
SEMI-THUE SYSTEMS WITH AN INHIBITOR

Robert McNaughton�

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180-3590, U.S.A.

mcnaught@cs.rpi.edu

April, 1998 (revised)

1. Introduction, notation and terminology. Semi-Thue systems constitute a
universal model of computation, in the sense that any decision problem about
computations is reducible to a problem about semi-Thue systems. Every recursively
enumerable language is the language of some semi-Thue system. (E.g., see Chapter 7
of [3].)

And yet the concept is simple: A semi-Thue system is an ordered pair (�;�),
where � is a �nite alphabet of characters and � a �nite set of rules (u; v), where in each
case u and v are words over �. These systems are called \semi-Thue systems" because
the rules are not necessarily reversible, u being referred to as \the left side" and v \the
right side" of the rule (u; v). Semi-Thue systems are distinguished from Thue systems
(named for their originator Axel Thue [15]) whose rules operate in both directions.

The important notion in the study of semi-Thue system is that of a derivation
from one string to another. We write w1 ! w2 to mean that w2 is derived in one step
from w1, i.e., that there exist words x and y such that w1 = xuy and w2 = xvy, where
(u; v) is a rule of the system. We say that z is derivable from w or that there is a
derivation from w to z, if there exist strings w0; w1; : : : ; wp for some p � 0 such that
w0 = w, wp = z and wi ! wi+1 holds for each i, 0 � i � p� 1. Each wi is a line of the
derivation, which has p+ 1 lines, and has p steps; p is the length of the derivation. An
in�nite derivation is an in�nite sequence w0; w1; : : :, where wi ! wi+1 for all
nonnegative integers i.

Although the class of semi-Thue systems is quite powerful, there have been some
applications in which not all this power is appropriate. An example is the context-free
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grammar, which had as its origin the phrase-structure grammar put forth tentatively
and critically by Chomsky [2] for natural languages, but which by now has its chief
application in the domain of formal languages (see [11]). A context-free grammar is a
semi-Thue system that (1) distinguishes between \terminal" and \nonterminal"
characters of the alphabet, (2) restricts rules to those having single nonterminals as
their left sides, and (3) restricts derivations to those whose �rst lines all consist of a
single occurrence of a particular nonterminal designated as the start symbol (usually S
in the literature) and whose last lines have only terminal characters.

Another application has arisen in the area of computer science concerned with
theorem proving by machine, where semi-Thue systems are used and thought about
extensively. Typically, these semi-Thue systems, often called \rewrite systems," are
used to reduce words to simpler equivalent words (see, e.g., [7] or [1]). Rewrite systems
and context-free grammars are quite di�erent both in their purpose and their
operation. Nevertheless, these enterprises do have in common their use of
computationally weak semi-Thue systems.

The research program into which the present paper �ts is not concerned with
particular applications of semi-Thue systems such as grammars and rewrite systems.
Rather it considers various subclasses of semi-Thue systems that appear to be usefully
weaker than the entire class (without regard to any particular application), and then
attempts to assess how useful and weak they are. One method of assessing a subclass is
to determine whether certain decision problems are decidable for it. If so then that is
evidence that the subclass is weak, since most signi�cant decision problems are
undecidable for the full class of all semi-Thue systems. And, if the decision problem is
a computationally important one, it is evidence also that the subclass may be useful.

There are several decision problems that can be used as criteria in this way. Let us
focus on three of them:

(1) The halting problem. Given a semi-Thue system (�;�) of the
subclass, and given x 2 ��, is every derivation whose �rst line is x �nite?

(2) The uniform halting problem. Is every derivation in a given
semi-Thue system of the subclass �nite?

(3) The derivability problem. Given a semi-Thue system of the subclass,
and given x; y 2 ��, does there exist a derivation of y from x?

For example, for both the class of context-free grammars and the class of rewrite
systems used by many theoreticians of machine theorem proving, all three of these
problems are decidable. Moreover, any subclass of the semi-Thue systems for which
any of these three problems is solvable is weaker and possibly more useful than the
class of all semi-Thue systems. Weaker because all three problems are undecidable for
the class of all semi-Thue systems. And more useful, albeit in a restricted set of
possible applications, because the ability to tell whether or not derivations will
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terminate gives the user an advantage. The importance of termination in the practical
use of rewrite systems is described in detail in [6].

The uniform halting problem seems more di�cult than the other two, although
there seems to be no general proof that if that problem is solvable for any subclass of
semi-Thue systems then the other two problems are solvable also. At any rate, several
research workers have decided to focus on the uniform halting problem; in particular,
the question of whether or not that problem is decidable for the subclass of one-rule
semi-Thue systems has received some attention, so far without an answer, in [4], [5],
[8], [9], [10], [12], [13], [14] and [16]. This subclass will be discussed in Section 4.

The subclass that is the main focus of this paper is the subclass of semi-Thue
systems with an inhibitor, i.e., an alphabetic character that occurs at least once on the
right side of every rule, but does not occur on the left side of any rule. The main result
is that the uniform halting problem for this subclass is decidable, proved in Section 3,
where it is also proved that the halting problem and the derivability problem are
decidable. Derivations in semi-Thue systems with an inhibitor will be analyzed in
detail in Section 2.

The subclass of semi-Thue systems with an inhibitor was noticed in the course of
studying the subclass of one-rule systems [13]. The results of the present paper on
semi-Thue systems with an inhibitor lead to a distinction that promises to be fruitful
in analyzing derivations in one-rule systems without an inhibitor. That distinction,
between well behaved derivations and ill behaved derivations, is explained in Section 4.

In this paper lower-case Greek iota (�) will be used as an inhibitor. So, in a
semi-Thue system with an inhibitor, � 2 �, every right side has at least one occurrence
of �, and no left side has any occurrence of �. Our convention will be that a semi-Thue
system has k rules: (ui; vi) for each i, 1 � i � k.

We shall write x!n y to mean that there is a derivation of n steps (n � 0) from x
to y; x!� y to mean that there is a derivation from x to y; and x!+ y to mean that
there is such a derivation of at least one step.

For x; y 2 ��, x . y will mean that there exist z1; z2 2 �� such that x! z1yz2. We
shall write x .+ y to mean that there exist z1; z2 2 �� such that x!+ z1yz2.

The well known fan theorem states that an in�nite rooted tree in which each node
has only �nitely many children nodes has an in�nite path. The following generalization
will be useful in Section 2; the proof is left to the reader:

Theorem 1.1. If a forest of �nitely many rooted trees has in�nitely many nodes,
each of which has only �nitely many children nodes, then the forest has an in�nite path.

De�nition (the y). If x; y and z are words and xyz is a line in a derivation then
it may be that y occurs several times as a factor (i.e., substring) of that line. For
example, if x = bbcc, y = bccb and z = ccb, so that xyz = bbccbccbccb, then there are
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three occurrences of y in xyz, the second of which we shall refer to as \the apparent
occurrence of y in xyz," or \the y in xyz," or (frequently, when the designation xyz is
understood) \the y." The article \the" will indicate that we are referring to a
particular occurrence of y and not to the word y itself. When we wish to talk about the
word apart from any occurrence in a line we shall simply say \y."

De�nition (the same occurrence). If x1bx2uhx3 (x1uhx2bx3) is the j
th line of a

derivation where b is a letter and x1bx2vhx3 (x1vhx2bx3) is the (j + 1)st line of that
derivation, then we talk of the apparent occurrence of b in the jth line as being the
same as the apparent occurrence of b in the (j + 1)st line. On the other hand, no
occurrence of a character in the apparent occurrences of uh or vh exists in the other
line: any character occurrence in the apparent uh is destroyed, and any character
occurrence in the apparent vh is created, in going from the jth line to the (j + 1)st line.

2. Analysis of derivations. Section 3 will present the decision procedure to
determine whether a given semi-Thue system with an inhibitor is uniformly
terminating. In preparation, this section will develop a method of analyzing derivations
in such systems. To begin, it is stipulated that there be no occurrence of the inhibitor �
in the �rst line of a derivation. This stipulation will help us establish important
structural concepts. It is justi�ed by the fact that (since � does not occur on the left
side of any rule) if there is an in�nite derivation from x1�x2� � � � �xn then there is an
in�nite derivation from one of the xi's. All semi-Thue systems discussed in this section
and Section 3 will be systems with the inhibitor �.

De�nition (vital). For b 2 �, if xby is a line other than the �rst in a derivation,
then the apparent occurrence of b is vital if it is not � and has been created either in
that line or in some preceding line of the derivation (in other words, if that occurrence
of b does not exist in the �rst line).

De�nition (S-occurrence, the set S). (1) If w 6= � and xwy is a line of a
derivation then the w is an S-occurrence in that line if all its character occurrences are
vital, the x does not end in a vital character occurrence, and the y does not begin with
a vital character occurrence. (That is to say, the x must either be null or end in a
nonvital character occurrence. And the y must either be null or begin with a nonvital
character occurrence.) In short, a nonnull S-occurrence is a maximal factor of vital
character occurrences in a line of a derivation. (2) If a line of a derivation begins with
(ends in) � then the occurrence of � at the left end (right end) of the line is an
S-occurrence. And if bc is a factor of a line where both the b and the c are nonvital
character occurrences, at least one of the two being �, then the � between the b and the
c is an S-occurrence. (3) S is the set of all words having an S-occurrence in some line
of some derivation.

Note that if x�s�y !� z and s has no � then z = x0�� �y0, where x!� x0, s!� �
and y !� y0. This follows from the segregating power of the inhibitor �, and shows the
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importance of S-occurrences in lines all of whose non-iota character occurrences are
vital. Even more revealing of the importance of S-occurrences is the next theorem.

De�nition (S-sequence). The sequence s1; s2; � � � is an S-sequence if, for each i,
si 2 S and si . si+1.

Theorem 2.1. In a semi-Thue system with an inhibitor, there exists an in�nite
derivation w1; w2; : : : if and only if there is an in�nite S-sequence.

Proof: If there is an in�nite S-sequence s1; s2; : : :, then an in�nite derivation
w1; w2; : : : can be de�ned as follows: For each i, de�ne zi and z0i so that si ! zisi+1z

0
i

(guaranteed by the de�nition of si . si+1). Then put w1 = s1 and, for each i � 2, put

wi = z1z2 � � � zi�1siz
0
i�1 � � � z

0
2z
0
1

Clearly, w1; w2; : : : is an in�nite derivation.

Now assume there is an in�nite derivation w1; w2; : : : . Let

w1 = y0z1;1y1z1;2y2 � � �ym�1z1;mym

where the character occurrences of w1 that are never destroyed in the derivation are
precisely those that occur in the apparent factors y0; : : : ; ym. So, for every i,

wi = y0zi;1y1zi;2y2 � � � ym�1zi;mym;

for some zi;1; : : : ; zi;m. Consequently, for some j, 1 � j � m, the sequence

z1;j; z2;j; : : :

is an in�nite derivation possibly with repetitions; that is to say, there is an in�nite
sequence i1 = 1; i2; i3; : : : where for all h

zih;j = zih+1;j = � � � = zih+1�1;j ! zih+1;j:

For convenience we alter the notation and set zh = zih;j for all h. Then

z1; z2; : : :

is an in�nite derivation in which every character occurrence of z1 is eventually
destroyed. Since z1 is only �nitely long, there exists a p such that, for all i � p, the line
zi has no character occurrences in common with z1.

Thus for all i � p,
zi = si;1�si;2� : : : �si;qi

where each si;h 2 S, and qi � 1 is the number of �'s in zi.

For each line i � p, there is exactly one h such that the si;h is rewritten by a rule,
becoming (for some j � 1) si+1;h� � � � �si+1;h+j in the (i+ 1)st line; for all
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h0 6= h; 1 � h0 � qi, the si;h0 is copied to become the very same S-occurrence in the
(i+ 1)st line (but with a di�erent subscript for h0 > h). De�ne
C 0(< i; h0 >;< i+ 1; h00 >) to mean that the si;h0 is copied to become the si+1;h00 in the
(i+ 1)st line. Then de�ne C to be the transitive, symmetric and re
exive closure of the
relation C 0. Thus C(< i; h >;< i0; h0 >) holds if either (1) i = i0 and h = h0, (2) i0 > i
and the si;h is copied, recopied, etc., until it becomes the si0;h0 in the (i0)th line, or
(3) i > i0 and the si0;h0 is copied, recopied, etc., to become the si;h.

Clearly, C is an equivalence relation; furthermore if C(< i; h >;< i0; h0 >) then the
word si;h = si0;h0. Note also that, for any i and h � qi, if there is no h

0 � qi+1 such that
C(< i; h >;< i + 1; h0 >) then, for �nitely many values of h0, si;h . si+1;h0.

Consider now the graph H whose nodes are the equivalence classes of the C
relation: The roots of H are the classes having the respective pairs
< p; 1 >; : : : ; < p; qp > as members; there is an edge from a node N1 to a node N2 of H
if and only if there are i; h; h0 such that < i; h >2 N1, < i+ 1; h0 >2 N2 and the si+1;h0

in the (i+ 1)st line is part of what is obtained by rewriting from the si;h in the ith line.
Clearly, H is a forest of rooted trees. De�ne s(N) = si;h for any < i; h >2 N .

Since the z-derivation is in�nite, H has in�nitely many nodes, each of which has
only �nitely many children nodes. Hence, by Theorem 1.1, there is an in�nite path
through the graph: N1; N2; : : : . Putting sj = s(Nj) for all j, we have sj 2 S and
sj . sj+1 for all j:2

De�nition (v-section, L(vh); R(vh)). The word w is a v-section if � does not
occur in w and there is a vh such that, for some x and y, either vh = x�w�y, vh = w�y
or vh = x�w. Thus the null word is a v-section if and only if some vh either begins in �,
ends in �, or has �� as a factor. If vh = w1�y = x�w2, where w1 and w2 have no �, then
w1 = L(vh) and w2 = R(vh). In particular, L(vh) (R(vh)) = � if and only if vh begins
with (ends in) �.

Note that every v-section has an S-occurrence in some derivation. Whenever a
rule (uh; vh) is applied in a derivation where vh = L(vh)� � � � �R(vh), the apparent
occurrences of the internal v-sections always become S-occurrences. The apparent
occurrences of L(vh) and R(vh) become either S-occurrences or parts of S-occurrences.
E.g., for the system

f(a; a�bc�d); (c; e�f�g)g

in the third line of the derivation
a

a�bc�d

a�be�f�g�d

the occurrence of g is an S-occurrence, but the occurrence of e = L(v2) is part of the
S-occurrence be.
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An S-occurrence of � must, in its �rst line, be the result of an application of a rule
having lambda as a v-section. However, if L(vh) or R(vh) = �, the application of the
rule (uh; vh) need not result in an S-occurrence of �. E.g., in the system

f(a; a�bc�d); (c; �f�)g

L(v2) = R(v2) = �. In the derivation
a

a�bc�d

a�b�f��d

the application of the second rule results in the third line in which R(v2) becomes an
S-occurrence of � but L(v2) does not, being absorbed into the S-occurrence b.

Generally, we can think of a nonnull S-occurrence in a line as a maximal substring
occurrence consisting of consecutive vital character occurrences; it is brought about by
one or more rule applications each of which is responsible for creating some of its vital
character occurrences. The earliest S-occurrences are v-sections, which come about as
a result of rule applications. The more complex S-occurrences are brought about by
the modi�cation of simpler S-occurrences. The theorems that follow will describe this
process in detail.

Theorem 2.2. If the s is an S-occurrence in a line xsy of a derivation, then
either x ends in � or y begins with � or both.

Proof: Let s be any word having an S-occurrence in the derivation. Let xsy be
the �rst line that has that occurrence of s as an S-occurrence. Then xsy = �vi�, for
some �; i; �, the preceding line being �ui�. Let us make three observations.

(1) The vi must have either the rightmost character occurrence of the x, a
character occurrence of the s or the leftmost character occurrence of the y. (Otherwise
s would have an S-occurrence in the preceding line.)

(2) The vi must have a character occurrence in common with either the x or the y.
(Since s has no � but vi does, s cannot account for all of vi.)

(3) If the vi has any two character occurrences of the line xsy then it has every
character occurrence between.

From (1), (2) and (3) we infer that the vi contains either the rightmost character
occurrence of the x or the leftmost character occurrence of the y.

Case I: x = x0b, where b is a single character, and the vi contains the b. Then since
the s is an S-occurrence, the b is not vital. And since it is part of the vi, it is not a
character occurrence of the �rst line. Hence b = �.

Case II: y = cy0, where c is a single character, and the vi contains the c. Then, by
similar reasoning, c = �.
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We have proved that our theorem is true of the �rst line having that s as an
S-occurrence. But since �'s are indestructible in a derivation, our theorem is true of all
the lines having that s as an S-occurrence.2

We consider two examples. The �rst is the system with the two rules (ab; aac�)
and (c; b�), and the derivation

ab

aac�

aab� �

aaac� � �

whose S-occurrences are underlined. These are the �rst four lines of an in�nite
derivation, which is obtained by applying the two rules alternately. The lines of this
derivation have increasingly long S-occurrences at their left ends, followed by several
S-occurrences of �.

Our second example is the system with the two rules (ab; b�ac) and (c; b�a) and the
derivation

ab

b�ac

b�ab�a

b�b�ac�a

b�b�ab�a�a

Each line of the resulting in�nite derivation will have several S-occurrences of b,
followed by an S-occurrence of either ab or ac, and then several S-occurrences of a.

De�nition (the sets SL and SR). SL = fxjsome derivation has a line x�y in
which the x has no nonvital character occurrencesg. SR = fyjsome derivation has a line
x�y in which the y has no nonvital character occurrencesg. It is not di�cult to see that
� 2 SL (SR) if and only if � 2 L(vj) (R(vj)) for some j; 1 � j � k. (k is the number of
rules.)

It is clear from the de�nitions that SL [ SR � S.

Theorem 2.3. If xbsy (xsby) is a line of a derivation in which the s is an
S-occurrence and the apparent letter b is an occurrence from the �rst line, then
s 2 SL (s 2 SR).

Proof for xbsy: By Theorem 2.2, y = �y0 for some y0. The result of deleting all
lines of the derivation after the line xbsy, and then deleting the noted b and all
characters to its left from all lines, is a derivation possibly with repeated lines, having
the line sy = s�y0 in which the apparent s is an S-occurrence, and hence is vital. Thus
s 2 SL by de�nition.
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The proof that s 2 SR when the line is xsby is symmetric.2

Theorem 2.4. (a) SL = the smallest set C such that, for all j, (1) L(vj) 2 C, and
(2) xujy 2 C implies xL(vj) 2 C. (b) SR = the smallest C 0 such that, for all j,
(1) R(vj) 2 C 0, and (2) xujy 2 C 0 implies R(vj)y 2 C 0.

Proof that C � SL: We get L(vj) 2 SL from the two-line derivation uj; vj. If
xujy 2 SL then xujy has no � and there is a derivation of xujy�z, for some z. This
derivation can be extended to become a derivation of xvjy�z, which shows that
xL(vj) 2 SL.

Proof that SL � C: In any derivation D, put J(D) = fjj the jth line does not
begin with a character occurrence of the �rst lineg. If j 0 > j 2 J(D) and D has a j 0th

line then j 0 2 J(D) also. For each j 2 J(D), let the jth line be xj�yj, where xj is
iota-free. Clearly, if J(D) 6= ; and j0 is the smallest member of J(D) then xj0 = L(vh)
for some h. Also, if j > j0 and xj 6= xj�1 then, for some x0; y0; h0 where x0 has no �,
xj�1 = x0uh0y0 and xj = x0L(vh0). Let L(D) = fxjjj 2 j(D)g. We have proved that
L(D) � C. Since SL =

S
L(D) where the union is taken over all derivations D in the

system, we have SL � C.

Thus SL = C. The proof that SR = C 0 is symmetric.2

We shall generally focus on SL knowing that, whatever we prove about SL, an
appropriate similar assertion can be proved about SR.

De�nition (The set SLi). For each i, 1 � i � k,

SLi = fxjx has no � and L(vi)�!
� x�y for some yg

The proofs of the following two theorems are straightforward:

Theorem 2.5. SL = SL1 [ � � � [ SLk.

Theorem 2.6. If xujy 2 SLj0 then xSLj � SLj0.

Continuing the examples given above, in the system whose rules are (ab; aac�) and
(c; b�) we have SL = fbg [ faib; aicji � 2g and SR = f�g. In the system whose rules are
(ab; b�ac) and (c; b�a), we have SL = fbg and SR = fac; ag.
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Theorem 2.7. S = the smallest set S 0 such that:

(1) every v-section is in S 0;
(2) SL [ SR � S 0;
(3) if uh = xy and yz 2 SL then R(vh)z 2 S 0;
(4) if xy 2 SR and uh = yz then xL(vh) 2 S 0; and
(5) if xuhy 2 S 0 then xL(vh) 2 S 0 and R(vh)y 2 S 0.

Proof: To prove that S 0 � S we verify that (1)|(5) are all true of S. Items (1)
and (2) are clear.

The veri�cation for item (3) is as follows: Assume uh = xy and yz 2 SL. Then for
some z0 there is a derivation whose last line is yz�z0 where the yz is vital. The result of
appending x to the left end of every line is a derivation whose last line is
xyz�z0 = uhz�z

0. We can extend this derivation by adding the line vhz�z
0, in which the

word R(vh)z will have an S-occurrence, showing that R(vh)z 2 S. The veri�cation for
item (4) is similar.

To verify that (5) is true of S, assume xuhy 2 S. Then, for some z and z0, there is
a derivation whose last line is zxuhyz

0 in which the xuhy is an S-occurrence. If we
append to this derivation the line zxvhyz

0 the result is a derivation whose last line has
both xL(vh) and R(vh)y as S-occurrences, showing that both these words are in S.
(Examples illustrating (3) and (5) are provided after this proof.)

To prove that S � S 0 we assume an arbitrary derivation D and prove that every
S-occurrence in D is in S 0. We do so by proving the following proposition by
mathematical induction on i: If D has at least i lines then every S-occurrence in the ith

line is in S 0.

This proposition is true for i = 1, since the �rst line has no S-occurrences.
Assume it is true for the ith line and let the (i+ 1)st line be xsy in which the s is an
S-occurrence. Assume also that s does not have an S-occurrence in the ith line, and
that uh ! vh is the rule by means of which the ith line is rewritten as the (i+ 1)st line.

If s = � then s is either (a) at the left end of the line, which begins in �, (b) at the
right end of the line, which ends in �, (c) 
anked by two consecutive �'s, (d) 
anked by
nonvital b 6= � on the left and � on the right, or (e) 
anked by � on the left and nonvital
c 6= � on the right. Since � is not an S-occurrence in the preceding line in the
derivation, the s must be a factor of the vh in the (i+ 1)st line. In each of the cases (a),
(b), (d) and (e), the � 
anking the s must be part of the vh and � is a v-section of vh.
In case (c) either both �'s are part of the vh and hence � is an interior v-section of vh,
or only one of the two �'s is part of the vh and � is an end v-section of vh.

Henceforth we assume s 6= �. Let the noted occurrence of s in the (i+ 1)st line
consist of the B(s)th through the E(s)th characters of that line, in left-to-right order.
And let the noted occurrence of vh in that line consist of the B(vh)

th through the
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E(vh)
th characters. Note that B(vh) � E(vh) and B(s) � E(s). To carry through the

proof, we divide into cases based on the relative positions of s and vh in the
(i+ 1)st line.

Case I: B(vh) � B(s) and E(s) � E(vh). Then s is a factor of vh, and since s is an
S-occurrence of the (i + 1)st line, s must be a v-section of vh. By (1), s 2 S 0.

In the remaining cases either E(vh) < E(s) or B(s) < B(vh). Note that
E(vh) < E(s) implies B(vh) < B(s) and B(s) < B(vh) implies E(s) < E(vh): for, since
vh has an occurrence of � but s does not, the vh cannot be wholly inside the s. The
possibility E(vh) < E(s) will give rise to Cases II and III, while the possibility
B(s) < B(vh) will give rise to Cases IV and V, which are right-left symmetric to
Cases II and III, respectively.

Case II: E(vh) < B(s). I.e., B(vh) � E(vh) < B(s) � E(s). Then
E(vh) = B(s)� 1; for otherwise there would be no change in the vicinity of the s in
going from the ith line to the (i+ 1)st line, and the s being an S-occurrence in the
(i+ 1)st line would also be an S-occurrence in the ith line, contrary to our assumption.
Furthermore, the rightmost character of vh must be �, otherwise that character
occurrence would be vital and the s would not be an S-occurrence in the (i+ 1)st line.
Thus R(vh) = �. And since s does not have an S-occurrence in the ith line, the s must
be a proper su�x of an S-occurrence rs in that line.

Case IIa: r is a proper su�x of uh, i.e., uh = r0r, r0 6= �. Then rs is an
S-occurrence in line i preceded by a character occurrence of the �rst line. (The
rightmost character occurrence of r0 cannot be � since it is part of uh, and cannot be
vital since it is not part of the S-occurrence rs.) It follows by Theorem 2.3 that
rs 2 SL. Taking x = r0; y = r; z = s, we apply (3) getting R(vh)s 2 S 0. Since
R(vh) = �, we have s 2 S 0.

Case IIb: r is not a proper su�x of uh. Then r = r00uh, for some r00. Here we
apply (5) to get s = R(vh)s 2 S 0 from r00uhs 2 S 0, completing Case II.

Case III: E(vh) < E(s) and B(s) � E(vh). Since vh cannot be a substring of s, we
get B(vh) < B(s). Thus Case III implies B(vh) < B(s) � E(vh) < E(s). Consider the
character occurrence b immediately to the left of the leftmost character occurrence of s.
It must be an �, for otherwise it would be vital and would have to be part of the
S-occurrence s. Furthermore, it must be the rightmost � in the vh, for otherwise, there
would be an � inside of the S-occurrence s. Therefore, we can assume that the (i + 1)st

line is x0z1�z2z3y, where vh = z1�z2, s = z2z3 and z2 = R(vh). The i
th line is x0uhz3y.

Case IIIa: all the character occurrences of the uh are vital in the ith line. Then, for
some x00; x000 where x0 = x00x000, the x000uhz3 is an S-occurrence in the ith line. By the
inductive hypothesis, x000uhz3 2 S 0, and by (5), s = R(vh)z3 2 S 0.
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Case IIIb: not all the character occurrences in the uh in the ith line x0uhz3y are
vital. Then uh = u0u00 where u0 6= �, all the character occurrences in the u00 are vital
but the rightmost character occurrence in the u0 is not vital. This character occurrence
is not an �, so it must be a character occurrence of the �rst line of the derivation. It
follows that u00z3 is an S-occurrence, since all its character occurrences are vital but it
is not adjacent to a vital character occurrence in the ith line, either on the left or on the
right. Moreover, by Theorem 2.3, u00z3 2 SL. Thus s = R(vh)z3 2 S 0 by (3).

Case IV: E(s) < B(vh), i.e., B(s) � E(s) < B(vh) � E(vh). This case is left-right
symmetric to Case II. (It is obtained from Case II by simultaneously interchanging <
and > and interchanging B and E.)

Case V: B(s) < B(vh) and B(vh) � E(s), i.e., B(s) < B(vh) � E(s) < E(vh).
This case is left-right symmetric to Case III.2

We illustrate (3) of Theorem 2.7 by the Thue system

f(c; aa�e); (ba; h�gg

Taking x = b, y = a and z = a, we have xy = ba = u2 and yz = aa 2 SL � S 0. Hence
by (3) we get ga = R(v2)z 2 S 0. A derivation with an S-occurrence of ga is:

bc

baa�e

h�ga�e

We illustrate (5) by the Thue system

f(e; h�ab); (f; cd�j); (bc; h�j)g

Assume for the moment that abcd 2 S 0, and take x = a, y = d. Since u3 = bc, by (5) we
get ah = xL(u3) 2 S 0 and jd = R(v3)y 2 S 0. A derivation with S-occurrences of abcd,
ah and jd is

ef

h�abf

h�abcd�j

h�ah�jd�j

De�nition (ABC property). A word w has the ABC property if there exist
words A;B;C such that w = ABC, jBj � max1�h�k(jvhj), Ax1 2 SR for some x1 and
x2C 2 SL for some x2.

Theorem 2.8. Every s 2 S has the ABC property.
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Proof: Since S = S 0 (see Theorem 2.7) we can complete our proof by showing that
every s 2 S 0 has the ABC property.

To this end we note that (1) if s is a v-section then we can take A = C = � and
B = s.

For (2), if s 2 SL (SR) then we can take A = B = � and C = s (B = C = � and
A = s).

For (3), if s = R(vh)z where uh = xy and yz 2 SL, then we can take A = R(vh),
x1 = �, B = �, C = z and x2 = y.

For (4), if s = xL(vh) where xy 2 SR and uh = yz, then we can take A = x,
x1 = y, B = �, C = L(vh) and x2 = �.

For (5) we should demonstrate that if xuhy has the ABC property then both
s1 = xL(vh) and s2 = R(vh)y also have it. Accordingly, we assume that xuhy = A0B0C 0

where jB0j � max1�h�k(jvhj), A
0x01 2 SR and x02C

0 2 SL. We shall prove that s1 has the
ABC property, leaving the similar proof for s2 to the reader. A division into cases is
required according to whether or not x is a pre�x of A0 and, if not, whether or not it is
a pre�x of A0B0.

Case I: A0 = xA00. Then, for s1 = xL(vh), take A = x, x1 = A00x01, B = �,
C = L(vh), x2 = �, which satis�es the requirement, since Ax1 = xA00x01 = A0x01 2 SR,
x2C = L(vh) 2 SL and jBj = 0.

Case II: B0 = B00
1B

00
2 , x = A0B00

1 . For s1 = xL(vh), take A = A0, x1 = x01, B = B00
1 ,

C = L(vh) and x2 = �, which satis�es the requirement, since A is the same as A0, B is
no longer than B0 and x2C = L(vh) 2 SL.

Case III: C 0 = C 00C 000, x = A0B0C 00. Since A0B0C 0 = xuhy, we have C
000 = uhy and

C 0 = C 00uhy. We now take A = A0, x1 = x01, B = B0, C = C 00L(vh) and x2 = x02. Clearly
A, x1 and B satisfy the requirement, since they are the same as A0, x01 and B0.

It remains to prove x2C 2 SL. Note �rst that

x02C
00uhy = x02C

00C 000 = x02C
0 2 SL

So, by Theorem 2.4, x02C
00L(vh) 2 SL. Since x

0
2 = x2 and C 00L(vh) = C, we have

x02C
00L(vh) = x2C, and our proof is complete.2

Theorem 2.9. If S is in�nite then either SL or SR is in�nite.

Proof: If S is in�nite then fjsjjs 2 Sg is an unbounded set of lengths. By
Theorem 2.8, each s = AsBsCs in accord with the ABC property. Since fjBsjjs 2 Sg is
bounded, either fjAsjg or fjCsjg is unbounded. But each As (Cs) is a factor of a
member of SR (SL). It follows that either SR or SL is in�nite.2
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3. The algorithm. This section presents the algorithm to determine whether a
given semi-Thue system with an inhibitor is uniformly terminating,1 using the analysis
of the preceding section. At the conclusion of this section, it is proved that the halting
problem and the derivability problem are also decidable.

The algorithm will begin by constructing �nite automata for the languages SL

and SR.

De�nitions related to �nite automata. A nondeterministic �nite automaton
(automaton for short) is a �nite directed graph each of whose arcs has either a letter or
the symbol � as a label; one node is designated as the initial node and any number of
nodes are designated as accepting nodes. A walk through the graph is a sequence

N0; A1; N1; : : : ; Np�1; Ap; Np

where the Ni's are nodes and the Ai's are arcs, such that for each i, Ai goes from Ni�1

to Ni. This walk goes from N0 to Np. The word spelled out by this walk is the result of
deleting all �'s from the word a1a2 � � �ap where, for each i, ai is the label of Ni. In
particular, the word spelled out is the null word itself if ai = � for all i. The language
of an automaton is the set of all words spelled out by walks from the initial node to an
accepting node.

We begin by constructing, for the �nite language fL(vh)j1 � h � kg, a loopless
�nite automaton G0 with:

(1) exactly one initial node NI with no arc entering it;
(2) exactly one accepting node NT with no arc leaving it;
(3) exactly one path from NI to N and exactly one path from N to NT , for
each node N other than NI and NT ;
(4) nodes NL1 : : : ; NLk such that, for each i, the path from NLi to NT spells
out L(vi); in particular, if L(vi) = � then there is simply a lambda arc, i.e.,
arc labeled �, from NLi to NT ; and
(5) for each i, a lambda arc from NI to NLi.

The construction is done so that

(6) there are no nodes in G0 other than those required by (1){(4), and there
are no lambda arcs except those explicitly mentioned in (4) and (5).

From G0 we construct a �nite automaton GL for the language SL by repeating the
following step as often as possible: for a pair of nodes N;N 0 and an integer i; 1 � i � k,

1I am grateful to Friedrich Otto for pointing out a defect in a previous version of this algorithm
in [13].
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Figure 1: G0

Figure 2: GL

if there is a walk from N to N 0 spelling out ui, insert a lambda arc from N to NLi,
provided that there is not one already there.

Note that GL and G0, having the same set of nodes, di�er only in that GL has
certain lambda arcs that G0 does not have. It follows that the construction step is
repeated only �nitely many times and the graph GL so constructed is a
nondeterministic �nite automaton.

As an example, G0 and GL for the semi-Thue system

f(a; bc�b); (c; da�b)g

are shown in Figures 1 and 2, respectively. Thus SL = b(db)�(c [ da) [ d(bd)�(a [ bc).

The automaton GR for the language LR is like GL except that NI and NT are
interchanged and all arrows are reversed. More explicitly, we �rst construct G0R for
fR(vh)j1 � h � kg, with

(10),(20),(30) the same as (1),(2),(3);
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(40) nodes NR1; : : : ; NRk such that, for each i, the path from NI to NRi

spells out R(vi); if R(vi) = � this is simply a lambda arc; and
(50) for each i, a lambda arc from NRi to NT .

The construction is done so that

(60) there are no nodes in G0R other than those required by (10){(40), and
there are no lambda arcs except those explicitly mentioned in (40) and (50).

From G0R, GR is constructed by repeatedly �nding N , N 0 and i such that there is
a walk from N to N 0 spelling out ui; and then inserting a lambda arc from NRi to N

0.
GR is similar enough to GL so that we can carry through detailed reasoning about GL

knowing that corresponding things about GR will also follow.

Theorem 3.1. The language of GL (GR) is SL (SR).

Proof for GL: With Theorem 2.4, the proof that SL is a subset of the language of
GL is straightforward and is left to the reader.

For the converse let A1; A2; � � � ; Aq be the lambda arcs in GL other than those of
G0, in the order in which they are added in the construction. For each h, 1 � h � q, let
Gh be the graph that results from G0 by adding the lambda arcs A1; � � � ; Ah. Thus for
h < q, Gh+1 is Gh with Ah+1 added, and Gq = GL. Where Ah+1 goes from N to NLi,
there is a walk in Gh from N to some node N 0 spelling out ui.

Let P (h; n), for q � h � 1 and n � 0, be the following assertion: For all i,
1 � i � k, if w is spelled out by a walk in Gh from NLi to NT in which the lambda arc
Ah occurs at most n times then w 2 SLi.

Our objective will be to prove that P (q; n) is true for all n. First we note that
P (1; 0) is true, since for each i there is only one walk in G1 without the arc A1 from
NLi to NT , which is a walk in G0, and that walk spells out the word L(vi) 2 SLi.

Next we prove that, for each h � q and n, P (h; n) implies P (h; n+ 1): Assume
P (h; n) and let w be spelled out by a walk W in Gh from NLi to NT in which Ah occurs
n+ 1 times. Let W = W1AhW2 where Ah occurs n times in W1 but does not occur in
W2. Let W1 and W2 spell out w1 and w2, respectively. Assume Ah goes from node N to
NLg. By the construction of Gh from Gh�1 there is a walk W3 in Gh�1 from N to NT

spelling out a word ugy for some y. The walk W1W3 spelling out w1ugy has only n
occurrences of the arc Ah. Thus P (h; n) implies w1ugy 2 SLi. The walk W2 from NLg

to NT has no occurrences of the arc Ah. Hence w2 2 SLg, which, by Theorem 2.6,
implies w1w2 2 SLi. So P (h; n) implies P (h; n+ 1) for all h � q and n.

From this it follows by mathematical induction that, for all n and h � q, P (h; 0)
implies P (h; n). But, for all h < q, P (h; n) for all n is equivalent to P (h+ 1; 0).
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Putting all this together we get the proposition

For all n; P (q; n)

which, by Theorem 2.5, clearly implies that the language of Gq = GL is included in SL,
concluding the proof that the language of GL equals SL.

The proof that the language of GR is SR is similar.2

Next it is proved that certain derivations in the semi-Thue system can be obtained
from certain walks in GL and GR. In particular, loops in the automaton graphs will
yield derivation loops in the semi-Thue system. We con�ne our attention to GL,
knowing that corresponding results about GR will also be valid. We re�ne our
consideration of the algorithm in obtaining the graph GL from G0, considering the
sequence G0; G1; : : : ; Gq = GL as de�ned in the proof of Theorem 3.1.

De�nition (w0(N)). For any node N other than NI , w0(N) is the word spelled
out by the unique walk from N to NT in G0.

Theorem 3.2. For each i, 0 � i � q, and for any two nodes N and N 0 in Gi other
than NI , if there is a walk from N to N 0 spelling out a word x, then
w0(N)!� xw0(N

0)z, for some z. If the walk has at least one lambda arc then
w0(N)!+ xw0(N

0)z, for some z. These derivations are obtainable e�ectively.

Proof: We begin by proving the �rst sentence by mathematical induction on i.
That sentence is clearly true for i = 0: in this case w0(N) = xw0(N

0), since the only
relevant walks are segments of the walks from the NLi's to NT , which are disjoint from
one another. We now assume it is true for i, 0 � i � q � 1 (the i inductive hypothesis)
and prove it is true for i + 1. This proof is itself by mathematical induction on the
length of the walk from N to N 0. The proposition is clearly true when this length is 0.
We assume it for walks of length e (the e inductive hypothesis) and we prove it for
walks of length e + 1. Thus let

N0 = N;N1; : : : ; Ne; Ne+1 = N 0

be this walk in Gi+1, and let the word xe+1 = xea be the word spelled out by it, xe
being the word spelled out by the walk N1; : : : ; Ne of length e. By the e inductive
hypothesis, w0(N0)!

� xew0(Ne)z, for some z.

Case I: a 6= �. Then the arc from Ne to Ne+1 labeled a is on the walk in G0 from
Ne to NT . Consequently, w0(Ne) = aw0(Ne+1), so, for some z,

w0(N0)!
� xew0(Ne)z = xeaw0(Ne+1)z = xe+1w0(Ne+1)z

Case II: a = �. Then Ne+1 = NLh for some h, and (whether the lambda arc from
Ne to Ne+1 is the new lambda arc of Gi+1 or one already in Gi) there is a walk from Ne
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to NT in Gi spelling out a word uhz
0, for some z0. By the i inductive hypothesis,

w0(Ne)!
� uhz

00, for some z00. Thus we have, for some z000:

w0(N0)!
� xew0(Ne)z !

� xeuhz
00z ! xeL(vh)z

000 = xe+1w0(Ne+1)z
000

since xe = xe+1 and L(vh) = w0(Ne+1).

This concludes the proof of the �rst sentence in the statement of our theorem.
The second sentence follows from the fact that a lambda arc in the walk causes Case II
to apply, insuring that the derivation has at least one step. Clearly, all these
derivations are obtained e�ectively.2

De�nition (loop derivation). If w .� y and y .+ y then we say the system has a
loop derivation on y from w. Note that a loop derivation provides us with one kind of
in�nite derivation: from w !� x0yz0 and y !+ xyz, we get the in�nite derivation

w; : : : ; x0yz0; : : : ; x0xyzz0; : : : ; x0xxyzzz0; : : :

From the proof of Theorem 3.2 we also get

Theorem 3.3. If node N is on a loop in GL then there is a loop derivation on
w0(N) in the semi-Thue system.

(It should be mentioned that a loop does not imply that SL is an in�nite set. It is
possible for the loop to consist entirely of lambda arcs and for SL to be �nite. For
example, this happens with the system with the two rules (a; b�c), (b; a�c), for which
SL = fa; bg. Following the constructions we get a .+ a, which we could have inferred in
this simple example from the observation that a!2 a�c�c.)

De�nition. m = max1�h�k(jvhj).

Theorem 3.4. If s 2 S and jsj > (2k+1)m then there is a loop derivation from s.

Proof: That s has the ABC property (by Theorem 2.8) and that jsj > (2k + 1)m
together imply that s = ABC where Ax1 2 SR and x2C 2 SL, for some x1; x2, and
either jAj > km or jCj > km.

Case I: jCj > km. Since x2C 2 SL, there is a walk in GL spelling out C ending at
NT . But, by the construction of GL, all words spelled out by loop-free paths in GL have
length � km. Thus there is a loop in the walk spelling out C, and so by Theorem 3.3
there is a loop derivation on some su�x of C, and hence a loop derivation from s.

Case II: jAj > km. The proof is similar, using the graph GR for SR:2

Theorem 3.5. There is an algorithm that determines whether both GL and GR

are without loops and, if so, enumerates the �nite set S.

Proof: By Theorem 3.1, SL = L(GL) and SR = L(GR). It is easy to tell whether
both graphs are without loops.
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Assume now that they are without loops. Then the sets SL and SR are �nite and,
by Theorem 2.9, so is S. SL and SR are enumerable from GL and GR. Let S0 be the
smallest set satisfying (1){(4) of Theorem 2.7. From the �nite enumeration of SL and
SR we can enumerate S0. Noting that S is the smallest class that contains S0 and is
closed under (5) of Theorem 2.7, let us recursively de�ne the sets Si+1, for all i � 0:

Si+1 = Si [ fxL(vh); R(vh)yjxuhy 2 Si; 1 � h � kg

Clearly, Si+1 is computable from Si; and S =
S1
i=1 Si. But since S is �nite by

Theorem 2.9, in computing the successive Si's, eventually we shall reach an i such that
Si+1 = Si, which implies that, for this i, S = Si:2

Theorem 3.6. If a semi-Thue system with an inhibitor in which S is �nite has an
in�nite derivation then there exists an s 2 S such that s .+ s.

Proof: Since there is an in�nite derivation, there is an in�nite S sequence
s1; s2; � � � by Theorem 2.1. Because S is �nite there must exist p and q, q > p, such
that sp = sq. Thus sp .

+ sp:2

Theorem 3.7 (Main Theorem). There is an algorithm that produces either a
loop derivation in a given semi-Thue system with an inhibitor, or the information that
the system is uniformly terminating.

Proof: The algorithm begins by constructing the automaton GL for SL. If GL has
a loop then from that loop a loop derivation is e�ectively determined, by Theorem 3.3.

If GL has no loop, the analogous automaton GR for SR is constructed. If GR has a
loop, analogously a loop derivation is e�ectively determined.

If neither GL nor GR has a loop then, by Theorem 3.5, S is �nite and can be
enumerated. The . relation on S is computed and, from this, the .+ relation on S. If
there is an s 2 S such that s .+ s then we have a loop derivation, e�ectively.
Otherwise, by Theorem 3.6, the system has no in�nite derivation.2

Corollary 1. The uniform termination problem for semi-Thue systems with an
inhibitor is decidable.

Corollary 2. If a semi-Thue system with an inhibitor has an in�nite derivation
then it has a loop derivation.

In studying the complexity of the algorithm of Theorem 3.7, we assume that the
expression T naming the semi-Thue system is simply the list of its rules,
(u1; v1); � � � (uk; vk). The following assertions should be clear to the reader: The
automaton G0 is constructible in polynomial time. Each Gi+1 is constructible from Gi

in polynomial time. Since all the automata G0; G1; : : : ; Gq = GL have the same set of
nodes and each Gi+1 is obtained from Gi by adding an arc, q is bounded by a
polynomial in the number of these nodes. Thus the construction of the
nondeterministic �nite automaton GL is accomplished in polynomial time, and
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similarly for GR. It is possible to determine in polynomial time whether GL (GR) has a
loop, and if so to produce the loop derivation in polynomial time.

However, I cannot prove that the enumeration of SL (SR), if it is �nite, can be
done in polynomial time, since jSLj (jSRj) may be exponential in the size of GL (GR).

Thus if GL or GR has a loop, the main algorithm produces a loop derivation in
polynomial time and terminates. But if neither GL nor GR has a loop then the main
algorithm has to enumerate the �nite set S. Since there is no polynomial bound on jSj
for those S that are �nite, the algorithm as written in the proof of Theorem 3.7 is not a
polynomial-time algorithm. However, this does not imply that the following has a
negative answer:

Open question 1. Is there a polynomial-time algorithm for the problem of
whether a given semi-Thue system with an inhibitor is uniformly terminating?

This section closes by settling the two remaining problems of Section 1, the
halting problem and the derivability problem for semi-Thue systems with an inhibitor.

Theorem 3.8. The halting problem for semi-Thue systems with an inhibitor is
decidable. If such a system has an in�nite derivation from a word w then it has a loop
derivation from w.

Proof: For a given w and T = f(u1; v1); � � � ; (uk; vk)g let �i be the set of
derivations from w of length i, and let 
i be the set of all S-sequences that can be
taken from those derivations (as in the proof of Theorem 2.1). Note that �1 = 
1 = ;,
and each �i+1 and 
i+1 are readily computable from �i and 
i. Consider three
possibilities:

(1) For some i > 1, �i = ;. Then there is no in�nite derivation from w.

(2) There is an i and an S-sequence in 
i with a repeated S-expression.
Then there is an loop derivation from w.

(3) There is an i and an S-sequence in 
i with an S-expression s such that
jsj > m. Then by Theorem 3.4 there is a loop derivation from s, and hence
a loop derivation from w.

If any of these possibilities occurs, then we have the answer to the question after a
�nite amount of time. It remains to prove that one of them must occur. Theorem 1.1
can be used to prove that if there is no in�nite derivation from w then the set of
lengths of the derivations from w has an upper bound and possibility (1) will occur. If
there is an in�nite derivation from w then by Theorem 2.1 there is an in�nite
S-sequence s1; s2; � � �. The proof of that theorem makes it clear that w .� s1, and hence
w .� si, for all i. If that S-sequence has a repeated element then possibility (2) will
occur. If not there will be no bound on the length of the elements occurring in that
S-sequence and possibility (3) will occur.2

20



Theorem 3.9. The derivability problem for semi-Thue systems with an inhibitor
is decidable.

Proof: We de�ne I(w) to be the number of iotas in the word w. Where
w0; w1; � � � ; wp is a derivation and 0 � i � p� 1, let I(wi+1)� I(wi) be the weight of the
(i+ 1)st step, which equals I(v), (u; v) being the rule used. Let the weighted length of
a derivation be the sum of the weights of all the steps of the derivation. Given x and y,
any derivation of y from x must have a weighted length of I(y)� I(x).

The algorithm that decides whether y is derivable from x simply enumerates all
derivations from x whose weighted length equals I(y)� I(x). Because all weights are
positive, no line z such that I(z) > I(y) can be part of a such a derivation.
Consequently, the list of such derivations can be enumerated readily. Finally, y is
derivable from x if and only if the last line of one of these derivations is y:2

Open question 2. Does there exist an algorithm for the following problem:
Given a semi-Thue system with an inhibitor and words x and y, does x .� y hold?

4. Well behaved derivations.2 We now turn our attention to semi-Thue
systems without an inhibitor, with an emphasis on those having only one rule. Some
derivations in these systems turn out to be like those in systems with an inhibitor.

De�nition (inhibited rule, inhibition system). If ui ! v0v00 is a rule of a
semi-Thue system T without � then u! v0�v00 is an inhibited rule of T . (v0 or v00 can be
the null string.) The inhibition system of T is the semi-Thue system whose rules are all
the inhibited rules of T . An immediate consequence of this de�nition is

Theorem 4.1. If x1; x2; : : : is a �nite or in�nite derivation in the inhibition
system of the semi-Thue system T then, where each x0i is xi with all �'s erased,
x01; x

0
2; : : : is a derivation in T .

De�nition (well behaved, ill behaved). A derivation D in a semi-Thue
system T without � is well behaved if there is a derivation in the inhibition system of T
from which D is the result of deleting all �'s. Otherwise D is ill behaved.

From Theorems 4.1 and 3.7 we get

Theorem 4.2. There is an algorithm that produces, given a semi-Thue system
without �, either a well behaved loop derivation in the system or the information that
the system has no well behaved in�nite derivation.

Example 1. The inhibition system T 0 of the system T whose one rule is (cb; bbcc)
has �ve rules:

(cb; �bbcc)

2This section is based on material from [13].
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(cb; b�bcc)

(cb; bb�cc)

(cb; bbc�c)

(cb; bbcc�)

This system T 0 has an in�nite derivation. In fact, all we need for this in�nite
derivation is the one rule (cb; bb�cc). The in�nite derivation is based on the following
loop of length 2:

ccb

cbb�cc

bb�ccb�cc

(In this and the examples to follow, the part of the line with an underscore is the
occurrence of u that is rewritten as the v in the next line, which has an overscore.) The
(2n)th line in the in�nite derivation is (bb�)n�1cbb(�cc)n; the (2n+ 1)st line is
(bb�)nccb(�cc)n.

Accordingly, the original system also has an in�nite well behaved derivation based
on the loop

ccb

cbbcc

bbccbcc

The (2n)th line of this in�nite derivation is (bb)n�1cbb(cc)n; the (2n+ 1)st line is
(bb)nccb(cc)n.

Example 2. The following is an ill behaved derivation in the system with the one
rule (ccb; bbccc):

ccccbb

ccbbcccb

bbcccbcccb

bbcbbccccccb

bbcbbccccbbccc

bbcbbccbbcccbccc

To prove that this derivation is ill behaved we note that the inhibition system has
six rules, whose right sides are, respectively, �bbccc, b�bccc, bb�ccc, bbc�cc, bbcc�c and
bbccc�. Thus the second line in the corresponding derivation in the inhibition system
has six possibilities. It is left to the reader to verify that in each of these six cases the �
will inhibit the replacement of the occurrence of bbc in one of the lines below. (For
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example, if the ccb in the �rst line is rewritten as bb�ccc in the second line then the ccb
in the �fth line cannot be rewritten.)

However, the �rst �ve lines of the above derivation form a well behaved derivation,
which can be veri�ed by considering the following derivation in the inhibition system:

ccccbb

ccbbc�ccb

�bbcccbc�ccb

�bbc�bbcccc�ccb

�bbc�bbcccc�bbccc�

If all the �'s from this derivation are deleted, what remains are the �rst �ve lines of the
above derivation in T .

The system with the single rule (ccb; bbccc) has an in�nite derivation. This is clear
from the �rst �ve lines of our original derivation, which shows that

ccccbb .4 ccccbb

The sixth line of this in�nite derivation is the sixth line of the above derivation, which
shows that the in�nite derivation is ill behaved.

This system has no in�nite well behaved derivation. To verify this fact we can
refer to Theorem 4.1 and prove that its inhibition system has no in�nite derivation.
Using the algorithm of Section 3 for this is tedious as it involves enumerating S.
Rather than do this we work with a superset of S:

Put T = fbicjj0 � i � 2; 0 � j � 3g. Then it is rather simple to verify using
Theorem 2.4 that

SL = f�; b; bb; bbc; bbcc; bbcccg and

SR = f�; c; cc; ccc; bccc; bbcccg

Thus SL [ SR � T ; in particular, for each rule (u; v), we have L(v); R(v) 2 T .

Next, we use Theorem 2.7 to verify that

S � TT = fbicjbkcmj0 � i; k � 2; 0 � j;m � 3g

by proving the following:

(1) every v-section is in TT ;
(2) SL [ SR � TT ;
(3) (since all rules have the same left side ccb) if xy = ccb and yz 2 SL

then R(v)z 2 TT (for all right sides v);
(4) if xy 2 SR and yz = ccb then xL(v) 2 TT ; and
(5) if xccby 2 TT then xL(v) 2 TT and R(v)y 2 TT .
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Parts (1) and (2) are clear. For (3), yz 2 SL implies yz 2 T ; furthermore,
R(v) 2 T for all rules (u; v); hence R(v)z 2 TT . The reasoning for (4) is similar to the
reasoning for (3).

For (5), xccby = bicjbkcm implies that xcc = bicj and by = bkcm. So, a fortiori,
x 2 T and y 2 T . From L(v); R(v) 2 T , we then get xL(v); R(v)y 2 TT .

Having proved that S � TT , we complete the proof that the inhibition system has
no in�nite derivation by proving there is no in�nite S sequence (invoking Theorem 2.1).

The proof is by contradiction. Assume there is an in�nite S sequence s1; s2; : : : .
Then each sh 2 TT ; sh . sh+1; sh = bicjbkcm; and sh+1 = bi

0

cj
0

bk
0

cm
0

with i; i0; k; k0 � 2
and j; j 0; m;m0 � 3. The following must be true:

(a) j � 2 and k � 1. (Otherwise, nothing could be derived from uh.)

(b) Either j 0 = j � 2 or k0 = k � 1.

(Part (b) can be veri�ed by �rst noting that there is only one occurrence of ccb in
sh = bicjbkcm. Thus if sh ! w, then w is a word resulting from

bicj�2=bbccc=bk�1cm

by placing a single � anywhere between the two slashes and deleting the slashes; sh+1 is
either the word to the left of the � or the word to its right. If to the left then j 0 = j � 2;
if to the right, k0 = k � 1.)

Taking s1 = bicjbkcm and s2 = bi
0

cj
0

bk
0

cm
0

, we have by (b) either j 0 = j � 2 � 1 or
k0 = k � 1 � 1. If s3 exists then j 0 > 1 by (a), so k0 � 1. By (a) again we get k0 = 1.

Where s3 = bi
00

cj
00

bk
00

cm
00

we get by (b) either j 00 = j 0 � 2 � 1 or k00 = k0 � 1 = 0.
By (a) we then see that s4 cannot exist, which completes our proof that the system
with the one rule (ccb; bbccc) has no in�nite well behaved derivation, ending our
discussion of Example 2.

In [13] there is a much more expeditious algorithm for the problem of whether a
given one-rule semi-Thue system has an in�nite well behaved derivation. That
algorithm does not require consideration of the inhibition system of the given system,
but involves a structural analysis of one-rule systems that is well outside the purview of
this paper. That structural analysis having been established, the proof in [13] that the
one-rule system (ccb; bbccc) has no in�nite well behaved derivation takes one quarter
the space used in the proof given above as part of Example 2.

This example generalizes. Zantema and Geser [16] prove that a system with one
rule

(cmbn; bpcq)
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in which (1) p > n, (2) q > m, and (3) either p is a multiple of n or q is a multiple of
m, has an in�nite derivation. In [13] it is proved that such a system in which either
p < 2n or q < 2m has no in�nite well behaved derivation. From these two results it
follows that any such system in which either 2n > p > n and q = in for i an integer � 2
or else 2m > q > m and p = in has an in�nite ill behaved derivation but no in�nite well
behaved derivation.

Interestingly, it is proved in [16] that there is no in�nite derivation at all in any of
the following cases: (1) p � n, (2) q � m, (3) p < 2n and q is not a multiple of m,
(4) q < 2m and p is not a multiple of n. (Senizergues [14] has extended these results of
Zantema and Geser.) In [13] it is proved that if p � 2n and q � 2m then there is an
in�nite well behaved derivation.

The two examples discussed in this section illustrate the distinction between well
behaved in�nite derivations and ill behaved in�nite derivations. They are intended to
suggest the importance of this distinction to the question of whether the uniform
halting problem for one-rule semi-Thue systems is decidable. It is generally conjectured
that this problem is decidable, and some progress has been made in proving partial
results along that line. However, the question of whether the uniform halting problem
for one-rule semi-Thue systems is decidable is very much open. It seems to me that
further progress on this question will come only if research workers achieve a structural
understanding of ill behaved derivations. There are partial results towards this end
in [13].

The halting problem is open for one-rule semi-Thue systems. On the other hand,
we have

Theorem 4.3. The derivability problem is decidable for one-rule semi-Thue
systems.

Proof: Given x, y and a semi-Thue system whose one rule is (u; v) our algorithm
to determine whether y is derivable from x divides into three cases according to the
relative lengths of u and v: Case I, jvj < juj; Case II, jvj = juj; and Case III, jvj > juj.
In Cases I and II, the �nite set of words derivable from x can be enumerated, and the
presence or absence of y in the set easily determined. In Case III, the �nite set of
words derivable from x whose length does not exceed that of y can be enumerated,
again yielding an answer to the question.2

For a class of semi-Thue systems an interesting question is, does every semi-Thue
system in the class with an in�nite derivation have a loop derivation? The result in
Section 3 shows that this question has an a�rmative answer for the class of semi-Thue
systems with an inhibitor. When restricted to well behaved in�nite derivations, it has
an a�rmative answer for all semi-Thue systems. However, it is an open question for
one-rule semi-Thue systems; which means that the question restricted to in�nite ill
behaved derivations is open for one-rule semi-Thue systems.
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