, called the \set of rules." For (y1; y2) 2 R and
x; z 2 �� one writes xy1z $ xy2z and xy2z $ xy1z; thus the rules operate
symmetrically. One writes x$� y to assert the existence of a derivation of y from x,
i.e., a sequence

x0 = x; x1; : : : ; xp = y (p � 0); where xi $ xi+1 for each i � p� 1

When x$� y holds one says that x and y are congruent. For brevity, the $� relation
is written as �. It is clearly a congruence relation, since it is reexive, symmetric and
transitive, and since, for all x; y1; y2; z 2 ��, y1 � y2 implies xy1z � xy2z.

�This paper is dedicated to the memory of Marco Sch�utzenberger, the one most responsible for

impressing upon me the importance of monoids.

ySupported by Grant No. CCR-9500182 from the National Science Foundation. I am grateful for

the crucial guidance of Friedrich Otto in this research, and also for his critical reading of this paper.

1

For the presentation P = (�; R), M(P) is de�ned to be the monoid whose
elements are the congruence classes of �� of the Thue system congruence �. For
w 2 ��, [w] is de�ned to be the congruence class fxjx � wg. Thereupon the set of
elements of M(P) is f[w] j w 2 ��g.

Monoid multiplication is de�ned as [x][y] = [xy]. Where e is the null word, i.e., the
word of length 0, [e] is the monoid identity (since [e][x] = [x][e] = [x], for all x). Since
word concatenation is associative, multiplication in M(P) is associative; so M(P) is
indeed a monoid.

For x 2 ��, jxj is the length of x. For M a monoid, jM j is the order of M .

Theorem 1.1. If x 2 �� and x is not congruent modulo P to any shorter word
then jM(P)j � jxj+ 1.

Proof: If x = x0x00x000 with jx00j > 0 and x0 � x0x00 then x � x0x000 where
jx0x000j < jxj. From this it follows that if x is not congruent to any shorter word then no
two pre�xes of x are congruent. Since x has jxj+ 1 pre�xes, including e and x itself,
there are at least jxj+ 1 congruence classes, viz., jM(P)j � jxj+ 1:2

We o�er two examples with � = fb; cg. For P1 = (�; f(bc; e)g), M(P1) turns out
to be an in�nite monoid, known as the \bicyclic monoid" or \bicyclic semigroup,"
whose elements are of the form [cibj], i; j � 0, where [e = c0b0] is the monoid identity
and the product is

[cibj][ckbm] =

(
[ci+k�jbm] if j � k

[cibm+j�k] if j > k

(There are some who might want to regard this expression as a multiplication table.
However, this paper will consider multiplication tables only for �nite monoids.)

On the other hand, for the example

P2 = (�; f(bbb; bb); (cc; c); (bc; c); (cbb; bb)g)

M(P2) is �nite. The �ve monoid elements are the �ve congruence classes [e] = feg,
[b] = fbg, [bb] = f��bbg, [c] = f��cg and [cb] = f��cbg. The multiplication table is
depicted here with one column for each monoid element but with rows corresponding
only to the monoid generators. In the following table for M(P2), each entry is the result
of the product of the column element (left factor) by the row element (right factor):

[e] [b] [bb] [c] [cb]
b [b] [bb] [bb] [cb] [bb]
c [c] [c] [c] [c] [c]

The entire multiplication table could easily be written from this abbreviated
table; e.g.,

[cb][cb] = ([cb]c)b = [c]b = [cb]

2

The problem of the �niteness of �nitely presented monoids is somewhat similar to
the problem of whether a given Thue system has an equivalent (�nite) conuent
system, with respect to a given ordering of strings. Indeed the Knuth-Bendix
completion procedure ([3], see also [2]) is a semi-algorithm for this problem: it
terminates with an equivalent conuent system if there is one, but fails to terminate if
there is none. Furthermore, the Knuth-Bendix procedure could be used as a
semi-algorithm for the �niteness problem of �nitely presented monoids, as will be
explained at the end of Section 2.

The Todd-Coxeter procedure [6], which has as its goal the enumeration of the
cosets of a subgroup in a group, can be used to construct the multiplication table of a
�nite group from a given �nite presentation. It is quite similar to the algorithm that
will be given in the next section, which could be thought of as its generalization to
monoids.

The Todd-Coxeter procedure begins with a subgroup H of a given �nitely
presented group G, enumerates the cosets of H in G, and produces a multiplication
table containing all products of the form Hib = Hj, where Hi and Hj are cosets of H
and b is a generator of G. One way of using the Todd-Coxeter procedure to �nd the
multiplication table of a group G is simply to take H as the trivial subgroup of G,
whereupon the cosets of H are the singleton sets, identi�able with the elements of G.

Coset enumeration in general, including the Todd-Coxeter procedure in particular,
plays a prominent rôle in computational group theory (see, e.g., [5], especially, pp.
175{196). A proof that the procedure does terminate and produce all the cosets, in
cases where the subgroup H is of �nite index in G, can be found in [4].

In the remainder of this paper the word \presentation" will always mean a �nite
monoid presentation.

2. The construction. This section puts forth a procedure that, from a given
presentation, terminates if and only if the monoid is �nite; upon termination it yields
the multiplication table of the monoid. Let T = (�; R) be the presentation, i.e., a Thue
system as explained in Section 1. We require a re�nement of the congruence relation �:

De�nition: x �n y means that jxj � n, jyj � n and there is derivation of y from
x in (�; R) in which no word has length greater than n. Note that (1) the 3-place
predicate x �n y is decidable. For each n, (2) the relation �n may be thought of as a
congruence relation over (� [�)n but (3) it is certainly not a congruence relation
over ��.

De�nition: D(k; n) is the following predicate over the positive integers: for every
word w of length k, there is a word w0 of smaller length such that w �n w

0. Note that
D(k; n) implies k � n, and that D is a decidable predicate.

3

The reader is also asked to verify that it is decidable whether, for any given n,
there exists k such that D(k; n).

Theorem 2.1. M(P) is �nite if and only if there exist k and n such that D(k; n)
holds.

Proof: Assume D(k; n). Since every word of length k is congruent to a word of
smaller length, every word of length � k is congruent to a shorter word. From this it
follows that every word of length � k is congruent to a word of length less than k.
Thus M(P) is �nite.

For the converse, assume M(P) is �nite. For each x 2 ��, let h(x) = the length of
the shortest word congruent to x. The set H = fh(x) j x 2 ��g is bounded, since
M(P) is �nite. Take k = 1 + the maximum element of H.

For each y 2 �k, there is a derivation from y to a shorter word. Since there are
�nitely many such y there are �nitely many such derivations, each of which is a �nite
sequence of words. Thus the set of all words occurring in all the derivations has a
maximum length n. For these values of k and n, D(k; n) holds.2

De�nition: n0 = the smallest value of n such that D(k; n) is true for some k; it is
unde�ned if M(P) is in�nite.

In order to search for n0, we construct tables for the relations �1; �2; � � � such
that the entries for �n are all words of length � n. The table for �n+1 is readily
constructed from the table for �n. Indeed, if we take

Qn+1 = f< x; y > j jxj = n + 1; jyj � n + 1; x$ yg

then �n+1 is the symmetric and transitive closure of the relation

Qn+1 [�n [f< x; x > j jxj = n+ 1g

For the remainder of this section, we assume that n0 has been found and therefore
M(P) is �nite. Since every word of length n0 is congruent to a word of smaller length,
every word of length � n0 is congruent to a word of length less than n0.

An often-used total ordering of all words of �� is the length-lexicographic ordering .
We shall use the symbol < for this ordering, writing w1 < w2 (w1; w2 2 ��) if either
jw1j < jw2j or else jw1j = jw2j and w1 precedes w2 lexicographically. For example, if
b; c; d 2 � with b < c and c < d, then bcc < bdb and dd < bbb.

De�nition: For jxj � n0, let f(x) = the smallest word w in the sense of the
length-lexicographic ordering relation such that w �n0 x. Note that, for all such x,
jf(x)j � n0 � 1. Let the range of f (which is �nite) be fw1 = e; w2; : : : ; wpg.

4

Form the directed graph G1 as follows: The nodes are labeled w1; w2; : : : ; wp;
w1 = e is called the \initial node." For all wi; wj and b, there is an arc labeled b from
wi to wj if f(wib) = wj; there are no arcs other than these.

De�nition: We write �(wi; x) = wj if there is a walk in G1 from node wi to node
wj whose labels in order spell out the word x. For x = e, wj = wi and the walk is the
null walk on wi.

Theorem 2.2. For all x 2 ��, there is a walk in G1 spelling out x from e

to �(e; x).

Proof: First note that, for b 2 �, if node N has label w then jwj < n0, jwbj � n0
and jf(wb)j < n0. So there is an arc labeled b from node w (= N) to node f(wb). From
this our theorem follows by induction on the length of x (the basis being the null walk
on e):2

Theorem 2.3. For all x 2 ��, �(e; x) � x.

Proof by induction on jxj: Clearly our theorem is true for x = e. Assume
wi = �(e; x) � x. For b 2 �, we have �(e; xb) = �(wi; b) = wj, where wj = f(wib). By
de�nition of f , wj �n0 wib, which implies wj � wib. Thus

�(e; xb) = wj � wib � xb (since wi � x):2

Corollary. For all x; y 2 ��, if �(e; x) = �(e; y) then x � y.

For jxj; jyj � n0, x �n0 y implies x � y. However, the converse may not hold, as
shown in Example 1 at the end of this section. Consequently, the graph G1 may not
have the converse to the property of the last Corollary, which we need. In general,
therefore, the graph G1 needs to be simpli�ed to a graph that has both properties.
Accordingly, a sequence of graphs, G2; � � � ; Gp will be constructed so that Gp will have
the following properties:

(1) if �(e; x) = �(e; y) in Gp then x � y;

(2) if x � y then �(e; x) = �(e; y) in Gp; and

(3) Gp is deterministic.

The graph G1 has properties (1) and (3). It does not have property (2) unless p = 1.
As we shall see, G2; : : : Gp�1, which may or may not have property (3), all have
property (1) but not property (2). For 1 � i � p� 1, Gi+1 is obtained from Gi by
merging two nodes, as will now be prescribed:

De�nition: For any node N in a graph G, LG(N) = fxjx is spelled out by a walk
from the initial node to N in Gg. Note that if there is an arc labeled b from node N to
node N 0 in G then LG(N)b � LG(N

0). (LG(N)b means fwbjw 2 LG(N)g.)

5

De�nition: The nodes N1 and N2 of a graph are an eligible pair for merging if
N1 6= N2 and either (1) there are a node N4, a letter b, an arc from N4 to N1 labeled b

and an arc from N4 to N2 labeled b, or else (2) there are a node N4, a rule (u; v), a
walk from N4 to N1 spelling out u and a walk from N4 to N2 spelling out v. (N4 may
be the same as N1 or N2, or may di�er from each.)

For each i, Gi+1 is obtained from Gi by merging some eligible pair of nodes. When
node N1 and N2 in Gi are merged, they are replaced by a single node N3 in Gi+1; all
arcs entering either N1 or N2 now enter N3, and all arcs leaving N1 or N2 now leave N3.
Other nodes and arcs in Gi+1 are the same as in Gi. The initial node of Gi, merged or
unmerged, becomes the initial node of Gi+1.

Theorem 2.4. For every Gi and x 2 ��, there is at least one node N such that
x 2 LGi

(N).

Proof by induction on i: The truth for G1 follows from Theorem 2.2. By
construction, if it holds for Gi it holds for Gi+1:2

Theorem 2.5. (1) For any node N of any Gi, the words in the set LGi
(N) are all

congruent to one another. And (2) for any two nodes N1 and N2 eligible for merging,
the words in the set LGi

(N1) [LGi
(N2) are all congruent to one another.

Proof: By the Corollary to Theorem 2.3, (1) is true of G1. The proof of our
theorem will be by mathematical induction on i and the strategy will be to prove �rst
Part a: if (1) holds for i then (2) holds for i; and then Part b: if (1) and (2) hold for
i < p then (1) holds for i+ 1.

Part a: Assume (1) is true for Gi and let N1; N2 2 Gi be eligible for merging.
Case I: for some b 2 �, there are arcs labeled b from some node N4 to N1 and from N4

to N2. Let y 2 LGi
(N4). Then yb 2 LGi

(N1) and yb 2 LGi
(N2). From this fact and (1)

for Gi, it follows that all words of LGi
(N1) [LGi

(N2) are congruent to one another.

Case II: for some node N4 of Gi, there is a walk from N4 to N1 spelling out u and
a walk from N4 to N2 spelling out v, where (u; v) is a rule. Then yu 2 LGi

(N1) and
yv 2 LGi

(N2). Since yu � yv and (1) is true for Gi, all words of LGi
(N1) [LGi

(N2) are
congruent to one another.

Part b: Assume (1) and (2) are true of Gi. For every node N 2 Gi, let coni(N) be
the common congruence class of the words spelled out by walks in Gi from the initial
node to N . We de�ne a function con0i+1 over the nodes of Gi+1:

con0i+1(N) =

(
coni(N) if N 6= N3

coni(N1) = coni(N2) if N = N3

Lemma b1. If there is an arc labeled b from N to N 0 in Gi+1 then
con0i+1(N

0) = [wb], where w is any word in con0i+1(N).

6

Proof: Case I: N 6= N3 6= N 0. Then N;N 0 and the arc joining them are in Gi; and
con0i+1(N) = coni(N) and con0i+1(N

0) = coni(N
0) = [wb] for any w 2 coni(N).

Case II: N = N3 6= N 0. Then there is an arc in Gi labeled b either from N1 to N
0

or from N2 to N
0; without loss of generality assume the former. The set

con0i+1(N
0) = coni(N

0) = [wb] for any w 2 coni(N1) = con0i+1(N3).

The proofs of the remaining two cases are left to the reader:

Case III: N 6= N3 = N 0.

Case IV: N = N3 = N 0. (Note that, in this case, there is an arc in Gi labeled b

either from N1 to N1, from N1 to N2, from N2 to N1 or from N2 to N2:)2

Lemma b2. For all nodes N of Gi+1, LGi+1
(N) � con0i+1(N).

The proof consists of proving by use of Lemma b1 that, for any walk W in Gi+1

from the initial node to N , if W spells out w 2 �� then w 2 con0i+1(N). This proof,
which is by induction on the length of the walk W , is left to the reader.

Lemma b2 completes part (b) and, with it, the entire proof of Theorem 2.5.2

Theorem 2.6. (1) The sequence G1; G2; : : : is �nite. That is to say, there exists
a p such that no two nodes of Gp are eligible for merging. (2) Gp is deterministic.

Proof: For (1), note that the number of graph nodes in each graph in the sequence
decreases by 1 each time. For (2) assume Gi is nondeterministic. Then for some node
N3 of Gi and some letter b, �(N3; b) has at least two values in Gi, say N1 and N2,
eligible for merging. Hence, i 6= p:2

Theorem 2.7. If in Gi, N1 6= N0, x 2 LGi
(N1), y 2 LGi

(N0) and x � y, then Gi

has a pair of nodes eligible for merging.

Proof: If for some node N4 of Gi there is a letter b with arcs from N4 labeled b to
two distinct nodes, then these two nodes are eligible for merging. So let us assume that
there is no such node N4, viz., Gi is deterministic. Thus, for any node N of Gi and
word w, the node �(N;w) is unique.

Where N1; N0; x and y are as in the hypothesis of our theorem, we have x 6= y. Let
z1; z2; : : : ; zq be a derivation such that x = z1 and y = zq. By Theorem 2.4, for each j,
1 � j � q, there is a node Nj such that zj 2 LGi

(Nj). Knowing that N1 6= N0 = Nq, we
take h to be the smallest positive integer such that Nh 6= Nh+1. Since zh $ zh+1 and
zh 6= zh+1, we have zh = sut and zh+1 = svt, where (u; v) or (v; u) is a rule. Put
N 0

4 = �(e; s). Then
�(N 0

4; ut) = Nh 6= Nh+1 = �(N 0
4; vt)

Put N 0
1 = �(N 0

4; u) and N 0
2 = �(N 0

4; v), so �(N
0
1; t) = Nh and �(N 0

2; t) = Nh+1. Since
Nh 6= Nh+1, it must be that N

0
1 6= N 0

2 and the pair (N 0
1; N

0
2) is eligible for merging.2

7

Corollary. For N1 6= N2, x 2 LGp
(N1) and y 2 LGp

(N2), x and y are not
congruent.

Main Theorem. If M(P) is �nite, the elements of the monoid are represented
one-to-one by the nodes of the graph Gp, from which the multiplication table can be
written readily.

Proof: Theorem 2.5(1) and the Corollary to Theorem 2.7.2

It is possible that a generator may turn out to be congruent either to another
generator or to e. If that happens the monoid can be thought of as having fewer
generators than were called for in the presentation. However, general simpli�cation of
the generator set is not discussed in this paper. Nor is the problem of whether the
monoids of given distinct multiplication tables are isomorphic.

Example 1: P = (fb; cg, f(bb; b); (cc; c); (bcb; b); (cbc; c); (b5; c5)g). The nontrivial
equivalence classes for �2 are fb; bbg and fc; ccg. Since neither bc nor cb is related by
�2 to a shorter word, we see that n0 > 2. But the nontrivial equivalence classes for �3

are fb; bb; bbb; bcbg, fc; cc; ccc; cbcg, fbc; bbc; bccg and fcb; cbb; ccbg. Every word of
length 3 is related by �3 to a word of shorter length, so n0 = 3. The graph G1 is given
by the following table, in which each monoid element is represented by its minimal
word according to the < relation de�ned above. (The brackets as used in the table of
Section 1 are omitted here.)

e b c bc cb

b b b cb b cb

c c bc c bc c

Since �(e; b5) = b and �(e; c5) = c, the rule (b5; c5) allows us to merge nodes b and c to
form the new node labeled b. We thus get the nondeterministic graph G2:

e b bc cb

b b b; cb b cb

c b b; bc bc b

Next, we merge b and cb, getting G3:

e b bc

b b b b

c b b; bc bc

Then we merge b and bc, getting G4:

8

e b

b b b

c b b

In G4, e and b are not eligible for merging, so p = 4 and the algorithm is concluded.
Since the generator c is not mentioned in the table except as a row header (it is
congruent to the generator b), it can be eliminated from the list of generators. Thus
M(P) is isomorphic to the almost trivial monoid M(P 0) where P 0 = (fbg; f(bb; b)g).

The next example illustrates that n0 may be arbitrarily large relative to the
lengths of the left and right sides of the rules and also relative to the size of M(P):

Example 2: P = (�; E), where, for any �xed integer q � 3, � = f0; b1; : : : ; bqg
and

E = f(bi; b1b2)j all ig [f(bibi+1; bibi+1bi+2)j1 � i � q � 2g

[f(bq�1bq; 0)g [f(bi0; 0); (0bi; 0); (00; 0)j all ig

Note that in M(P), all nonnull words are congruent to 0, but the derivation of 0
from any word of length 1 requires a word of length q. Since longer words are not
needed, n0 = q. This in spite of the fact that M(P) has only two elements, [e] and [0],
and no rule involves a word longer than 3. In Section 3 more general things will be said
about the size of n0 relative to P and relative to M(P).

This section closes with the observation that the Knuth-Bendix completion
procedure [3] can also be used as a semi-algorithm for the problem of whether a given
�nitely presented monoid is �nite. To see this, assume the monoid is �nite and consider
the function g such that, for every x 2 ��, g(x) = the smallest word w (in the sense of
the < relation de�ned in this section) such that w � x. Where s is the order of the
monoid then jg(x)j � s� 1 for every x, by Theorem 1.1. If R0 is the set of rules

f(x; g(x)) j x 2 ��; jxj � s; x 6= g(x)g

then the Thue system T = (�; R0) is a presentation for the monoid and is conuent.
Thus every �nite monoid has a presentation that is a conuent Thue system. (In [2] it
is shown further how to simplify the Thue system to a unique minimal equivalent
conuent Thue system.)

Hence, if the Knuth-Bendix completion procedure is applied to a presentation of a
monoid that happens to be �nite (using the length-lexicographic ordering relation), it
will terminate with an equivalent presentation that is conuent. However, it will also
terminate in certain other cases where the monoid is in�nite, again with an equivalent
conuent system (with �nitely many rules). Fortunately it is easily decided, for any
such Thue system T , whether M(T) is �nite. If so the multiplication table is easily
constructed, without need for the procedure of this section. (Since the set I of
irreducible strings of a conuent system is regular, whether or not I is �nite is easily

9

decided. And M(T) is �nite if and only if I is �nite. Indeed, the elements of M(P) can
be represented by the words of I, as is proved in [2].)

So the Knuth-Bendix completion procedure is a competitor to the procedure of
this section. Its advantage is that it can tell us in many interesting instances that the
monoid is in�nite.

3. Complexity considerations. To discuss algorithmic complexity, we must
begin with a precise statement of the problem. Actually, there are several ways we
could formulate our problem, the most prominent of which is

(P1) Given a presentation and given that the monoid so presented is �nite,
what is the multiplication table of the monoid?

With this formulation the procedure of Section 2 is an algorithm. However, if we omit
the second \given" phrase, we get a problem that has no algorithm:

(P2) Given a presentation, what is the multiplication table of the monoid
presented?

The procedure of Section 2 is not an algorithm for (P2) because it will not terminate
unless the monoid is �nite. (It would appear that (P2) has no algorithm, however we
modify our concept of \multiplication table.")

This observation will help establish some negative complexity results about the
problem (P1). The reasoning will be based on the fact that any procedure applied to a
presentation, given that the monoid so presented is �nite, can also be applied to any
presentation whether or not its monoid turns out to be �nite. A familiar example of
this reasoning will be given in the proof of the next theorem.

Conjecture I. The problem (P1) is not in any recursive time complexity class.
That is to say, for every recursive function f and algorithm A for (P1), there exists a
presentation P with M(P) �nite, such that the computation of A with input P takes
more than f(jP j) time units. (jP j is the length of the written expression for the
presentation P .)

As a credibility argument for this conjecture, a weaker result is now proved.

De�nition. An honest algorithm for (P1) is one that yields, on input P , the
multiplication table for M(P) in the event that M(P) is �nite, but gives no answer at
all (either by failing to halt, or by halting with no multiplication table output) in the
event that M(P) is in�nite. A partially dishonest algorithm for (P1) is one that yields

10

the multiplication table for M(P) when M(P) is �nite, but, for at least one P with
M(P) in�nite, yields some (�nite) multiplication table, which of course is spurious.

A partially dishonest algorithm is one that is perfectly accurate within the limits
of its guarantee, but may give misleading information if as users we go beyond the
guarantee by applying it to a presentation P without knowing beforehand that M(P)
is �nite. In this situation, if the algorithm yields a multiplication table of a �nite
monoid M , we shall be able to conclude only the following: Either M(P) = M or
M(P) is in�nite.

It might be thought that this uncertainty could be resolved by determining
whether or not all the rules of P are valid in M . If at least one of them is not then
from the guarantee we can conclude that M(P) must be in�nite. However, if all the
rules of P are valid in M we can conclude only that M is a homomorphic image of
M(P), which is possibly in�nite. Therefore, when we apply a partially dishonest
algorithm for Problem (P1) to a presentation P without having established beforehand
that M(P) is �nite, we cannot be sure that any multiplication table that is constructed
is that of M(P).

Note that the procedure of Section 2 is an honest algorithm for problem (P1).

Theorem 3.1. Regarding honest algorithms only, the problem (P1) is not in any
recursive time complexity class.

Proof: Assume there is a recursive function f representing the complexity of some
honest algorithm A that solves (P1). This means that from any presentation P of a
monoid given to be �nite, A constructs the multiplication table for M(P) in at most
f(jP j) units of time. Our theorem is proved by proving in the next paragraph that the
existence of such a function f would imply the decidability of the following problem:

(P3) Given a presentation, is the monoid so presented �nite?

This problem is known to be undecidable (see [1], pp. 157{160).

We assume the existence of the function f . Let P be any presentation. Apply A as
a procedure to P and stop it, if it has not already stopped, after f(jP j) + 1 time units.
If this run lasts f(jP j)+ 1 time units then M(P) is in�nite. On the other hand, since A
is honest, if A stops of its own accord before f(jP j) + 1 time units, then M(P) is �nite
if a multiplication table is the output, and is in�nite if no such table is the output.2

Another important complexity question remains, which is to relate the time of
computation not to the input size but to the output size, which we designate as s(P).
We assume that s(P) is a positive integer for every P for which M(P) is �nite, but for
the purposes of this paper we need not de�ne s(P) precisely. Let s0 be the size of the
multiplication table of the trivial monoid, i.e., the monoid whose only element is e. We
assume that the size of the multiplication table of any other monoid exceeds s0.

11

Conjecture II. There do not exist an algorithm for problem (P1) and a recursive
function f such that, for every presentation P , the computation time of the algorithm
is bounded by f(s(P)). That is, for every such algorithm and f there is a P where
M(P) is �nite but where the computation time exceeds f(s(P)).

The question is a signi�cant one. No algorithm for a problem can compute in less
time than it takes to write the answer; furthermore, it seems fair to allow it to have
additional time as a function of the size of the useful output. More generally, it is
interesting to investigate the relation of time of computation to output size as an
alternative complexity measure. My argument for Conjecture II begins with two
theorems.

De�nition: n0(P) = the integral value of n0 when the procedure of Section 2 is
applied to the presentation P . Where M(P) is in�nite we write

s(P) = n0(P) =1 > i

for every positive integer i. Also f(1) =1 for any function f for which
limh!1 f(h) =1.

Theorem 3.2. It is undecidable for a given positive integer q and presentation P

(including those for which M(P) is in�nite) (1) whether s(P) < q, and (2) whether
jM(P)j < q.

Proof: (1) The following problem is known to be undecidable (see [1], pp.
157{159): given P , is M(P) the trivial monoid? But this problem is reducible to
problem (1) as follows: Determine whether s(P) < s0 + 1. If so then M(P) is trivial,
if not not.

(2) Similar to the proof for (1), but using the fact that jM(P)j < 2 if and only if
M(P) is trivial.2

Theorem 3.3. There is no recursive function f such that n0(P) � f(s(P)) for all
P such that M(P) is �nite.

Proof: Assume f exists and, without loss of generality, assume f(i+ 1) > f(i) for
all i. With such a recursive function f the undecidable problem of Theorem 3.2(1)
could be decided as follows: For the given P , begin the procedure of Section 2 (without
knowing whether M(P) is �nite or in�nite). Recall that this procedure has a variable n
that runs through the positive integral values of n until n = n0; that n0 = the smallest
n with the property that, for some k � n, D(k; n) holds; and that this property can be
decided e�ectively for each n.

In the present application, keep trying successive values of n until one of two
possible things happen:

Case I: n = n0. Complete the procedure of Section 2, which will enable a decision
as to whether s(P) < q.

12

Case II: n = f(q). Then, whether or not M(P) is �nite, (1) n0(P) � f(q).
Whether or not M(P) is �nite, we have (2) n0(P) � f(s(P)): if M(P) is �nite (2)
follows from the de�nition of f ; if in�nite, by our convention about 1. From (1) and
(2) we get f(s(P)) � f(q). Since f is monotonic increasing, s(P) � q:2

The proof of Theorem 3.3 would be a proof of Conjecture II if the algorithm of
Section 2 were the only algorithm for (P1). What prompts me to put forth this
conjecture is my feeling that, whatever algorithm might be discovered for (P1), the
value of n0 in each application will play an important rôle in determining the
computation time.

The undecidability of the word problem for monoids is well known (see, e.g., [1],
pp. 57�). Thus there is no e�ective way of testing whether x � y in M(P), for any
given words x and y and interpretation P . However, there is an e�ective way of testing
whether x �i y. Section 2 demonstrates that, given P , once we know the value of n0
and are prepared to test pairs of words for �n0 we have both the knowledge that M(P)
is �nite and are able to construct its multiplication table. And it would appear that
(1) before we know the value of n0 we do not even know whether M(P) is �nite, and
(2) only by testing words for �n0 can we construct the multiplication table. It therefore
is credible that the value of n0(P) determines in some crucial way the necessary
computation time to obtain both the knowledge that M(P) is �nite and its
multiplication table, whatever algorithm is used.

An interesting related question is, given P and words w1 and w2, where w1 � w2,
what is the smallest value of i such that w1 �i w2? The following theorem deals with
this question, although it does not seem to add credibility to either of the two
conjectures of this section.

Theorem 3.4. There is no recursive function f such that, for any P where M(P)
is �nite and for any words w1 and w2,

w1 � w2 if and only if w1 �f(P;jw1j;jw2j) w2

(Note that this theorem would be easy to prove were it not for the phrase, \where
M(P) is �nite." In that case we could easily show that the existence of such a recursive
function f implies the decidability of the word problem for �nitely presented monoids.)

Proof: Assume that such a function f exists and, without loss of generality, that
f(P; i; j) < f(P; i; j + 1) for all P; i; j.

Lemma. The existence of such a function f implies that the following problem is
decidable: Given positive integer r and presentation P (including presentations for
which M(P) is in�nite), is every word of length r congruent in M(P) to a shorter word?

Proof of the Lemma: Using the function f we can always compute a tentative
answer to this question, disregarding the possibility that M(P) may be in�nite. This
tentative answer will be valid if M(P) is �nite but may not be valid if M(P) is in�nite.

13

Suppose �rst that the tentative answer is \yes." We can enumerate all loop-free
derivations from all words of length r in which no word has length exceeding
f(P; r; r � 1). If we �nd that there is such a derivation of a shorter word from every
word of length r then we know that the correct answer is \yes." On the other hand, if
from some word of length r no such derivation yields a shorter word then we know that
the tentative \yes" answer was not valid and so M(P) is in�nite. But M(P) in�nite
implies that there is a word of every length not congruent to a shorter word; thus the
correct answer is \no."

If the tentative answer is \no" then \no" is the correct answer. For if M(P) is
�nite then the tentative answer is correct. And if M(P) is in�nite then it has a word of
every length that is not congruent to a word of shorter length and, a fortiori, such a
word of length r:2

The proof of Theorem 3.4 is completed by using the function f to reduce the
problem of the Theorem 3.2(2) (given P and q, is jM(P)j < q?) to the problem of the
Lemma as follows: First use the function f to determine whether or not every word of
length q� 1 is congruent to a shorter word. If so then M(P) is �nite; carry through the
procedure of Section 2, �nding jM(P)j exactly, thus correctly answering the question,
is jM(P)j < q?

If not, i.e., if there is a word w such that jwj = q � 1 and w is not congruent to a
shorter word, then jM(P)j � q, by Theorem 1.1.2

Some readers of this section may be disappointed not to see any concrete
complexity. In fact, the results of this section indicate that the problem of the paper is
beyond concrete complexity. What puts the algorithm of Section 2 beyond practical
computation is that the circumstances of its use generally preclude the main advantage
of algorithmic computation, namely, the guarantee of a termination and an answer in
all instances. In order to have this advantage, users would have to know for some
reason that their presentations were those of �nite monoids. If they had that
information, then probably there would be other available information that could serve
to sharpen the procedure to one which could compute within predictable resource
limits. It would seem that the theoreticians wanting to extend the results of this paper
to complexity-measurable algorithms must be willing to restrict in some way the class
of instances to which their algorithms may apply. In other words, they must con�ne
themselves to proper subproblems of the problem (P1).

14

References

[1] R.V. Book and F. Otto, String-rewriting systems, Springer-Verlag, 1993.

[2] D. Kapur and P. Narendran, The Knuth-Bendix completion procedure and Thue
systems, SIAM J. Computing, Vol. 14 (1985), pp. 1052{1072.

[3] D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, in
Computational problems in abstract algebras (J. Leech, ed.), Pergammon Press,
1970, pp. 263{297.

[4] N.S. Mendelsohn, An algorithmic solution for a word problem in group theory,
Canadian J. Math., Vol. 16 (1964), pp 509{516; Correction, Vol. 17 (1965), p. 505.

[5] C.C. Sims, Computation with �nitely presented groups, Cambridge Univ.
Press, 1994.

[6] J.A. Todd and H.S.M. Coxeter, A practical method for enumerating cosets of a
�nite abstract group, Proc. Edinburgh Math. Soc., Vol. 5 (1936), pp. 26{34.

15

