
CHARM: An Efficient Algorithm for
Closed Association Rule Mining

Mohammed J. Zaki and Ching-Jui Hsiao
Computer Science Department

Rensselaer Polytechnic Institute, Troy NY 12180
fzaki,hsiaoc g@cs.rpi.edu

http://www.cs.rpi.edu/ �zaki

Abstract

The task of mining association rules consists of two main steps. The first involves finding the set of all frequent
itemsets. The second step involves testing and generating all high confidence rules among itemsets. In this paper
we show that it is not necessary to mine all frequent itemsets in the first step, instead it is sufficient to mine the set
of closedfrequent itemsets, which is much smaller than the set of all frequent itemsets. It is also not necessary to
mine the set of all possible rules. We show that any rule between itemsets is equivalent to some rule between closed
itemsets. Thus many redundant rules can be eliminated. Furthermore, we present CHARM, an efficient algorithm for
mining all closed frequent itemsets. An extensive experimental evaluation on a number of real and synthetic databases
shows that CHARM outperforms previous methods by an order of magnitude or more. It is also linearly scalable in
the number of transactions and the number of closed itemsets found.

1 Introduction

Since its introduction, Association Rule Mining [1], has become one of the core data mining tasks, and has attracted
tremendous interest among data mining researchers and practitioners. It has an elegantly simple problem statement,
that is, to find the set of all subsets of items (called itemsets) that frequently occur in many database records or
transactions, and to extract the rules telling us how a subset of items influences the presence of another subset.

The prototypical application of associations is inmarket basket analysis, where the items represent products and
the records the point-of-sales data at large grocery or departmental stores. These kinds of database are generally sparse,
i.e., the longest frequent itemsets are relatively short. However there are many real-life datasets that very dense, i.e.,
they contain very long frequent itemsets.

It is widely recognized that the set of association rules can rapidly grow to be unwieldy, especially as we lower
the frequency requirements. The larger the set of frequent itemsets the more the number of rules presented to the user,
many of which are redundant. This is true even for sparse datasets, but for dense datasets it is simply not feasible to
mine all possible frequent itemsets, let alone to generate rules between itemsets. In such datasets one typically finds an
exponential number of frequent itemsets. For example, finding long itemsets of length 30 or 40 is not uncommon [2].

In this paper we show that it is not necessary to mine all frequent itemsets to guarantee that all non-redundant
association rules will be found. We show that it is sufficient to consider only the closed frequent itemsets (to be defined
later). Further, all non-redundant rules are found by only considering rules among the closed frequent itemsets. The
set of closed frequent itemsets is a lot smaller than the set of all frequent itemsets, in some cases by 3 or more orders
of magnitude. Thus even in dense domains we can guarantee completeness, i.e., all non-redundant association rules
can be found.

The main computation intensive step in this process is to identify the closed frequent itemsets. It is not possible
to generate this set using Apriori-like [1] bottom-up search methods that examine all subsets of a frequent itemset.
Neither is it possible to mine these sets using algorithms for mining maximal frequent patterns like MaxMiner [2]
or Pincer-Search [9], since to find the closed itemsets all subsets of the maximal frequent itemsets would have to be
examined.

1

We introduce CHARM, an efficient algorithm for enumerating the set of all closed frequent itemsets. CHARM is
unique in that it simultaneously explores both the itemset space and transaction space, unlike all previous association
mining methods which only exploit the itemset search space. Furthermore, CHARM avoids enumerating all possible
subsets of a closed itemset when enumerating the closed frequent sets.

The exploration of both the itemset and transaction space allows CHARM to use a novel search method that skips
many levels to quickly identify the closed frequent itemsets, instead of having to enumerate many non-closed subsets.
Further, CHARM uses a two-pronged pruning strategy. It prunes candidates based not only on subset infrequency (i.e.,
no extensions of an infrequent are tested) as do all association mining methods, but it also prunes candidates based
on non-closure property, i.e., any non-closed itemset is pruned. Finally, CHARM uses no internal data structures like
Hash-trees [1] or Tries [3]. The fundamental operation used is an union of two itemsets and an intersection of two
transactions lists where the itemsets are contained.

An extensive set of experiments confirms that CHARM provides orders of magnitude improvement over existing
methods for mining closed itemsets, even over methods like AClose [14], that are specifically designed to mine closed
itemsets. It makes a lot fewer database scans than the longest closed frequent set found, and it scales linearly in the
number of transactions and also is also linear in the number of closed itemsets found.

The rest of the paper is organized as follows. Section 2 describes the association mining task. Section 3 describes
the benefits of mining closed itemsets and rules among them. We present CHARM in Section 4. Related work is
discussed in Section 5. We present experiments in Section 6 and conclusions in Section 7.

2 Association Rules

The association mining task can be stated as follows: LetI = f1; 2; � � � ;mg be a set of items, and letT =
f1; 2; � � � ; ng be a set of transaction identifiers ortids. The input database is a binary relationÆ � I � T . If an
item i occurs in a transactiont, we write it as(i; t) 2 Æ, or alternately asiÆt. Typically the database is arranged
as a set of transaction, where each transaction contains a set of items. For example, consider the database shown in
Figure 1, used as a running example throughout this paper. HereI = fA;C;D; T;Wg, andT = f1; 2; 3; 4; 5; 6g.
The second transaction can be represented asfCÆ2; DÆ2;WÆ2g; all such pairs from all transactions, taken together
form the binary relationÆ.

A setX � I is also called anitemset, and a setY � T is called atidset. For convenience we write an itemset
fA;C;Wg asACW , and a tidsetf2; 4; 5g as245. Thesupportof an itemsetX , denoted�(X), is the number of
transactions in which it occurs as a subset. An itemset isfrequentif its support is more than or equal to a user-specified
minimum support (minsup)value, i.e., if�(X) � minsup.

An association ruleis an expressionX1
p
�! X2, whereX1 andX2 are itemsets, andX1 \X2 = ;. Thesupport

of the rule is given as�(X1 [X2) (i.e., the joint probability of a transaction containing bothX1 andX2), and the
confidenceasp = �(X1 [X2)=�(X1) (i.e., the conditional probability that a transaction containsX2, given that it
containsX1). A rule is frequent if the itemsetX1 [X2 is frequent. A rule isconfidentif its confidence is greater than
or equal to a user-specifiedminimum confidence (minconf)value, i.e,p � minconf.

The association rule mining task consists of two steps [1]: 1) Find all frequent itemsets, and 2) Generate high
confidence rules.

Finding frequent itemsets This step is computationally and I/O intensive. Consider Figure 1, which shows a
bookstore database with six customers who buy books by different authors. It shows all the frequent itemsets with
minsup = 50% (i.e., 3 transactions).ACTW andCDW are the maximal-by-inclusion frequent itemsets (i.e., they
are not a subset of any other frequent itemset).

Let jIj = m be the number of items. The search space for enumeration of all frequent itemsets is2m, which
is exponential inm. One can prove that the problem of finding a frequent set of a certain size is NP-Complete, by
reducing it to the balanced bipartite clique problem, which is known to be NP-Complete [8, 18]. However, if we
assume that there is a bound on the transaction length, the task of finding all frequent itemsets is essentially linear in
the database size, since the overall complexity in this case is given asO(r � n � 2l), wherejT j = n is the number of
transactions,l is the length of the longest frequent itemset, andr is the number of maximal frequent itemsets.

2

C D T

A C D T W

A C D W

A C T W

C D W

A C T W

A C D T W

6

5

3

4

2

1

DATABASE

MINIMUM SUPPORT = 50%

ALL FREQUENT ITEMSETS

C

W, CW

A, D, T, AC, AW
CD, CT, ACW

100% (6)

83% (5)

67% (4)

50% (3)
AT, DW, TW, ACT, ATW

ItemsetsSupport

CTW,CDW, ACTW

ItemsTranscation

Jane
Austen

Agatha
Christie

Sir Arthur
DISTINCT DATABASE ITEMS

Conan Doyle
P. G.

Wodehouse
Mark
Twain

Figure 1: Generating Frequent Itemsets

Generating confident rules This step is relatively straightforward; rules of the formX 0 p
�! X�X 0, are generated

for all frequent itemsetsX (whereX 0 � X , andX 0 6= ;), providedp � minconf. For an itemset of sizek there are
2k � 2 potentially confident rules that can be generated. This follows from the fact that we must consider each subset
of the itemset as an antecedent, except for the empty and the full itemset. The complexity of the rule generation step
is thusO(s � 2l), wheres is the number of frequent itemsets, andl is the longest frequent itemset (note thats can be
O(r � 2l), wherer is the number of maximal frequent itemsets). For example, from the frequent itemsetACW we can

generate 6 possible rules (all of them have support of 4):A
1:0
�! CW;C

0:67
�! AW;W

0:8
�! AC;AC

1:0
�!W;AW

1:0
�!

C, andCW
0:8
�! A.

3 Closed Frequent Itemsets

In this section we develop the concept of closed frequent itemsets, and show that this set is necessary and sufficient to
capture all the information about frequent itemsets, and has smaller cardinality than the set of all frequent itemsets.

3.1 Partial Order and Lattices

We first introduce some lattice theory concepts (see [4] for a good introduction).
Let P be a set. Apartial order on P is a binary relation�, such that for allx; y; z 2 P , the relation is: 1)

Reflexive:x � x. 2) Anti-Symmetric:x � y andy � x, impliesx = y. 3) Transitive:x � y andy � z, implies
x � z. The setP with the relation� is called anordered set, and it is denoted as a pair (P;�). We writex < y if
x � y andx 6= y.

Let (P;�) be an ordered set, and letS be a subset ofP . An elementu 2 P is anupper boundof S if s � u for all
s 2 S. An elementl 2 P is a lower boundof S if s � l for all s 2 S. The least upper bound is called thejoin of S,
and is denoted as

W
S, and the greatest lower bound is called themeetof S, and is denoted as

V
S. If S = fx; yg, we

also writex _ y for the join, andx ^ y for the meet.
An ordered set(L;�) is a lattice, if for any two elementsx andy in L, the joinx_ y and meetx^ y always exist.

L is acomplete latticeif
W
S and

V
S exist for allS � L. Any finite lattice is complete.L is called ajoin semilattice

if only the join exists.L is called ameet semilatticeif only the meet exists.
LetP denote the power set ofS (i.e., the set of all subsets ofS). The ordered set (P(S);�) is a complete lattice,

where the meet is given by set intersection, and the join is given by set union. For example the partial orders(P(I);�),
the set of all possible itemsets, and(P(T);�), the set of all possible tidsets are both complete lattices.

The set of all frequent itemsets, on the other hand, is only a meet-semilattice. For example, consider Figure 2,
which shows the semilattice of all frequent itemsets we found in our example database (from Figure 1). For any two
itemsets, only their meet is guaranteed to be frequent, while their join may or may not be frequent. This follows from

3

AC AWAT CD CT CW DW TW

CTWCDWATWACWACT

ACTW

(CD x 2456) (CT x 1356) (CW x 12345)

(ACW x 1345)(ACT x 135) (ATW x 135) (ACTW x 135)

(AT x 135) (AW x 1345) (DW x 245) (TW x 135)(AC x 1345)

(C x 123456)

A

(A x 1345)

DC

(D x 2456)

T

(T x 1356) (W x 12345)

W

(CDW x 245)

(ACTW x 135)

Figure 2: Meet Semi-lattice of Frequent Itemsets

the well known principle in association mining that, if an itemset is frequent, then all its subsets are also frequent. For
example,AC ^ AT = AC \ AT = A is frequent. For the join, whileAC _ AT = AC [AT = ACT is frequent,
AC [DW = ACDW is not frequent.

3.2 Closed Itemsets

Let the binary relationÆ � I � T be the input database for association mining. LetX � I, andY � T . Then the
mappings

t : I 7! T ; t(X) = fy 2 T j 8x 2 X; xÆyg

i : T 7! I; i(Y) = fx 2 I j 8y 2 Y; xÆyg

define aGalois connectionbetween the partial orders(P(I);�) and(P(T);�), the power sets ofI andT , respec-
tively. We denote a (X; t(X)) pair asX � t(X), and a (i(Y); Y) pair asi(Y) � Y . Figure 3 illustrates the two
mappings. The mappingt(X) is the set of all transactions (tidset) which contain the itemsetX , similarly i(Y) is the
itemset that is contained in all the transactions inY . For example,t(ACW) = 1345, andi(245) = CDW . In terms
of individual elementst(X) =

T
x2X t(x), andi(Y) =

T
y2Y i(y). For examplet(ACW) = t(A) \ t(C) \ t(W) =

1345\ 123456\ 12345 = 1345. Also i(245) = i(2) \ i(4) \ i(5) = CDW \ ACDW \ ACDTW = CDW .
The Galois connection satisfies the following properties (whereX;X1; X2 2 P(I) andY; Y1; Y2 2 P(T)):

1)X1 � X2) t(X1) � t(X2). ForACW � ACTW , we havet(ACW) = 1345 � 135 = t(ACTW).
2) Y1 � Y2) i(Y1) � i(Y2). For example, for245 � 2456, we havei(245) = CDW � CD = i(2456).
3)X � i(t(X)) andY � t(i(Y)). For example,AC � i(t(AC)) = i(1345) = ACW .

Let S be a set. A functionc : P(S) 7! P(S) is a closure operatoron S if, for allX;Y � S, c satisfies the
following properties: 1) Extension:X � c(X). 2) Monotonicity: ifX � Y , thenc(X) � c(Y). 3) Idempotency:
c(c(X)) = c(X). A subsetX of S is calledclosedif c(X) = X .

Lemma 1 LetX � I andY � T . Let cit(X) denote the composition of the two mappingsi Æ t(X) = i(t(X)).
Dually, let cti(Y) = t Æ i(Y) = t(i(Y)). Thencit : P(I) 7! P(I) and cti : P(T) 7! P(T) are both closure
operators on itemsets and tidsets respectively.

We define aclosed itemsetas an itemsetX that is the same as its closure, i.e.,X = cit(X). For example the itemset
ACW is closed. Aclosed tidsetis a tidsetY = cti(Y). For example, the tidset1345 is closed.

The mappingscit andcti, being closure operators, satisfy the three properties of extension, monotonicity, and
idempotency. We also call the application ofi Æ t or t Æ i a round-trip. Figure 4 illustrates this round-trip starting
with an itemsetX . For example, letX = AC, then the extension property says thatX is a subset of its closure,
sincecit(AC) = i(t(AC)) = i(1345) = ACW . SinceAC 6= cit(AC) = ACW , we conclude thatAC is not
closed. On the other hand, the idempotency property say that once we map an itemset to the tidset that contains

4

i

X

i(Y)

t

TRANSACTIONSITEMS

Y

t(X)

Figure 3: Galois Connection

it

ITEMS TRANSACTIONS

X

C (X) = i(t(X))

t(X)
t

i

Figure 4: Closure Operator: Round-Trip

it, and then map that tidset back to the set of items common to all tids in the tidset, we obtain a closed itemset.
After this no matter how many such round-trips we make we cannot extend a closed itemset. For example, after
one round-trip forAC we obtain the closed itemsetACW . If we perform another round-trip onACW , we get
cit(ACW) = i(t(ACW)) = i(1345) = ACW .

For any closed itemsetX , there exists a closed tidset given byY , with the property thatY = t(X) andX = i(Y)
(conversely, for any closed tidset there exists a closed itemset). We can see thatX is closed by the fact thatX = i(Y),
then pluggingY = t(X), we getX = i(Y) = i(t(X)) = cit(X), thusX is closed. Dually,Y is closed. For example,
we have seen above that for the closed itemsetACW the associated closed tidset is1345. Such a closed itemset and
closed tidset pairX � Y is called aconcept.

(CDW x 245)(ACTW x 135)

(ACW x 1345)

(CW x 12345)

(C x 123456)

(CT x 1356) (CD x 2456)

(CDT x 56)(ACDW x 45)

(ACDTW x 5)

Figure 5: Galois Lattice of Concepts

(C x 123456)

(CD x 2456)(CT x 1356)

(CDW x 245)
(ACTW x 135)

(ACW x 1345)

(CW x 12345)

Figure 6: Frequent Concepts

A conceptX1 � Y1 is asubconceptof X2 � Y2, denoted asX1 � Y1 � X2 � Y2, iff X1 � X2 (iff Y2 � Y1).
Let B(Æ) denote the set of all possible concepts in the database, then the ordered set(B(Æ);�) is a complete lattice,
called theGalois lattice. For example, Figure 5 shows the Galois lattice for our example database, which has a total
of 10 concepts. The least element is the conceptC � 123456 and the greatest element is the conceptACDTW � 5.
Notice that the mappings between the closed pairs of itemsets and tidsets are anti-isomorphic, i.e., concepts with large
cardinality itemsets have small tidsets, and vice versa.

3.3 Closed Frequent Itemsets vs. All Frequent Itemsets

We begin this section by defining the join and meet operation on the concept lattice (see [5] for the formal proof): The
set of all concepts in the database relationÆ, given by(B(Æ);�) is a (complete) lattice with join and meet given by

join: (X1 � Y1) _ (X2 � Y2) = cit(X1 [X2)� (Y1 \ Y2)

5

meet: (X1 � Y1) ^ (X2 � Y2) = (X1 \X2)� cti(Y1 [Y2)

For the join and meet of multiple concepts, we simply take the unions and joins over all of them. For example, consider
the join of two concepts,(ACDW � 45) _ (CDT � 56) = cit(ACDW [CDT) � (45 \ 56) = ACDTW � 5.
On the other hand their meet is given as,(ACDW � 45) ^ (CDT � 56) = (ACDW \ CDT) � cti(45 [56) =
CD�cti(456) = CD�2456. Similarly, we can perform multiple concept joins or meets; for example,(CT�1356)_
(CD�2456)_(CDW�245) = cit(CT [CD[CDW)�(1356\2456\245) = cit(CDTW)�5 = ACDTW�5.

We define the support of a closed itemsetX or a conceptX � Y as the cardinality of the closed tidsetY = t(X),
i.e,�(X) = jY j = jt(X)j. A closed itemset or a concept isfrequentif its support is at leastminsup. Figure 6 shows
all the frequent concepts withminsup= 50% (i.e., with tidset cardinality at least 3). The frequent concepts, like the
frequent itemsets, form a meet-semilattice, where the meet is guaranteed to exist, while the join may not.

Theorem 1 For any itemsetX , its support is equal to the support of its closure, i.e.,�(X) = �(cit(X)).

PROOF: The support of an itemsetX is the number of transactions where it appears, which is exactly the cardinality
of the tidsett(X), i.e.,�(X) = jt(X)j. Since�(cit(X)) = jt(cit(X))j, to prove the lemma, we have to show that
t(X) = t(cit(X)).

Sincecti is closure operator, it satisfies the extension property, i.e.,t(X) � cti(t(X)) = t(i(t(X))) = t(cit(X)).
Thust(X) � t(cit(X)). On the other hand sincecit is also a closure operator,X � cit(X), which in turn implies that
t(X) � t(cit(X)), due to property 1) of Galois connections. Thust(X) = t(cit(X)).

This lemma states that all frequent itemsets are uniquely determined by the frequent closed itemsets (or frequent
concepts). Furthermore, the set of frequent closed itemsets is bounded above by the set of frequent itemsets, and is
typically much smaller, especially for dense datasets (where there can be orders of magnitude differences). To illustrate
the benefits of closed itemset mining, contrast Figure 2, showing the set of all frequent itemsets, with Figure 6, showing
the set of all closed frequent itemsets (or concepts). We see that while there are only 7 closed frequent itemsets, there
are 19 frequent itemsets. This example clearly illustrates the benefits of mining the closed frequent itemsets.

3.4 Rule Generation

Recall that an association rule is of the formX1
p
�! X2, whereX1; X2 � I. Its support equalsjt(X1 [X2)j, and its

confidence is given asp = jt(X1 [X2)j=jt(X1)j. We are interested in finding all high support (at leastminsup) and
high confidence rules (at leastminconf).

It is widely recognized that the set of such association rules can rapidly grow to be unwieldy. The larger the set of
frequent itemsets the more the number of rules presented to the user. However, we show below that it is not necessary
to mine rules from all frequent itemsets, since most of these rules turn out to be redundant. In fact, it is sufficient to
consider only the rules among closed frequent itemsets (or concepts), as stated in the theorem below.

Theorem 2 The ruleX1
p
�! X2 is equivalent to the rulecit(X1)

q
�! cit(X2), whereq = p.

PROOF: It follows immediately from the fact that the support of an itemsetX is equal to the support of its closure
cit(X), i.e.,t(X) = t(cit(X)). Using this fact we can show that

q =
jt(cit(X1) [cit(X2))j

jt(cit(X1))j
=
jt(cit(X1)) \ t(cit(X2))j

jt(X1)j
=
jt(X1) \ t(X2)j

jt(X1)j
=
jt(X1 [X2)j

jt(X1)j
= p

There are typically many (in the worst case, an exponential number of) frequent itemsets that map to the same
closed frequent itemset. Let’s assume that there aren itemsets, given by the setS1, whose closure isC1 andm
itemsets, given by the setS2, whose closure isC2, then we say that alln �m�1 rules between two non-closed itemsets
directed fromS1 to S2 areredundant. They are all equivalent to the ruleC1

p
�! C2. Further them � n � 1 rules

directed fromS2 to S1 are also redundant, and equivalent to the ruleC2
q
�! C1. For example, looking at Figure 2

we find that the itemsetsD andCD map to the closed itemsetCD, and the itemsetsW andCW map to the closed

itemsetCW . Considering rules from the former to latter set we find that the rulesD
3=4
�! W , D

3=4
�! CW , and

CD
3=4
�! W are all equivalent to the rule between closed itemsetsCD

3=4
�! CW . On the other hand, if we consider

the rules from the latter set to the former, we find thatW
3=5
�! D, W

3=5
�! CD, CW

3=5
�! D are all equivalent to the

ruleCW
5=6
�! CD.

6

We should present to the user the most general rules (other rules are more specific; they contain one or more

additional items in the antecedent or consequent) for each direction, i.e., the rulesD
3=4
�!W andW

3=5
�! D (provided

minconf= 0:6). Thus using the closed frequent itemsets we would generate only 2 rules instead of 8 rules normally
generated between the two sets. To get an idea of the number of redundant rules mined in traditional association
mining, for one dataset (mushroom), at 10% minimum support, we found574513 frequent itemsets, out of which only
4897 were closed, a reduction of more than 100 times!

4 CHARM: Algorithm Design and Implementation

Having developed the main ideas behind closed association rule mining, we now present CHARM, an efficient algo-
rithm for mining all the closed frequent itemsets. We will first describe the algorithm in general terms, independent
of the implementation details. We then show how the algorithm can be implemented efficiently. This separation of
design and implementation aids comprehension, and allows the possibility of multiple implementations.

CHARM is unique in that it simultaneously explores both the itemset space and tidset space, unlike all previous
association mining methods which only exploit the itemset space. Furthermore, CHARM avoids enumerating all
possible subsets of a closed itemset when enumerating the closed frequent sets, which rules out a pure bottom-up
search. This property is important in mining dense domains with long frequent itemsets, where bottom-up approaches
are not practical (for example if the longest frequent itemset isl, then bottom-up search enumerates all2l frequent
subsets).

The exploration of both the itemset and tidset space allows CHARM to use a novel search method that skips
many levels to quickly identify the closed frequent itemsets, instead of having to enumerate many non-closed subsets.
Further, CHARM uses a two-pronged pruning strategy. It prunes candidates based not only on subset infrequency (i.e.,
no extensions of an infrequent itemset are tested) as do all association mining methods, but it also prunes branches
based on non-closure property, i.e., any non-closed itemset is pruned. Finally, CHARM uses no internal data structures
like Hash-trees [1] or Tries [3]. The fundamental operation used is an union of two itemsets and an intersection of
their tidsets.

A

ACDT

ACDTW

CDT DTW

TW

D T W

CDTW

C

CDAC

ADTW

ACD

DT

{}

DWCT

ACT CDW

AD AT AW CW

CTWACW ADT ADW ATW

ACTWACDW

Figure 7: Complete Subset Lattice

Consider Figure 7 which shows the complete subset lattice (only the main parent link has been shown to reduce
clutter) over the five items in our example database (see Figure 1). The idea in CHARM is to process each lattice node
to test if its children are frequent. All infrequent, as well as non-closed branches are pruned. Notice that the children
of each node are formed by combining the node by each of its siblings that come after it in the branch ordering. For
example,A has to be combined with its siblingsC;D; T andW to produce the childrenAC;AD;AT andAW .

A sibling need not be considered if it has already been pruned because of infrequency or non-closure. While
a lexical ordering of branches is shown in the figure, we will see later how a different branch ordering (based on

7

support) can improve the performance of CHARM (a similar observation was made in MaxMiner [2]). While many
search schemes are possible (e.g., breadth-first, depth-first, best-first, or other hybrid search), CHARM performs a
depth-first search of the subset lattice.

4.1 CHARM: Algorithm Design

In this section we assume that for any itemsetX , we have access to its tidsett(X), and for any tidsetY we have access
to its itemseti(Y). How to practically generatet(X) or i(Y) will be discussed in the implementation section.

CHARM actually enumerates all the frequent concepts in the input database. Recall that a concept is given as a
pairX�Y , whereX = i(Y) is a closed itemset, andY = t(X) is a closed tidset. We can start the search for concepts
over the tidset space or the itemset space. However, typically the number of items is a lot smaller than the number of
transactions, and since we are ultimately interested in the closed itemsets, we start the search with the single items,
and their associated tidsets.

t(X1)

t(X2)

t(X1)
t(X1)

t(X2)

U

U

t(X2)

it it it it

it it itit

ITEMS TRANSACTIONS

X2

X1

ITEMS TRANSACTIONS

X2

X1
t

i

t

ITEMS TRANSACTIONS

X1

t

i

t(X1) t(X2)C (X2) = C (X1 U X2)

ITEMS TRANSACTIONS

X2

X1

t

t

i
t(X1) = t(X2)

t

t(X1) != t(X2)

t(X1) t(X2)

C (X1) != C (X2)

X2

t

t

i

i

C (X1) = C (X2) C (X1) = C (X1 U X2)

Figure 8: Basic Properties of Itemsets and Tidsets

4.1.1 Basic Properties of Itemset-Tidset Pairs

Let f : P(I) 7! N be a one-to-one mapping from itemsets to integers. For any two itemsetsX1 andX2, we say
X1 � X2 iff f(X1) � f(X2). f defines a total order over the set of all itemsets. For example, iff denotes the
lexicographic ordering, then itemsetAC < AD. As another example, iff sorts itemsets in increasing order of their
support, thenAD < AC if support ofAD is less than the support ofAC.

Let’s assume that we are processing the branchX1�t(X1), and we want to combine it with its siblingX2�t(X2).
That isX1 � X2 (under a suitable total orderf). The main computation in CHARM relies on the following properties.

1. If t(X1) = t(X2), thent(X1 [X2) = t(X1) \ t(X2) = t(X1) = t(X2). Thus we can simply replace every
occurrence ofX1 with X1 [X2, and removeX2 from further consideration, since its closure is identical to the
closure ofX1 [X2. In other words, we treatX1 [X2 as a composite itemset.

2. If t(X1) � t(X2), then t(X1 [X2) = t(X1) \ t(X2) = t(X1) 6= t(X2). Here we can replace every
occurrence ofX1 with X1 [X2, since ifX1 occurs in any transaction, thenX2 always occurs there too.
But sincet(X1) 6= t(X2) we cannot removeX2 from consideration; it generates a different closure.

3. If t(X1) � t(X2), thent(X1 [X2) = t(X1) \ t(X2) = t(X2) 6= t(X1). In this we replace every occurrence
of X2 with X1 [X2, since whereverX2 occursX1 always occurs.X1 however, produces a different closure,
and it must be retained.

8

4. If t(X1) 6= t(X2), thent(X1[X2) = t(X1)\t(X2) 6= t(X2) 6= t(X1). In this case, nothing can be eliminated;
bothX1 andX2 lead to different closures.

Figure 8 pictorially depicts the four cases. We see that only closed tidsets are retained after we combine two itemset-
tidset pairs. For example, if the two tidsets are equal, one of them is pruned (Property 1). If one tidset is a subset of
another, then the resulting tidset is equal to the smaller tidset from the parent and we eliminate that parent (Properties
2 and 3). Finally if the tidsets are unequal, then those two and their intersection are all closed.

Example Before formally presenting the algorithm, we show how the four basic properties of itemset-tidset pairs
are exploited in CHARM to mine the closed frequent itemsets.

A x 1345
AC x 1345

ACD x 45 ACT x 135

D x 2456 T x 1356 W x 12345

CDT x 56 CTW x 135

ACTW x 135

ACW x 1345

C x 123456

CD x 2456

CDW x 245

CT x 1356 CW x 12345

{}

Figure 9: CHARM: Lexicographic Order

A x 1345
AW x 1345

W x 12345D x 2456 T x 1356

AD x 45
ATW x 135

AT x 135

ACTW x 135

DT x 56 DW x 245 TW x 135
CTW x 135

ACW x 1345
CW x 12345

C x 123456

{}

CD x 2456 CT x 1356

CDW x 245

Figure 10: CHARM:Sorted by Increasing Support

Consider Figure 9. Initially we have five branches, corresponding to the five items and their tidsets from our
example database (recall that we usedminsup= 3). To generate the children of itemA (or the pairA � 1345) we
need to combine it with all siblings that come after it. When we combine two pairsX1 � t(X1) andX2 � t(X2),
the resulting pair is given as(X1 [X2) � (t(X1) \ t(X2)). In other words we need to perform the intersection of
corresponding tidsets whenever we combine two or more itemsets.

When we try to extendA with C, we find that property 2 is true, i.e.,t(A) = 1345 � 123456 = t(C). We can
thus removeA and replace it withAC. CombiningA with D produces an infrequent setACD, which is pruned.
Combination withT produces the pairACT � 135; property 4 holds here, so nothing can be pruned. When we try
to combineA with W we find thatt(A) � t(W). According to property 2, we replace all unpruned occurrences
of A with AW . ThusAC becomesACW andACT becomesACTW . At this point there is nothing further to be
processed from theA branch of the root.

We now start processing theC branch. When we combineC with D we observe that property 3 holds, i.e.,t(C) �
t(D). This means that whereverD occursC always occurs. ThusD can be removed from further consideration, and
the entireD branch is pruned; the childCD replacesD. Exactly the same scenario occurs withT andW . Both the
branches are pruned and are replaced byCT andCW as children ofC. Continuing in a depth-first manner, we next
process the nodeCD. Combining it withCT produces an infrequent itemsetCDT , which is pruned. Combination
with CW producesCDW and since property 4 holds, nothing can be removed. Similarly the combination ofCT and
CW producesCTW . At this point all branches have been processed.

Finally, we removeCTW � 135 since it is contained inACTW � 135. As we can see, in just 10 steps we have
identified all 7 closed frequent itemsets.

4.1.2 CHARM: Pseudo-Code Description

Having illustrated the workings of CHARM on our example database, we now present the pseudo-code for the algo-
rithm itself.

The algorithm starts by initializing the set of nodes to be examined to the frequent single items and their tidsets in
Line 1. The main computation is performed in CHARM-EXTEND which returns the set of closed frequent itemsetsC.

9

CHARM-EXTEND is responsible for testing each branch for viability. It extracts each itemset-tidset pair in the
current node setNodes (Xi � t(Xi), Line 3), and combines it with the other pairs that come after it (Xj � t(Xj),
Line 5) according to the total orderf (we have already seen an example of lexical ordering in Figure 9; we will look
at support based ordering below). The combination of the two itemset-tidset pairs is computed in Line 6. The routine
CHARM-PROPERTYtests the resulting set for required support and also applies the four properties discussed above.
Note that this routine may modify the current node set by deleting itemset-tidset pairs that are already contained in
other pairs. It also inserts the newly generated children frequent pairs in the set of new nodesNewN . If this set is
non-empty we recursively process it in depth-first manner (Line 8). We then insert the possibly extended itemsetX,
of Xi, in the set of closed itemsets, since it cannot be processed further; at this stage any closed itemset containingXi

has already been generated. We then return to Line 3 to process the next (unpruned) branch.
The routine CHARM-PROPERTYsimply tests if a new pair is frequent, discarding it if it is not. It then tests each

of the four basic properties of itemset-tidset pairs, extending existing itemsets, removing some subsumed branches
from the current set of nodes, or inserting new pairs in the node set for the next (depth-first) step.

CHARM (Æ � I � T , minsup):
1. Nodes =fIj � t(Ij) : Ij 2 I ^ jt(Ij)j � minsupg
2. CHARM-EXTEND (Nodes,C)

CHARM-EXTEND (Nodes,C):
3. for eachXi � t(Xi) in Nodes
4. NewN =; andX = Xi

5. for eachXj � t(Xj) in Nodes, withf(j) > f(i)
6. X = X [Xj andY = t(Xi) \ t(Xj)
7. CHARM-PROPERTY(Nodes, NewN)
8. if NewN 6= ; then CHARM-EXTEND (NewN)
9. C = C [X //if X is not subsumed

CHARM-PROPERTY(Nodes, NewN):
10. if (jYj � minsup) then
11. if t(Xi) = t(Xj) then //Property 1
12. RemoveXj from Nodes
13. Replace allXi withX
14. else ift(Xi) � t(Xj) then //Property 2
15. Replace allXi withX
16. else ift(Xi) � t(Xj) then //Property 3
17. RemoveXj from Nodes
18. AddX�Y to NewN
19. else ift(Xi) 6= t(Xj) then //Property 4
20. AddX�Y to NewN

Figure 11: The CHARM Algorithm

4.1.3 Branch Reordering

We purposely let the itemset-tidset pair ordering function in Line 5 remain unspecified. The usual manner of processing
is in lexicographic order, but we can specify any other total order we want. The most promising approach is to sort the
itemsets based on their support. The motivation is to increase opportunity for non-closure based pruning of itemsets.
A quick look at Properties 1 and 2 tells us that these two situations are preferred over the other two cases. For Property
1, the closure of the two itemsets is equal, and thus we can discardXj and replaceXi with Xi [Xj . For Property 2,
we can still replaceXi with Xi [Xj . Note that in both these cases we do not insert anything in the new nodes! Thus
the more the occurrence of case 1 and 2, the fewer levels of search we perform. In contrast, the occurrence of cases 3
and 4 results in additions to the set of new nodes, requiring additional levels of processing. Note that the reordering is
applied for each new node set, starting with the initial branches.

Since we wantt(Xi) = t(Xj) or t(Xi) � t(Xj) it follows that we should sort the itemsets in increasing order of
their support. Thus larger tidsets occur later in the ordering and we maximize the occurrence of Properties 1 and 2. By
similar reasoning, sorting by decreasing order of support doesn’t work very well, since it maximizes the occurrence of
Properties 3 and 4, increasing the number of levels of processing.

Example Figure 10 shows how CHARM works on our example database if we sort itemsets in increasing order of
support. We will use the pseudo-code to illustrate the computation. We initializeNodes = fA� 1345; D� 2456; T �
1356;W � 12345; C � 123456g in Line 1.

At Line 3 we first process the branchA� 1345 (we setX = A in Line 4); it will be combined with the remaining
siblings in Line 5.AD is not frequent and is pruned. We next look atA andT ; sincet(A) 6= t(T), we simply insert
AT in NewN . We next find thatt(A) � t(W). Thus we replace all occurrences ofA with AW (thusX = AW),
which means that we also changeAT in NewN to ATW . Looking atA andC, we find thatt(A) � t(C). Thus

10

AW becomesACW (X = ACW), andATW in NewN becomesACTW . At this point CHARM-EXTEND is
invoked with the non-emptyNewN (Line 8). But since there is only one element, we immediately exit after adding
ACTW � 135 to the set of closed frequent itemsetsC (Line 9).

When we return, theA branch has been completely processed, and we addX = ACW to C. The other branches
are examined in turn, and the finalC is produced as shown in Figure 10. One final note; the pairCTW �135 produced
from theT branch is not closed, since it is subsumed byACTW � 135, and it is eliminated in Line 9.

4.2 CHARM: Implementation Details

We now describe the implementation details of CHARM and how it departs from the pseudo-code in some instances
for performance reasons.

Data Format Given that we are manipulating itemset-tidset pairs, and that the fundamental operation is that of
intersecting two tidsets, CHARM uses avertical data format, where we maintain a disk-based list for each item,
listing the tids where that item occurs. In other words, the data is organized so that we have available on disk the
tidset for each item. In contrast most of the current association algorithms [1, 2, 3] assume ahorizontaldatabase
layout, consisting of a list of transactions, where each transaction has an identifier followed by a list of items in that
transaction.

The vertical format has been shown to be successful for association mining. It has been used in Partition [16],
in (Max)Eclat and (Max)Clique [19], and shown to lead to very good performance. In fact, theVertical algorith-
m [15] was shown to be the best approach (better than horizontal) when tightly integrating association mining with
database systems. The benefits of using the vertical format have further been demonstrated in Monet [12], a new
high-performance database system for query-intensive applications like OLAP and data mining.

Intersections and Subset Testing Given the availability of vertical tidsets for each itemset, the computation of the
tidset intersection for a new combination is straightforward. All it takes is a linear scan through the two tidsets, storing
matching tids in a new tidset. For example, we havet(A) = 1345 andt(D) = 2456. Thent(AD) = 1345\2456 = 45.

The main question is how to efficiently compute the subset information required while applying the four properties.
At first this might appear like an expensive operation, but in fact in the vertical format, it comes for free.

When intersecting two tidsets we keep track of the number of mismatches in both the lists, i.e., the cases when a
tid occurs in one list but not in the other. Letm(X1) andm(X2) denote the number of mismatches in the tidsets for
itemsetsX1 andX2. There are four cases to consider:

m(X1) = 0 andm(X2) = 0; thent(X1) = t(X2) — Property 1
m(X1) = 0 andm(X2) 6= 0; thent(X1) � t(X2) — Property 2
m(X1) 6= 0 andm(X2) = 0; thent(X1) � t(X2) — Property 3
m(X1) 6= 0 andm(X2) 6= 0; thent(X1) 6= t(X2) — Property 4

For t(A) and t(D) from above,m(A) = 2 andm(D) = 2, and as we can see,t(A) 6= t(D). Next consider
t(A) = 1345 andt(W) = 12345. We findm(A) = 0, butm(W) = 1, which shows thatt(A) � t(W). Thus
CHARM performs support, subset, equality, and inequality testing simultaneously while computing the intersection
itself.

Eliminating Non-Closed Itemsets Here we describe a fast method to avoid adding non-closed itemsets to the set
of closed frequent itemsetsC in Line 9. If we are adding a setX, we have to make sure that there doesn’t exist a set
C 2 C such thatX � C and both have the same support (MaxMiner [2] faces a similar problem while eliminating
non-maximal itemsets).

Clearly we want to avoid comparingX with all existing elements inC, for this would lead to aO(jCj2) complexity.
The solution is to storeC in a hash table. But what hash function to use? Since we want to perform subset checking,
we can’t hash on the itemset. We could use the support of the itemsets for the hash function. But many unrelated
subsets may have the same support.

CHARM uses the sum of the tids in the tidset as the hash function, i.e.,h(X) =
P

T2t(X) T . This reduces the
chances of unrelated itemsets being in the same cell. Each hash table cell is a linked list sorted by support as primary

11

key and the itemset as the secondary key (i.e., lexical). Before addingX to C, we hash to the cell, and check ifX is
a subset of only those itemsets with the same support asX. We found experimentally that this approach adds only a
few seconds of additional processing time to the total execution time.

Optimized Initialization There is only one significant departure from the pseudo-code in Figure 11. Note that if we
initialize theNodes set in Line 1 with all frequent items, and invoke CHARM-EXTEND then, in the worst case, we
might performn(n� 1)=2 tidset intersections, wheren is the number of frequent items. Ifl is the average tidset size
in bytes, the amount of data read isl � n � (n � 1)=2 bytes. Contrast this with the horizontal approach that reads only
l � n bytes.

It is well known that many itemsets of length 2 turn out to be infrequent, thus it is clearly wasteful to perform
O(n2) intersection. To solve this performance problem we first compute the set of frequent itemsets of length 2, and
then we add a simple check in Line 5, so that we combine two itemsIi andIj only if Ii [Ij is known to be frequent.
The number of intersections performed after this check is equal to the number of frequent pairs, which is in practice
closer toO(n) rather thanO(n2). Further this check only has to be done initially only for single items, and not in later
stages.

We now describe how we compute the frequent itemsets of length 2 using the vertical format. As noted above we
clearly cannot perform all intersections between pairs of frequent items.

The solution is to perform a vertical to horizontal transformation on-the-fly. For each itemI , we scan its tidset
into memory. We insert itemI in an array indexed by tid for eachT 2 t(I). For example, consider the tidset for item
A, given ast(A) = 1345. We read the first tidT = 1, and then insertA in the array at index1. We also insertA
at indices3; 4 and5. We repeat this process for all other items and their tidsets. Figure 12 shows how the inversion
process works after the addition of each item and the complete horizontal database recovered from the vertical tidsets
for each item. Given the recovered horizontal database it is straightforward to update the count of pairs of items using
an upper triangular 2D array.

Add C Add D Add WAdd TAdd A

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

T

T

T

T

D

D

D

D

C

C

C

C

C

A

A

A

A

1

2

3

4

5

6 C

T

T

T

T

D

D

D

D

C

C

C

C

C

A

A

A

A

1

2

3

4

5

6 C

A

A

A

A

D

D

D

D

C

C

C

C

C

A

A

A

A

C

C

C

C

C

A

A

A

A

CC

W

W

W

W

W

Figure 12: Vertical-to-Horizontal Database Recovery

Memory Management For initialization CHARM scans the database once to compute the frequent pairs of items
(note that finding the frequent items is virtually free in the vertical format; we can calculate the support directly from
an index array that stores the tidset offsets for each item. If this index is not available, computing the frequent items
will take an additional scan). Then, while processing each initial branch in the search lattice it needs to scan single item
tidsets from disk for each unpruned sibling. CHARM is fully scalable for large-scale database mining. It implements
appropriate memory management in all phases as described next.

For example, while recovering the horizontal database, the entire database will clearly not fit in memory. CHARM
handles this by only recovering a block of transactions at one time that will fit in memory. Support of item pairs is
updated by incrementally processing each recovered block. Note that regardless of the number of blocks, this process
requires exactly one database scan over the vertical format (imaginek pointers for each ofk tidsets; the pointer only
moves forward if the tid is points to belongs to the current block).

12

When the number of closed itemsets itself becomes very large, we cannot hope to keep the set of all closed
itemsetsC in memory. In this case, the elimination of some non-closed itemsets is done off-line in a post-processing
step. Instead of insertingX in C in Line 9, we simply write it to disk along with its support and hash value. In the
post-processing step, we read all close itemsets and apply the same hash table searching approach described above to
eliminate non-closed itemsets.

Since CHARM processes each branch in the search in a depth-first fashion, its memory requirements are not
substantial. It has to retain all the itemset-tidsets pairs on the levels of the current left-most branches in the search
space. Consider 7 for example. Initially is has to retain the tidsets forfAC;AD;AT;AWg, fACD;ACT;ACWg,
fACDT;ACDWg, andfACDTWg. OnceAC has been processed, the memory requirement shrinks tofAD;AT;-
AWg, fADT;ADTg, andfADTWg. In any case this is the worst possible situation. In practice the applications of
subset infrequency and non-closure properties 1, 2, and 3, prune many branches in the search lattice.

For cases where even the memory requirement of depth-first search exceed available memory, it is straightforward
to modify CHARM to write temporary tidsets to disk. For example, while processing theAC branch, we might have
to write out the tidsets forfAD;AT;AWg to disk. Another option is to simply re-compute the intersections if writing
temporary results is too expensive.

4.3 Correctness and Efficiency

Theorem 3 (correctness)TheCHARM algorithm enumerates all closed frequent itemsets.

PROOF: CHARM correctly identifies all and only the closed frequent itemsets, since its search is based on a complete
subset lattice search. The only branches that are pruned as those that either do not have sufficient support, or those
that result in non-closure based on the properties of itemset-tidset pairs as outlined at the beginning of this section.
Finally CHARM eliminates the few cases of non-closed itemsets that might be generated by performing subsumption
checking before inserting anything in the set of all closed frequent itemsetsC.

Theorem 4 (computational cost)The running time ofCHARM isO(l � jCj), wherel is the average tidset length, and
C is the set of all closed frequent itemsets.

PROOF: Note that starting with the single items and their associated tidsets, as we process a branch the following cases
might occur. LetXc denote the current branch andXs the sibling we are trying to combine it with. We prune theXs

branch ift(Xc) = t(Xs) (Property 1). We extendXc to becomeXc [Xs if t(Xc) � t(Xs) (Property 2). We prune
Xs if t(Xc) � t(Xs), and we extendXs to becomet(Xc) � t(Xs) (Property 3). Finally a new node is only generated
if we get a new possibly closed set due to properties 3 and 4. Also note that each new node in fact represents a closed
tidset, and thus indirectly represents a closed itemset, since there exists a unique closed itemset for each closed tidset.
Thus CHARM performs on the order ofO(jCj) intersections (we confirm this via experiments in Section 6; the only
extra intersections performed are due to case where CHARM may produce non-closed itemsets likeCTW � 135,
which are eliminated in Line 9). If each tidset is on average of lengthl, an intersection costs at most2 � l. The total
running time of CHARM is thus2 � l � jCj orO(l � jCj).

Theorem 5 (I/O cost) The number of database scans made byCHARM is given asO(jCj
��jIj), whereC is the set of all

closed frequent itemsets,I is the set of items, and� is the fraction of database that fits in memory.

PROOF: The number of database scans required is given as the total memory consumption of the algorithm divided
by the fraction of database that will fit in memory. Since CHARM computes on the order ofO(jCj) intersections, the
total memory requirement of CHARM is O(l � jCj), wherel is the average length of a tidset. Note that as we perform
intersections the size of longer itemsets’ tidsets shrinks rapidly, but we ignore such effects in our analysis (it is thus
a pessimistic bound). The total database size isl � jIj, and the fraction that fits in memory is given as� � l � jIj. The
number of data scans is then given as(l � jCj)=(� � l � jIj) = jCj=(� � jIj).

Note that in the worst casejCj can be exponential injIj, but this is rarely the case in practice. We will show in
the experiments section that CHARM makes very few database scans when compared to the longest closed frequent
itemset found.

13

5 Related Work

A number of algorithms for mining frequent itemsets [1, 2, 3, 9, 10, 13, 16, 19] have been proposed in the past.
Apriori [1] was the first efficient and scalable method for mining associations. It starts by counting frequent items,
and during each subsequent pass it extends the current set of frequent itemsets by one more item, until no more
frequent itemsets are found. Since it uses a pure bottom-up search over the subset lattice (see Figure 7), it generates
all 2l subsets of a frequent itemset of lengthl. Other methods including DHP [13], Partition [16], AS-CPA [10], and
DIC [3], propose enhancements over Apriori in terms of the number of candidates counted or the number of data
scans. But they still have to generate all subsets of a frequent itemset. This is simply not feasible (except for very high
support) for the kinds of dense datasets we examine in this paper. We use Apriori as a representative of this class of
methods in our experiments.

Methods for finding the maximal frequent itemsets includeAll-MFS [8], which is a randomized algorithm, and as
such not guaranteed to be complete.Pincer-Search[9] not only constructs the candidates in a bottom-up manner like
Apriori, but also starts a top-down search at the same time. Our previous algorithms (Max)Eclat and Max(Clique) [19,
17] range from those that generate all frequent itemsets to those that generate a few long frequent itemsets and other
subsets. MaxMiner [2] is another algorithm for finding the maximal elements. It uses novel superset frequency
pruning and support lower-bounding techniques to quickly narrow the search space. Since these methods mine only
the maximal frequent itemsets, they cannot be used to generate all possible association rules, which requires the
support of all subsets in the traditional approach. If we try to compute the support of all subsets of the maximal
frequent itemsets, we again run into the problem of generating all2l subsets for an itemset of lengthl. For dense
datasets this is impractical. Using MaxMiner as a representative of this class of algorithms we show that modifying it
to compute closed itemsets renders it infeasible for all except very high supports.

TW

D T W

CDAW CW DWDTCTATADAC

C

{}

A

CDW x 245

ACTW x 135

ACTW x 135

CW x 12345

CT x 1356

ACW x 1345

C x 123456

CD x 2456

A

C

D

T

W

AT

DW

TW

Find Generators Compute Closures

54464

4 4 4 5324 2 3 3

Figure 13: AClose Algorithm: Example

AClose [14] is an Apriori-like algorithm that directly mines closed frequent itemsets. There are two main steps in
AClose. The first is to use a bottom-up search to identifygenerators, the smallest frequent itemsets that determines
a closed itemset via the closure operatorcit. For example, in our example database, bothcit(A) = ACW and
cit(AC) = ACW , but onlyA is a generator forACW . All generators are found using a simple modification of
Apriori. Each time a new candidate set is generated, AClose computes their support, pruning all infrequent ones. For
the remaining sets, it compares the support of each frequent itemset with each of its subsets at the previous level. If the
support of an itemset matches the support of any of its subsets, the itemset cannot be a generator and is thus pruned.
This process is repeated until no more generators can be produced.

The second step in AClose is to compute the closure of all the generators found in the first step. To compute
the closure of an itemset we have to perform an intersection of all transactions where it occurs as a subset, i.e., the
closure of an itemsetX is given ascit(X) =

T
X�i(T) i(T), whereT is a tid. The closures for all generators can be

computed in just one database scan, provided all generators fit in memory. Nevertheless computing closures this way
is an expensive operation.

Figure 13 shows the working of AClose on our example database. After generating candidate pairs of items, it is
determined thatAD andDT are not frequent, so they are pruned. The remaining frequent pairs are pruned if their

14

support matches the support of any of their subsets.AC;AW are pruned, since their support is equal to the support of
A. CD is pruned because ofD, CT because ofT , andCW because ofW . After this pruning, we find that no more
candidates can be generated, marking the end of the first step. In the second step, AClose computes the closure of all
unpruned itemsets. Finally some duplicate closures are removed (e.g., bothAT andTW produce the same closure).
We will show that while AClose is much better than Apriori, it is uncompetitive with CHARM.

A number of previous algorithms have been proposed for generating the Galois lattice of concepts [5, 6]. These
algorithms will have to be adapted to enumerate only the frequent concepts. Further, they have only been studied on
very small datasets. Finally the problem of generating a basis (a minimal non-redundant rule set) for association rules
was discussed in [18] (but no algorithms were given), which in turn is based on the theory developed in [7, 5, 11].

6 Experimental Evaluation

We chose several real and synthetic datasets for testing the performance of CHARM. The real datasets are the same
as those used in MaxMiner [2]. All datasets except the PUMS (pumsb and pumsb*) sets, are taken from the UC
Irvine Machine Learning Database Repository. The PUMS datasets contain census data. pumsb* is the same as
pumsb without items with 80% or more support. The mushroom database contains characteristics of various species
of mushrooms. Finally the connect and chess datasets are derived from their respective game steps. Typically, these
real datasets are very dense, i.e., they produce many long frequent itemsets even for very high values of support. These
datasets are publicly available from IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html).

We also chose a few synthetic datasets (also available from IBM Almaden), which have been used as benchmarks
for testing previous association mining algorithms. These datasets mimic the transactions in a retailing environment.
Usually the synthetic datasets are sparse when compared to the real sets, but we modified the generator to produce
longer frequent itemsets.

Database # Items Avg. Record Length # Records Scaleup DB Size
chess 76 37 3,196 31,960
connect 130 43 67,557 675,570
mushroom 120 23 8,124 81,240
pumsb* 7117 50 49,046 490,460
pumsb 7117 74 49,046 490,460
T20I12D100K 1000 20 100,000 1,600,000
T30I8D100K 1000 30 100,000 1,600,000
T40I8D400K 1000 40 100,000 1,600,000

Table 1: Database Characteristics

Table 1 also shows the characteristics of the real and synthetic datasets used in our evaluation. It shows the number
of items, the average transaction length and the number of transactions in each database. It also shows the number
of records used for the scaleup experiments below. As one can see the average transaction size for these databases is
much longer than conventionally used in previous literature.

All experiments described below were performed on a 400MHz Pentium PC with 256MB of memory, running
RedHat Linux 6.0. Algorithms were coded in C++.

6.1 Effect of Branch Ordering

Figure 14 shows the effect on running time if we use various kinds of branch orderings in CHARM. We compare
three ordering methods — lexicographical order, increasing by support, and decreasing by support. We observe that
decreasing order is the worst. On the other hand processing branch itemsets in increasing order is the best; it is about a
factor of 1.5 times better than lexicographic order and about 2 times better than decreasing order. Similar results were
obtained for synthetic datasets. All results for CHARM reported below use the increasing branch ordering, since it is
the best.

15

0

10

20

30

40

50

60

60657075808590

T
im

e
 p

e
r

C
lo

s
e
d
 I
te

m
s
e
t
(s

e
c
)

Minimum Support (%)

chess

Decreasing
Lexicographic

Increasing

2

4

6

8

10

12

14

16

9595.59696.59797.598

T
im

e
 p

e
r

C
lo

s
e
d
 I
te

m
s
e
t
(s

e
c
)

Minimum Support (%)

connect

Decreasing
Lexicographic

Increasing

0

1

2

3

4

5

6

7

101520253035404550

T
im

e
 p

e
r

C
lo

s
e
d
 I
te

m
s
e
t
(s

e
c
)

Minimum Support (%)

mushroom

Decreasing
Lexicographic

Increasing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

93949596979899

T
im

e
 p

e
r

C
lo

s
e
d
 I
te

m
s
e
t
(s

e
c
)

Minimum Support (%)

pumsb

Decreasing
Lexicographic

Increasing

0

5

10

15

20

25

30

40455055606570

T
im

e
 p

e
r

C
lo

s
e
d
 I
te

m
s
e
t
(s

e
c
)

Minimum Support (%)

pumsb*

Decreasing
Lexicographic

Increasing

Figure 14: Branch Ordering

10

100

1000

10000

100000

1e+06

60657075808590

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Minimum Support (%)

chess

Frequent
Closed

Maximal

10

100

1000

10000

9595.59696.59797.598

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Minimum Support (%)

connect

Frequent
Closed

Maximal

10

100

1000

10000

100000

1e+06

101520253035404550

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Minimum Support (%)

mushroom

Frequent
Closed

Maximal

1

10

100

1000

93949596979899

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Minimum Support (%)

pumsb

Frequent
Closed

Maximal

1

10

100

1000

10000

100000

40455055606570

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Minimum Support (%)

pumsb*

Frequent
Closed

Maximal

Figure 15: Set Cardinality

2

4

6

8

10

12

14

60657075808590

L
o
n
g
e
s
t
F

re
q
 I
te

m
s
e
t
/
#
D

B
 S

c
a
n
s

Minimum Support (%)

chess

chessLF
chessDBI
chessDBL

0

1

2

3

4

5

6

7

8

9

9595.59696.59797.598

L
o
n
g
e
s
t
F

re
q
 I
te

m
s
e
t
/
#
D

B
 S

c
a
n
s

Minimum Support (%)

connect

connectLF
connectDBI
connectDBL

0

2

4

6

8

10

12

14

16

20253035404550
L
o
n
g
e
s
t
F

re
q
 I
te

m
s
e
t
/
#
D

B
 S

c
a
n
s

Minimum Support (%)

mushroom

mushroomLF
mushroomDBI
mushroomDBL

0

1

2

3

4

5

6

7

93949596979899

L
o
n
g
e
s
t
F

re
q
 I
te

m
s
e
t
/
#
D

B
 S

c
a
n
s

Minimum Support (%)

pumsb

pumsbLF
pumsbDBI

pumsbDBL

0

2

4

6

8

10

12

14

40455055606570

L
o
n
g
e
s
t
F

re
q
 I
te

m
s
e
t
/
#
D

B
 S

c
a
n
s

Minimum Support (%)

pumsb*

pumsb*LF
pumsb*DBI
pumsb*DBL

Figure 16: Longest Frequent Item-
set (LF) vs. Database Scans (D-
BI=Increasing, DBL=Lexical Order)

16

0.01

0.1

1

10

100

1000

10000

100000

30405060708090100

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

chess

Apriori
AClose

CMaxMiner
Charm

MaxMiner

0.01

0.1

1

10

100

1000

10000

80859095100

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

connect

Apriori
AClose

CMaxMiner
Charm

MaxMiner

0.1

1

10

100

1000

10000

100000

05101520253035404550

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

mushroom

Apriori
AClose

CMaxMiner
Charm

MaxMiner

0.01

0.1

1

10

100

1000

10000

7580859095100

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

pumsb

Apriori
AClose

CMaxMiner
Charm

MaxMiner

0.01

0.1

1

10

100

1000

10000

3035404550556065707580

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

pumsb*

Apriori
AClose

CMaxMiner
Charm

MaxMiner

1

10

100

1000

10000

00.20.40.60.811.21.4

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

T20I12D100K

Apriori
AClose

CMaxMiner
Charm

MaxMiner

1

10

100

1000

00.20.40.60.811.21.4

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

T30I8D100K

Apriori
AClose

CMaxMiner
Charm

MaxMiner

1

10

100

1000

10000

00.511.522.5

T
o

ta
l T

im
e

 (
se

c)

Minimum Support (%)

T40I8D100K

Apriori
AClose

CMaxMiner
Charm

MaxMiner

Figure 17: CHARM versus Apriori, AClose, CMaxMiner and MaxMiner

17

6.2 Number of Frequent, Closed, and Maximal Itemsets

Figure 15 shows the total number of frequent, closed and maximal itemsets found for various support values. It should
be noted that the maximal frequent itemsets are a subset of the closed frequent itemsets (the maximal frequent itemsets
must be closed, since by definition they cannot be extended by another item to yield a frequent itemset). The closed
frequent itemsets are, of course, a subset of all frequent itemsets. Depending on the support value used the set of
maximal itemsets is about an order of magnitude smaller than the set of closed itemsets, which in turn is an order of
magnitude smaller than the set of all frequent itemsets. Even for very low support values we find that the difference
between maximal and closed remains around a factor of 10. However the gap between closed and all frequent itemsets
grows more rapidly. For example, for mushroom at 10% support, the gap was a factor of 100; there are 558 maximal,
4897 closed and 574513 frequent itemsets.

6.3 CHARM versus MaxMiner, AClose, and Apriori

Here we compare the performance of CHARM against previous algorithms. MaxMiner only mines maximal frequent
itemsets, thus we augmented it by adding a post-processing routine that uses the maximal frequent itemsets to generate
all closed frequent itemsets. In essence we generate all subsets of the maximal itemsets, eliminating an itemset if its
support equals any of its subsets. The augmented algorithm is called CMaxMiner. The AClose method is the only
extant method that directly mines closed frequent itemsets. Finally Apriori mines only the frequent itemsets. It would
require a post-processing step to compute the closed itemsets, but we donotadd this cost to its running time.

Figure 17 shows how CHARM compares to the previous methods on all the real and synthetic databases. We find
that Apriori cannot be run except for very high values of support. Even in these cases CHARM is 2 or 3 orders of
magnitude better. Generating all subsets of frequent itemsets clearly takes too much time.

AClose can perform an order of magnitude better than Apriori for low support values, but for high support values
it can in fact be worse than Apriori. This is because for high support the number of frequent itemsets is not too much,
and the closure computing step of AClose dominates computation time. Like Apriori, AClose couldn’t be run for very
low values of support. The generator finding step finds too many generators to be kept in memory.

CMaxMiner, the augmented version of MaxMiner, suffers a similar fate. Generating all subsets and testing them
for closure is not a feasible strategy. CMaxMiner cannot be run for low supports, and for the cases where it can be run,
it is 1 to 2 orders of magnitude slower than CHARM.

Only MaxMiner was able to run for all the values of support that CHARM can handle. Except for high support
values, where CHARM is better, MaxMiner can be up to an order of magnitude faster than CHARM, and is typically
a factor of 5 or 6 times better. The difference is attributable to the fact that the set of maximal frequent itemsets is
typically an order of magnitude smaller than the set of closed frequent itemsets. But it should be noted that, since
MaxMiner only mines maximal itemsets, it cannot be used to produce association rules. In fact, any attempt to
calculate subset frequency adds a lot of overhead, as we saw in the case of CMaxMiner.

These experiments demonstrate that CHARM is extremely effective in efficiently mining all the closed frequent
itemsets, and is able to gracefully handle very low support values, even in dense datasets.

6.4 Scaling Properties ofCHARM

Figure 18 shows the time taken by CHARM per closed frequent itemset found. The support values are the same as the
ones used while comparing CHARM with other methods above. As we lower the support more closed itemsets are
found, but the time spent per element decreases, indicating that the efficiency of CHARM increases with decreasing
support.

Figure 19 shows the number of tidset intersections performed per closed frequent itemset generated. The ideal case
in the graph corresponds to the case where we perform exactly the same number of intersections as there are closed
frequent itemsets, i.e., a ratio of one. We find that for both connect and chess the number of intersections performed
by CHARM are close to ideal. CHARM is within a factor of 1.06 (for chess) to 2.6 (for mushroom) times the ideal.
This confirms the computational efficiency claims we made before. CHARM indeed performsO(jCj) intersections.

Figure 16 shows the number of database scans made by CHARM compared to the length of the longest closed
frequent itemset found for the real datasets. The number of database scans for CHARM was calculated by taking
the sum of the lengths of all tidsets scanned from disks, and then dividing the sum by the tidset lengths for all items
in the database. The number reported is pessimistic in the sense that we incremented the sum even though we may

18

have space in memory or we may have scanned the tidset before (and it has not been evicted from memory). This
effect is particularly felt for the case where we reorder the itemsets according to increasing support. In this case, the
most frequent itemset ends up contributing to the sum multiple times, even though its tidset may already be cached
(in memory). For this reason, we also show the number of database scans for the lexical ordering, which are much
lower than those for the sorted case. Even with these pessimistic estimates, we find that CHARM makes a lot fewer
database scans than the longest frequent itemset. Using lexical ordering, we find, for example on pumsb*, that the
longest closed itemset is of length 13, but CHARM makes only 3 database scans.

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100 1000

T
im

e
 p

e
r

C
lo

se
d

 I
te

m
se

t
(s

e
c)

#Closed Frequent Itemsets (in 10,000’s)

Real Datasets

chess
connect

mushroom
pumsb

pumsb*

Figure 18: Time per Closed Frequent Itemset

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0.001 0.01 0.1 1 10 100 1000

#
In

te
rs

e
ct

io
n

s
p

e
r

C
lo

se
d

 I
te

m
se

t

#Closed Frequent Itemsets (in 10,000’s)

Real Datasets

ideal
chess

connect
mushroom

pumsb
pumsb*

Figure 19: #Intersections per Closed Itemset

0

100

200

300

400

500

600

1 2 4 8 16

T
o

ta
l T

im
e

 (
se

c)

Number of Transactions (in 100,000’s)

Synthetic Datasets

T20I12(0.5%)
T30I8(0.5%)

T40I8(0.75%)

Figure 20: Size Scaleup on Synthetic Datasets

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

T
o

ta
l T

im
e

 (
se

c)

Replication Factor

Real Datasets

connect(95%)
chess(70%)

pumsb(93%)
mushroom(30%)

pumsb*(50%)

Figure 21: Size Scaleup on Real Datasets

Finally in Figures 20 and 21 we show how CHARM scales with increasing number of transactions. For the
synthetic datasets we kept all database parameters constant, and increased the number of transactions from100K to
1600K. We find a linear increase in time. For the real datasets we replicated the transactions from 2 to 10 times. We
again find a linear increase in running time with increasing number of transactions.

7 Conclusions

In this paper we presented and evaluated CHARM, an efficient algorithm for mining closed frequent itemsets in large
dense databases. CHARM is unique in that it simultaneously explores both the itemset space and tidset space, unlike
all previous association mining methods which only exploit the itemset space. The exploration of both the itemset
and tidset space allows CHARM to use a novel search method that skips many levels to quickly identify the closed
frequent itemsets, instead of having to enumerate many non-closed subsets.

An extensive set of experiments confirms that CHARM provides orders of magnitude improvement over existing
methods for mining closed itemsets. It makes a lot fewer database scans than the longest closed frequent set found,
and it scales linearly in the number of transactions and also is also linear in the number of closed itemsets found.

19

Acknowledgement

We would like to thank Roberto Bayardo for providing us the MaxMiner algorithm, as well as the real datasets used
in this paper.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast discovery of association rules. In
U. Fayyad and et al, editors,Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI Press,
Menlo Park, CA, 1996.

[2] R. J. Bayardo. Efficiently mining long patterns from databases. InACM SIGMOD Conf. Management of Data,
June 1998.

[3] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket
data. InACM SIGMOD Conf. Management of Data, May 1997.

[4] B. A. Davey and H. A. Priestley.Introduction to Lattices and Order. Cambridge University Press, 1990.

[5] B. Ganter and R. Wille.Formal Concept Analysis: Mathematical Foundations. Springer-Verlag, 1999.

[6] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on galois (concept)
lattices.Computational Intelligence, 11(2):246–267, 1991.

[7] J. L. Guigues and V. Duquenne. Familles minimales d’implications informatives resultant d’un tableau de don-
nees binaires.Math. Sci. hum., 24(95):5–18, 1986.

[8] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all the most specific sentences by randomized algorithms.
In Intl. Conf. on Database Theory, January 1997.

[9] D-I. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering the maximum frequent set. In6th
Intl. Conf. Extending Database Technology, March 1998.

[10] J-L. Lin and M. H. Dunham. Mining association rules: Anti-skew algorithms. In14th Intl. Conf. on Data
Engineering, February 1998.

[11] M. Luxenburger. Implications partielles dans un contexte.Math. Inf. Sci. hum., 29(113):35–55, 1991.

[12] S. Manegold P. A. Boncz and M. L. Kersten. Database architecture optimized for the new bottleneck: Memory
access. In25nd Intl. Conf. Very Large Databases, September 1999.

[13] J. S. Park, M. Chen, and P. S. Yu. An effective hash based algorithm for mining association rules. InACM
SIGMOD Intl. Conf. Management of Data, May 1995.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In
7th Intl. Conf. on Database Theory, January 1999.

[15] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with databases: alternatives and
implications. InACM SIGMOD Intl. Conf. Management of Data, June 1998.

[16] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databas-
es. In21st VLDB Conf., 1995.

[17] M. J. Zaki. Scalable algorithms for association mining.IEEE Transactions on Knowledge and Data Engineering,
to appear, 2000.

[18] M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In3rd ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, June 1998.

[19] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In
3rd Intl. Conf. on Knowledge Discovery and Data Mining, August 1997.

20

