
Case Study of a Learning Algorithm for the Longest

Common Subsequence Problem

Eric A. Breimer and Mark K. Goldberg

Rensselaer Polytechnic Institute

Abstract

Based on the behavior of a supervisor-algorithm, we present a learning algorithm which
designs an improved algorithm for solving the Longest Common Subsequence problem (LCS).
The supervisor is the standard dynamic programming algorithm (DP) for LCS. The learning
algorithm applies DP to inputs generated randomly according to a probability distribution D.
The optimal solutions generated by DP are used to build a search area. The search area is
then used to develop a new algorithm tailored for solving the LCS problem for inputs generated
according to D.

We present experiments showing the learning curve of the algorithm and the performance
parameters of the new LCS-algorithm after a prescribed approximation ratio has being achieved.
In particular, our experiments with two random 0,1-sequences of length n suggest that applying
O(n0:630) training samples guarantees an LCS-algorithm whose approximation ratio is 0.95 and
the running time is O(n1:654) (vs the quadratic time of DP). Our experiments also indicate a
relationship between the distribution of the input symbols and the structure of the search area.
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1 Introduction

Let � = f�1; �2; : : : ; �kg be a �nite alphabet and let A = fAig
m
i=1 be a �nite set of strings in �.

The Longest Common Subsequence problem (LCS) is to �nd a longest sequence which is a common
subsequence for all Ai (i = 1; : : : ;m). The standard dynamic programming algorithm (DP) ([12])
solves the problem in O(nm) time, where n is the length of the longest sequence in the input.
However, for many applications, such a running time is impractical, even if m is small (see [10]).
This prompted a search for faster algorithms, possibly approximate, but with good performance
bounds (see [2], [4], [8]).

In this paper, we present a learning algorithm which outputs an algorithm for LCS. For a given
class of inputs, the algorithm builds a description of a search area based on the solutions produced
by the dynamic programming algorithm. With every new training example, the modi�ed search
area|a subset of the dynamic programming matrix|is tested to determine the accuracy of the
procedure for LCS de�ned by the search area. After accumulating enough training samples to reach
a target approximation ratio, the learning algorithm returns an approximate procedure for solving
LCS. Learning can be resumed to increase the approximation ratio of the procedure.

In our experiments, given a class of input strings, the learning algorithm is trained to construct a
common subsequence whose length is at least 0.951 the length of the maximal common subsequence.
We experimented with a variety of input classes, for which the strings are randomly generated
according to probability distributions described by linear functions with di�erent parameters.

We experimentally investigate the learning curve of the algorithm and the performance of the LCS-
procedure after learning has been completed. In particular, the experiments with the class of two
randomly generated 0,1-sequences of length n suggest that applying O(n0:630) training samples
guarantees an LCS-algorithm whose approximation ratio is 0.95 and the running time is O(n1:654)
(the standard algorithm for this case is quadratic). Other experiments show the performance of the
algorithm on inputs with multiple sequences, alphabets with more than two letters, and di�erent
probability distributions of the letters in the input sequences. We compare the performance of our
LCS-algorithm with the algorithm Expansion described in [2].

Note that our learning algorithm producing an LCS-procedure can also be viewed as an LCS-
algorithm which improves its performance by alternating learning and testing.

Further on in the paper, the following terminology is used. For a sequence A = A[i]pi=1, A[1::k]
denotes the subsequence of A comprised of the �rst k entries of A. If A = fAkg

m
k=1 is a collection

of sequences in an alphabet �, then length[i1; : : : ; im] denotes the length of the longest common
subsequence of the sequences A[1::i1]; : : : ; A[1::im].

1The constant 0.95 was arbitrarily selected for presentation; experiments were also conducted with approximation

ratios ranging from 0.75 to 0.99.
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2 Algorithm

Throughout this section, we describe the 2-dimensional case of LCS (the input is comprised of
two strings); it is easy to see that the generalization to an arbitrary case is straightforward. Let
A and B be two sequences of length p and q respectively. Recall that the standard quadratic
dynamic programming algorithm for LCS, further called DP, computes length(p; q) by computing
length[i; j] for all i 2 [0; p], j 2 [0; q] for which i+ j < p+ q. To compute the longest subsequence
itself, the algorithm backtracks its steps that led to computing the maximal length. This yields
a sequence of pairs that trace computing length[p; q]. The sequence is denoted Trace(A;B); the
p� q-matrix is denoted Length(A;B).

Procedure DP(A;B) /* a modi�ed DP is called Approximate-DP */
1. for (i = 1; i < p; i++)
2. length[i; 0] = 0;
3. for (j = 1; j < q; j ++)
4. length[0; j] = 0;
5. for (i = 1; i < p; i++)
6. for (j = 1; j < q; j ++)
7. f if (A[i] == B[j]) then
8. length[i; j] = 1+ length[i� 1; j � 1];
9. length[i; j] = max ( length[i; j], length [i� 1; j];length[i; j � 1] ) g;
/* Computing length[p; q] has been completed */

10. i = p; j = q; index = length[p; q]; Trace(index) = (p; q);
11. while ( (i > 0)&(j > 0) )f
12. if (A[i] == B[j])
13. f i��; j ��; index = length[p; q]� 1;
14. Trace(index) = (i; j); g
15. else f
16. if (length[i� 1; j] � length[i; j])
17. i��;
18. else

19. j ��;
20. index = length[i; j]; Trace(index) = (i; j); g g
21. if ( (j == 0) & (i > 0) )
22. for (t = i; t � 0; t��)f
23. index��; Trace(index) = (t; 0);g
24. if ( (i == 0) & (j > 0) )
25. for (t = j; t � 0; t��) f
26. index��; Trace(index) = (0; t);g
27. return(Trace); return(index);

/* Computing a longest common subsequence has been completed */

Figure 1: Standard dynamic programming algorithm for computing LCS
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The idea of the learning algorithm is to restrict the computation of all entries of Length(A;B) to
that of a subset which is essential to a given class of inputs. The construction of this subset, which
we call the search area of the class, is done by accumulating traces of the solutions to sample inputs
from the class. Once the search area is learned, the dynamic programming algorithm guided by
the search area is run to compute a common subsequence.

It is convenient to associate Length(A;B) with a graph; every entry (i; j) of the matrix is repre-
sented by a vertex (i; j) of the graph Gp;q.

De�nition. Let Gp;q be a graph de�ned on the set of all pairs (i; j) (i 2 [0; p]; j 2 [0; q]), where
two distinct pairs (i; j) and (i0; j0) are adjacent, if ji � i0j � 1 and jj � j0j � 1: For every vertex
v = (i; j), i and j are called its coordinates. If v = (i; j), v0 = (i0; j0) are two distinct vertices, and
i � i0; j � j0, then v is called smaller than v0, written v � v0.

A simple path P = fvig
t
i=0 is called monotone, if for every i = 0; : : : ; t � 1, vi is adjacent to vi+1

and vi � vi+1:

A subset SA � V is called a search area if (0; 0); (p; q) 2 SA and for every v 2 SA, there is a
monotone path in SA containing (0; 0); v; and (p; q).

It is easy to see that the double loop in DP from Figure 1, can be generalized for an arbitrary search
area SA; the only modi�cation needed is for the case of a vertex v 2 SA which has neighbors that
are smaller than v and are not in SA. Speci�cally, if v[i� 1; j� 1] is missing, then lines 7 and 8 are
not executed; if one or two of (i � 1; j); (i; j � 1) are missing, the argument of function max (line
9) is respectively reduced. Finally, it can be readily seen that the second part of DP, from line 10
till line 26, do not depend on SA. This modi�cation of DP, run according to a search area, is called
Approximate-DP( ).

The other main components of the learning algorithm are: procedure Generator, which constructs
inputs from a given class; procedure Learn-area, which constructs a search area using Generator

and DP; and procedure Test-area, which runs Approximate-DP to test the accuracy of the current
search area.

Procedure Learn-area( )

1. for (i = 1; i � training number; i++)
2. f Generate m sequences fAkg using Generator;
3. apply DP to compute LCS(A1; : : : ; Am);
4. compute T = TRACE(LCS(A1; : : : ; Am));
5. search-area = search-area [ T g;
6. Return search-area

Learning is done untill the accuracy of the algorithm achieves a preselected level.
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Procedure Test-area(search-area)
1. for (i = 1; i � test number; i++)
2. f generate a sample using Generator;
3. apply DP to compute max-length;
4. apply Approximate-DP to compute approximate-length);
5. ratio = approximate-length/ max-length;
6. Ratio-sum = Ratio-sum + Ratio; g
7. Accuracy = Ratio-sum/test number;

The procedure main() below describes the algorithm that we used for the experiments.

main()

1. Select Generator;
2. while (Accurracy < Threshold)

3. f Learn-area;
4. Test-area;g

3 Experiments

The learning algorithm was tested using three sets of experiments. For every experiment, learning
was continued until the approximation ratio of 0:95 was reached. For each training sample used to
build the search area, 50 testing samples were used to determine the current approximation ratio.

The �rst set of experiments was to establish the learning curve and run-time performance of
Approximate-DP for two equal-sized 0; 1-input strings. In the second set of experiments, we com-
pared the performance of our algorithm with the algorithm Expansion described in [2]. In the
third set of experiments, the learning algorithm was tested on classes of inputs with three strings;
up to six letter alphabets; and strings generated with non-uniform distributions.

An input class is described by the number of input stringsm, the size of the equal-sized input strings
n, the number of symbols in the alphabet k, and the generation method (Uniform or Non-uniform).
For Uniform generation, the probability of each alphabet symbol remains constant for the length
of the string. The probabilities of the symbols are described by the set p = (p1; p2; : : : ; pk) where pi
refers to the probability of symbol i. For Non-uniform, the probability of each symbol is described
by a linear function.

For all Tables, Size is the length of the equal-sized input strings; Trials is the number of training
samples needed to reach the approximation ratio; Speedup is the ratio (n� n=search-area); Ac-
curacy is the approximation ratio reached through learning, and Computations is the size of the
search area, e.g. the number of cells computed by Approximate-DP.

Learning Curve and Run-time Performance: The �rst set of experiments tested the perfor-
mance of the algorithm for two equal-sized 0,1-input strings generated from two alphabet symbols.
The input strings were generated using a uniform probability distribution with p = (0:5; 0:5). The
length n of the input strings was increased for each experiment. Thirty experiments were conducted
and data points for n = 100; 200; : : : ; 3000 were obtained.
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Figure 2: Runtime Measure and Learning Curve (Two Input Strings)
InputClass = Uniform, m = 2; n = 100; : : : 3000; k = 2; p = (0:5; 0:5)

Size Trials Speedup Accurracy Computations

300 62 8.36 0.9512 10767

600 89 11.70 0.9536 30790

900 112 13.51 0.9504 59970

1200 141 14.57 0.9524 98996

1500 156 15.86 0.9504 142032

1800 170 17.18 0.9518 188625

2100 205 17.36 0.9531 254042

2400 210 19.31 0.9515 298735

2700 228 19.62 0.9506 371686

3000 255 20.49 0.9525 439258

Table 1: Performance Data (Two Input Strings)
InputClass = Uniform, m = 2; n = 100; : : : 3000; k = 2; p = (0:5; 0:5)

The left (resp. right) plot in Figure 2 shows Computations (resp. Trials) as a function of the
input size n. Using the least square method, we determined that among functions a n� + b, the
data values for the runtime �ts best the curve 0:903n1:654 + 207:5 and the data for learning �ts
1:563n0:630 + 1:181. Recall that the running time of DP for this case is O(n2). Table 1 shows a
sample of the results for the 30 experiments.

Learning Algorithm vs. Expansion Algorithm: The second set of experiments compares the
learning algorithm with the Expansion algorithm for a class of two equal-sized 0; 1-input strings
and a class of four equal-sized 0; 1-input strings. As before, the learning algorithm was trained to an
approximation ratio of 0.95. For each experiment, 50 testing samples were used to test the accuracy
of the approximate solution generated by learning algorithm and the Expansion algorithm. The
accuracy was determined by the sum of the size of the approximate LCS divided by the optimal
LCS for each sample divided by the number of testing samples. The average runtime (measured in
milliseconds) of the 50 testing samples was computed.
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Size Accurracy Accurracy Runtime Runtime Runtime
Length (Learn) (Expand) (Learn) (Expand) (DP )

200 0.9824 0.8780 13 2846 55

400 0.9757 0.8611 21 26493 342

600 0.9785 0.8585 95 87122 718

800 0.9769 0.8496 89 204412 1359

1000 0.9759 0.8460 198 432459 2342

1200 0.9777 0.8372 192 622376 2749

1400 0.9770 0.8422 216 984618 3724

1600 0.9765 0.8428 345 1508670 4670

1800 0.9748 0.8420 345 2203361 6356

2000 0.9733 0.8391 530 3182791 7769

Table 2: Learning vs. Expansion (Two Input Strings)
InputClass = Uniform, m = 2; n = 100; : : : ; 2000; k = 2; p = (0:5; 0:5)

Input Accurracy Accurracy Speedup Speedup Runtime Runtime Runtime
Size (Learn) (Expand) (Learn) (Expand) (Learn) (Expand) (DP )

10 0.9777 0.9108 9.59 959.00 20.0 0.2 191.8

20 0.9834 0.9315 23.26 1128.00 97.0 2.0 2256.0

30 0.9787 0.9183 32.46 2243.62 368.7 5.3 11966.0

40 0.9846 0.9191 49.77 2096.71 800.5 19.0 39838.5

50 0.9508 0.8862 54.17 2553.72 1697.0 36.0 91934.0

Table 3: Learning vs. Expansion (Four Input Strings)
InputClass = Uniform, m = 4; n = 10; : : : ; 50; k = 2; p = (0:5; 0:5)

For all 20 experiments using two inputs, the average LCS generate by the learning algorithm was
larger than the average LCS generated by the Expansion algorithm. Since the run-time of the
Expansion algorithm is O(mn2 log n) [2], the learning algorithm, which speeds up the algorithm
with respect to n, runs signi�cantly faster for larger input. Table 2 shows a sample of the 20
experiments.

For the 5 experiments using four inputs, the learning algorithm generated a larger average LCS
than the Expansion algorithm. But the running time of Expansion (linear on the respect on the
number of input strings) runs signi�cantly faster than the learning algorithm. Table 3 shows the
experiments for four-input experiments.

Performance for Di�erent Input Classes: The third set of experiments reveal the performance
of the algorithm various classes of input. Figure 3 and Table 4 show the results of the experiments
for three input strings. Note that the number of computations for m = 3; n = 300 is less than the
number of computations for m = 2; n = 3000 from Table 1 even though the computation space of
3003 is three times larger.
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Figure 3: Runtime Measure and Learning Curve (Three Input Strings)
InputClass = Uniform, m = 3; n = 50; : : : 300; k = 2; p = (0:5; 0:5)

Size Trials Speedup Accurracy Computations

50 128 25.08 0.9700 4984

100 266 47.03 0.9501 21264

150 530 55.34 0.9502 60987

200 710 72.93 0.9516 109694

250 886 91.35 0.9505 171045

300 1038 107.85 0.9500 250352

Table 4: Performance Data (Three Input Strings)
InputClass = Uniform, m = 3; n = 50; : : : ; 300; k = 2; p = (0:5; 0:5)

Table 5 shows the performance data for input strings generated from more symbols than two
symbols. The number of computations increase as the number of symbols increases. This data
indicates that there may be a relationship between the search area and the size of the LCS. Our
testing revealed that increasing the number of symbols reduces the average size of the LCS for
randomly generated input strings.

Symbols Trials Speedup Accurracy Computations

2 120 13.98 0.9518 71522

3 146 11.42 0.9507 87583

4 180 9.31 0.9511 107357

5 208 8.17 0.9509 122402

6 218 7.69 0.9522 129998

Table 5: Multiple Alphabet Symbols
InputClass = Uniform, m = 2; n = 1000; k = 2; : : : ; 6; p = (p1; : : : ; pk)

Table 6 shows the performance data for input strings generated from 0; 1-input strings with di�erent
probability ratios. The probability of the �rst symbol is equal to ratio and the probability of the

8



second symbol is equal to 1 � ratio. The number of computations decreases as the symbol ratio
becomes more disproportionate. Since the length of the LCS increases as the symbol become more
disproportionate, this data also supports the notion that the size of the search area is proportional
to the size of the LCS.

Ratio Trials Speedup Accurracy Computations

0.1 34 48.96 0.9506 20425

0.2 58 28.52 0.9524 35069

0.3 94 18.26 0.9522 54769

0.4 112 14.93 0.9506 66990

Table 6: Di�erent Symbol Ratios
InputClass = Uniform, m = 2; n = 1000; k = 2; p = (Ratio; 1 �Ratio)

Table 7 shows selected experiments with input generated from non-uniform probability distributions
The probability distribution of each 0; 1-input string is described by a linear functions de�ned over
its length. For simpli�cation, this function is de�ned by the line connecting the probability values
of the leftmost string symbol pl and the rightmost string symbol pr. Therefore, a distribution
de�ned by pl = 1 and pr = 0 describes a string with symbol 0 clustered heavily at the leftmost
position, symbol 1 clustered at the rightmost position, and an even mix of both symbols at the
center position. For a given set of inputs, the probability distributions are represented as a set of
pairs f(pr1 ; pl1); (pr2 ; pl2); : : : ; (prm ; plm)g Figure 4 shows the search area of the n� n computation
space of the four experiments 2. The shapes show the collection of solution paths that build the
search area.

(pl; pr); (pl; pr) Trials Speedup Accurracy Computations

1 (0:5; 0:5); (0:5; 0:5) 140 13.04 0.9528 76675

2 (1:0; 0:0); (0:0; 1:0) 215 11.33 0.9608 88256

3 (0:6; 0:0); (0:0; 0:6) 185 9.59 0.9505 104281

4 (0:5; 1:0); (0:5; 0:0) 140 18.79 0.9684 53214

Table 7: Non-uniform Input
InputClass = Non-uniform, m = 2; n = 1000; k = 2

Figure 4: from left to right Non-uniform Input Experiment 1, 2, 3, and 4

2These four experiments were chosen from a set of 40 experiments conducted on various input classes generated

from non-uniform distributions.
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4 Conclusions.

It is expected that a procedure which tunes an algorithm to a class of inputs should yield an
algorithm which is signi�cantly more e�cient than a general algorithm for the problem. Our
experiments support this expectation.

One of the most interesting results of our experiments with the learning algorithm is the discovery
of the dependence of the search area on the probability distribution of the symbols in the input
strings. In particular, the experiments suggest that the size of the search area is a small portion of
the size of the dynamic programming matrix; for a problem with two input strings, the experiments
indicate o(n2), where n is the length of the strings. It would be interesting to prove this experimental
observation, as well as to prove that the number of samples needed to learn according to the target
approximation ratio is sub-linear on n (equivalent to being logarithmic as a function of the size of
the input space).

Unlike Expansion, Approximate-DP can be trained for any type of LCS; in particular, inputs of
an arbitrary alphabet. In applications, our learning algorithm can be useful if the need to solve
the problem occurs often and the inputs are of \the same" type. It appears that only a small
number of initial inputs is needed to build up the search area to guide an e�cient algorithm with
an approximate ratio close to 1.

Our results suggest several interesting problems that can be approached experimentally. Clearly,
the edit-problem ([12]) is very similar to LCS and a similar learning algorithm can be designed and
experimentally tested. It is interesting to investigate how e�ective the usage of our strategy is for
other applications of the dynamic programming paradigm. Finally, it is interesting and useful to
resolve the problem of extrapolation of the results from small to very large input sizes, for which
training is practically impossible.
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