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Abstract— This work addresses the problem of mini-
mizing power consumption in each sensor node locally
while ensuring two global (i.e., network wide) properties:
(i) communication connectivity, and (ii) sensing coverage.
A sensor node saves energy by suspending its sensing
and communication activities according to a Markovian
stochastic process. It is shown that a power level to induce a
coverage radius �������� is sufficient for connectivity provided
that 	�

��� is a function approaching to infinity. The paper
presents a Markov model and its solution for steady
state distributions to determine the operation of a single
node. Given the steady state probabilities, we construct a
non-linear optimization problem to minimize the power
consumption. Simulation studies to examine the collective
behavior of large number of sensor nodes produce results
that are predicted by the analytical model.
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I. INTRODUCTION

This work considers a sensor network which is com-
prised of a large number of sensor nodes communicating
with RF links. We assume that sensor nodes are deployed
in an ad-hoc fashion so as to cover a specified area
with their sensing capabilities. Sensors monitor, sense
and collect data from a target domain, process it and
transmit the information back to the specific sites (e.g.,
headquarters, disaster control centers). There are many
potential applications of sensor networks including mil-
itary, environmental and health related areas. Although
the sensor nodes communicate using wireless links, there
are fundamental differences between a sensor network
and other wireless ad-hoc networks. One important prop-
erty of a sensor network is redundancy. Sensor nodes are
usually densely deployed (approximately 20 sensor/ ��� )
[1], hence the underlying network has high redundancy
for sensing and communications.

Increasing the lifetime of a sensor network is of
primary importance. The high density can cause signif-
icant inefficiency problems leading to excessive power
wastage. Sensor nodes may sense the same event and

try to report it, increasing collisions by transmiting
redundant data. Collisions require re–transmissions and
increase the energy consumption. Although data aggre-
gation techniques [2] can help to reduce the traffic that
propagates to the control centers, they do not provide a
complete solution to the problem. Coordination among
sensor nodes requires synchronization based on either
a global time reference (e.g., GPS) or clock synchro-
nization algorithms. While equipping each sensor node
with a GPS is a possibility for the future, current solu-
tions cannot assume a global time reference. The clock
synchronization protocols are based on message (e.g.,
control packets) exchange [3], [4] and they are costly
for sensor networks. Thus, coordination of sensor nodes
must be done with local and independent (asynchronous)
decisions which motivates the deployment of randomized
protocols.

In this work we propose a probabilistic scheme in
which each sensor node makes an independent decision
to be in the transmit, receive/sense or turn off state.

We are interested in determining the optimal param-
eters governing the probabilistic transitions of a sensor
node so as to minimize power consumption locally while
ensuring connectivity and coverage globally.

Some recent works suggest energy conservation by
powering off a subset off the nodes in an ad–hoc wireless
network [5], [6], [7], [8]. The common theme is to enable
nodes to power off or go to low energy sleeping mode
during idle time, while ensuring connectivity.

A. Our Contributions

This work is the first to provide rigorous analysis for
an energy saving protocol which ensures both connectiv-
ity and coverage in sensor networks. We express the sen-
sor network design problem as an optimization problem
with the objective of minimizing the power used by the
nodes. The sensor network design method we present is a
general tool which can be used to optimize parameters of
any existing energy saving network protocol dependent
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on local node decisions. We present a variety of such
protocols and analyze one. For the protocol we present,
the power savings over existing ad-hoc protocols is ���
at low sensing event densities and ������� at higher
densities.

Related Work

In one of the pioneering works on energy saving in
wireless networks, the authors in [9] report that leaving
the network interface (NI) idle consumes as much energy
as reception. They argue that power aware MAC and
transport level protocols should be used. Furthermore
[9] reports that it is not the number of packets but the
duration of the sending period that correlates with the
energy usage. The authors also note that (i) most of the
energy is spent while idling, and (ii) in order to decrease
the energy consumption the NI should be turned off.

In [10] the authors present two routing protocols
BECA and AFECA which have a Markov Model with
sleeping, listening and active states. In BECA the sojourn
times of the nodes are deterministic. In AFECA they are
adaptive, the sleeping time being a random variable that
depends on the number of neighbors the node has. The
authors show (using simulations) a 50% energy saving
over naive ad-hoc routing algorithms. In the simulation
study (III) we compare our protocol to AFECA.

The GAF routing protocol in [6] aims to extend
the lifetime of the network by minimizing the energy
consumption and preserving connectivity at the same
time. They present a 3-state transition diagram which
is a simplified version of ours, and is confined to
GAF (Geographic Adaptive Fidelity). Using GAF they
discover the locations of redundant nodes. GAF simply
imposes a virtual grid on the network. If in any of
the grid squares there are more than one node, the
redundant nodes are turned off. They also use a protocol
called CEC (Cluster-based Energy Conservation) which
further eliminates redundant nodes by clustering them.
The authors show 40-60% energy saving over other ad-
hoc routing algorithms.

While the above approaches address the power con-
trol problem at the network layer, the third class of
approaches aims to enhance the MAC layer [5], [11], [8].
For example, in [11] the authors propose a modification
of the 4-way handshake procedure in the IEEE802.11
protocol for power saving.

In [5] the authors present a MAC protocol PAMAS
which saves energy by powering off radios that overhear
transmission. PAMAS is a hybrid MAC protocol and
provides for 10–50% savings.

In [12] the authors propose a MAC protocol for sensor
networks in which nodes go into periodic listen and

sleep cycles so as to reduce the energy consumption. The
sleep and listen periods are implemented using timers.
Neighboring nodes listen and go to sleep at the same
time thus the scheme requires synchronization among
the neighbors. The authors show that the proposed MAC
protocol consumes 2-6 times less energy than IEEE
802.11.

In [7] the authors present a distributed randomized
algorithm SPAN where each node makes a decision on
its own, based on the amount of energy its number of
neighbors. Each node either sleeps (802.11 Power Saving
mode) or becomes a coordinator (part of the networking
backbone). Coordinators forward the messages they re-
ceive from the other nodes. A node which has a message
to send automatically becomes a coordinator. SPAN is
built on the top of 802.11 and it uses both MAC and
routing layer protocols to make decisions.

While GAF [6] and SPAN [7] are distributed ap-
proaches with coordination among neighbors, in AS-
CENT a node decides locally whether to be on or off
[8].

The pioneering work in [13] provided the first asymp-
totic results relating the power level to the connectivity.
The authors showed, using percolation theory, that in
order to have connectivity in a network with randomly
placed nodes, the ratio of the number of neighbors to the
total number of nodes should be ��� �"!$#%�'&�(*)+# where &
should go to infinity asymptotically.

In [14] the authors propose an algorithm to adjust
the power level in order to ensure a minimum de-
gree constraint on each node. In [15] a similar degree
constraint is enforced to ensure a bound on the end-
to-end throughput. In [16] COMPOW protocol and its
architecture are discussed.

In [17] the authors consider the coverage problem and
use Voronoi diagrams generated with delaunay triangu-
lation to calculate the coverage of the network.

Recently, in [18], the joint problem of coverage and
connectivity is considered using a grid of sensors each
of which can probabilistically fail. The authors find the
necessary and sufficient conditions for connectivity and
coverage in this type of a sensor network. The main
result in [18] is that within the transmission radius the
number of active nodes should be a logarithm of the total
number of nodes, for the network to have connectivity
and coverage. They also show that the diameter of the
network is of order , #-)/.�0213# . They cover the network
area with disks and use the argument that each disk
should contain at least one active node for coverage and
connectivity.
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Organization of the Paper

In the next section we present the model of the sensor
network and analyze its steady state behavior including
its global connectivity and coverage properties. We for-
mulate power conservation as an optimization problem.
In Section III we compare the theoretical analysis with a
simulation of a sensor network as well as with AFECA.
We end with some concluding remarks in Section IV.

II. ANALYSIS

There are three components to this section. First we
discuss the Markov chain that governs the behavior of an
individual node. Then we discuss how the properties of
this Markov chain affect the connectivity and coverage of
the sensor network system. Finally we discuss optimizing
with respect to the parameters of the Markov chain so as
to maximize the life time of the sensor network system,
or other parameters. Extensions and heuristics will be
investigated in more detail in the simulation section.

A. The Markov Model

Each node is a three state Markov chain. The three
states are the off, 4 , the sense/receive, 5 , and the
transmit, 6 , states. Consider a node. Its transition matrix
depends on the state of its environment. The environ-
ment of a node can be in one of two states: either
a sense/receive event is occurring or no such event is
occurring. The Markov state diagram in each of these
cases is given below, along with the Markov transition
probability matrices, 7 when there is an event and 87
when there is no event.
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Notice that when a sensing event occurs, the node will
always transition to the transmit state. This requirement
can be relaxed. There is also an ambiguity if both a

sensing and receiving event occur. In this case, we can
require that the node always attempts to transmit the
sensed event rather than the received event. At time d ,
there is some probability that the node is in each of its
three states. Denote b

O
^�b

S
^�b

T as the respective proba-
bilities of finding the node in the off, sensing/receiving
and transmit states, and collect these three probabilities
into the vector ef�gdh(DXji b O �gdh( ^�b

S �gdh( ^�b
T �gdh(lk . Let mon be

the probability that there is an event. Then the state
probabilities for the node at time dp�qZ are given byer�gds��Z2(tX�er�gd*(ui mont7v�w�xZzy{m-nt( 87|k~} (1)

Since an event can be either sensing or receiving, the
probability of an event will depend on the probability
that a single neighbor is transmitting. We now suppose
that the system has equilibrated to a steady state, in
which ef�gd���Z2(�X ef�gdh(�X e�� . We also make the
mean field approximation that all the neighbors of the
node are in the same steady state and can be treated
as independent. In which case, we can compute m n as
follows. Let � be the probability of a sensing event and
let � be the probability of a receiving event. � will
be related to the sensing radius and the sensing event
density. � is the probability that exactly one of the nodes
neighbors are transmitting. We will assume to a first
order approximation that the state probabilities for the
neighbors are independent. In this case, if there are �
neighbors, then �/��Xw� b

T �xZ�y b
T ( � J�I

. Note that if the
transmit radius is � T, then assuming that the disks are
in the unit torus, the probability that a node is within
transmitting range of our node is ��� T � , and � has a
Binomial distribution �%i ��k�Xq�D�����*#�y�Z ^ ��� T � ( , where�D���U�h� ^�b (�X������� b � �xZ�y b ( � J � . Multiplying � by��i ��k and summing over � , we finally arrive at the
following expression for � :��X��g#Yy�Z2(���� T � b T �xZzy���� T � b T (¡  J � } (2)

Notice that � is a function of b
T. Since the sens-

ing and receiving events are independent, m_n X��i sense or receivekpX¢���'�£y{�/� . We can now use this
expression for mon to solving (1) for the steady state
probabilities e¤� , which leads to the following set of non-
linear equations.e � X e � i mont7j�w�xZzy{m-nt( 87|k ^m n X ���q�g#�y'Z2(u�xZ�y��¥(�&"�xZ�y�&�(   J � ^Z X e�¦¥§¨X b

O � b
S � b

T } (3)

where &VX©��� T � b T and § is a vector of ones. Had m n
been a constant independent of e , it is well known from
the theory of finite state Markov chains that a steady
state set of probabilities exists, [22]. It turns out that the
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introduction of this non-linearity does not change the
situation.

Theorem 1: The set of non-linear steady state equa-
tions for e�� given in (3) has at least one solution.

Proof: Let ª���e�(¤X�i m�n���e�(x7«�¬�xZ�y�m-n­��e�(*(�87¢k as
defined in (3). ª���e�( is a transition matrix, i.e., ®�¯±°�²³�
and ´ ° ® ¯±° XµZ for all ¶ . Let · be the � -dimensional
probability simplex,·¸X¢¹�º�»"¼�¯�²�� ^¾½ ¯ ¼�¯pX¿Z/À¥}· is compact, and Á¤��e�(¤X[ªY��e¤(¡Â-e maps · into itself.m-nz��e¤( is a polynomial in e , and hence is continuous.
Thus, Á¤��e¤( is a continuous mapping. Thus the conditions
to apply the Brower fixed point theorem are satisfied forÁ¤��e�( [23], and so Á¤��e�( has a fixed point.
While we have hidden the dependence up to now, we
explicitly note here that e_� is a function of St^ T ^a`2^�b and
continue with this dependence being understood.

B. Connectivity and Coverage
Here we will discuss the coverage and connectivity

properties of the system of sensors. There are already
some results regarding these issues in the literature, and
we add one more that is appealing on account of its
elementary probabilistic derivation. Existing results for
coverage and connectivity have also dealt with various
forms of random graphs ranging from various types of
disk graphs, [13], [18], [20], to Bernoulli graphs, [19],
to percolation processes, [21].

We assume that the # sensors are well approximated
by points independently and uniformly distributed in the
unit torus, Ã|X¸i � ^ ZÄk¤Å�i � ^ ZÄk , where the opposite edges
are identified. We use a torus to avoid unnecessary com-
plications due to edge effects. Similar results would hold
for the square, with only minor additional technicalities.
Let � S be the sensing radius and let � T be the transmitting
radius.

1) Coverage: We first consider coverage. We assume
that the system has equilibrated to its steady state, and
that every node can be treated as independent to first
order, with state probabilities given by et� . A pointºÇÆÈÃ is covered if there is a node in the sensing
state within � S of º . In this case, an event that occurs
at º will be detected. Thus, the probability that a given
node is sensing and within � S of º is ��� S � b S. Under the
independence assumption, the probability that no node
can sense an event at º is then given by �xZ�y¬��� S � b S (   ,
which is the probability that º is not covered. Define the
coverage function by,Á¤�gº-(_XÊÉ Z º is not covered,� º is covered.

(4)

Then, ��i±Á¤�gº-(rXµZÄkpXË�xZ�y���� S � b S (   . Let Ì be the area
that is not covered, thenÌwXcÍÊÎ�ºÏÁ¤�gº-( (5)

and so Ð%i Ì�k�XÇÑ�Î¥º[��i±Á¤�gº-(YXÒZÄkÓXÔ�xZÓy���� S � b S (   .
Thus we see that the expected area covered is ZÕy­Ð%i Ì�k�XZ�yÖ�xZ�yÓ��� S � b S (   , which, after using the fact that � �"!��xZ�y¼�(f\|y�¼ for ¼�×cZ , leads to the following proposition:

Proposition 2: Let ��� S � b S XÙØ��g#-(*)+# . Then, the ex-
pected coverage is given byZ�yµÚpZ�y Ø��g#-(# Û   ²cZ�y{Ü JÞÝàß  �á ^
(Note: Ø��g#-(*)+#�\cZ .)
Thus, as long as Ø��g#-(�â ã , the expected coverage
approaches Z . Ø��g#-( can be interpreted as the expected
power used by the sensing nodes. In order to get a
concentration result on the coverage, we will use a
second moment method, and compute ä3å3�à��Ì­( , to which
end we would need Ð%i Ì � k . We use the mean field
approximation that our nodes are acting independently
in the mean field environment of the neighbors. Then,
using a second moment method, we have that

Theorem 3: Let � S \ I�hæ � . Then, for any ç�è³� .

��i Ì¿²��"Ü Jfé�ê�ë+ì íêïîgð Ýàß  �á k-× ��� exp �¥y]ñ Ýàß  �áòxó �³ô¨� IÝàß  �á ( �Ø��g#-(t��Z$�'ô]� IÝàß  "á ( � ^
where Ø��g#-(¤X�#p��� S � b S.

Proof: Since the proof, though elementary, is long
and tedious, we first provide a proof sketch. First we
observe that the coverage by squares inscribed in the
disks cannot be more than the coverage by the disks.
Thus it will suffice to show that the coverage by these
inscribed squares is large. Proposition 2 gives the ex-
pected coverage. We will show that the variance of this
coverage goes to zero sufficiently fast so that the actual
coverage will not deviate too much from the expectation.
The variance is given by a double integral over two
two dimensional variables. We compute this integral
as a finite summation, and then bound the variance
by bounding this summation. Once we have bound the
variance, we can use the Markov inequality to bound the
probability of a large deviation from the expected value,
and this leads to the result claimed.

We can inscribe a square of side õ XÒ� S ö � in a
circle of radius � S. The coverage by the disks will then
be no less than the coverage by the squares. Let ÷
be the area not covered by the squares, then ÌÇ\�÷ .
Defining the coverage function Á3ø��gº-( for the squares
analogously to (4), we find that Ð%iù÷okzXú�xZ£y�õ � b S (   }



5Ð%iù÷ � k�X Ñ Î¥º Ñ Î¥ûUÁ"øs�gº-(xÁ"øp�gûo( . The Á¥ø��gº-(xÁ"øp�gûo( term
in the integrand is the probability that both the points º
and û are not covered. Let ÷�ü denote the square centered
at the point ý�ÆDÃ . Then the probability that both pointsº and û (in the integrand) are not covered is given by the
probability that all sensing squares are outside ÷sþÕÿ_÷�� , soÐ%iù÷ � k�XwÑ¨Î¥ºÊÑ¨Î¥ûw�xZzy b

S

� ÷�þ­ÿD÷�� � (   . In the integral,
let º¿XÒ�g¼ I ^ ¼ � ( and ûµX ��� I ^ � � ( . If

� ¼ I y�� I � ² õ
or

� ¼ � y�� � � ²«õ then
� ÷ þ ÿ�÷ � � X �"õ � . Otherwise,� ÷�þtÿ�÷�� � Xw�"õ � y�� õ y � ¼ I y�� I � (u� õ y � ¼ � y�� � � ( . Fix º

in the û integral. The area over which û can range with÷�� disjoint from ÷�þ is ZÞy ��õ � This area thus contributes�xZpy]��õ � (u�xZsy%�"õ � (   to the integral. Over the remaining
area, changing coordinate in the û integral so that its
origin lies at º , this contribution to the integral (over the
area when the two squares overlap) becomes� X��$Í Î¥º{ÍK	��
 ê
� 
��
���Î¥û$�xZ�y�� b S õ � � b

S � õ¿y�� I (u� õ y�� � (*(   }
A tedious but elementary computation to perform these
integrals then leads to the following result, after adding
the contribution from the part of the integral over the
region where ÷ þ and ÷ � are disjoint.Ð%iù÷ � k�X¿�xZ3y � b S õ � (   � Z$�U� b

S õ �  ½ ¯�� I � # ¶ � � ¯�g¶��wZ2( ��� ^
where � X b

S õ � ) �xZ%y�� b S õ � ( . Using the facts thatä3å3�Þ�~÷t(_XqÐ%iù÷ � kÄyÓÐ%iù÷-k � and ÐViù÷-k � X��xZ�yÓ� b S õ � (   �xZ �b
S õ � � (   , we arrive atäÕå��à��Ì (ÔX �xZ�y{� b

S õ � (¡   ½ ¯�� I � # ¶ � � ¯ ÅÚ � b
S õ ��g¶��qZ2( � y � b S õ � ( ¯ Û ^

\ � b
S õ � �xZzy{� b S õ � (    ½ ¯�� I � # ¶ � � ¯�g¶��qZ2( � ^

\ � b
S õ � Ü J �   H

S
� �  ½ ¯�� I � # ¶ � � ¯�g¶��qZ2( � }

Let ���g¶�( X��   ¯�� �! ß ¯�" I á � , then we can bound the sum by#$#&%('Õ¯)���g¶�( , so we bound ���g¶�( . ���g¶�( is a very sharply
peaked function of ¶ . Its maximum occurs at ¶
* for which���g¶+*�(*)(���g¶+* yqZ2(�²ËZ and ���g¶+*r�¢Z2(*)(���g¶+*2(�×¸Z . Since���g¶��{Z2(*)(�%�g¶�($X � �g¶���Z2(u�g#ÓyV¶�(*) �g¶���Z2( � , this condition
can be solved for ¶ * to give ¶ * X�# � ) �xZ�� � ("��ô¨�xZ2)+# � ( .
Using the fact that �  ¯-,)� \ � Ü�#-)+¶+*�( ¯ , , we get the
following bound,� b

S õ � exp ��y��/#sõ � b S �   � ßïI "�.0/
1 ß I " � áïáI " � �³ô]� I  � ( �  �I " � �*Z$��ô¨� I  � ( �

Noting that for �¨\cZ2)�� ö � , õ \ I� , hence, �xZs��� �"!��xZs�� (*(*) �xZ�y b
S õ � (f\�2¥)ÕZ � , we get that

äÕå��à�~÷_(�\ � exp �¥y   � � H SIlK ��ô¨� I  � � H S
( �#sõ � b S � Z$�³ô¨� I  � � H S

( �
Since #sõ � b S X �ó Ø��g#-( , we have that

äÕå��à�~÷_(�\ ��� exp �¥y Ýàß  �áòxó �³ô¨� IÝàß  �á ( �Ø��g#-(t��Z$��ô¨� IÝàß  "á ( �
Since Ð%iù÷-k�\�Ü J �ð Ýàß  "á \ Ü J é ê ë+ì íêïî ð Ýàß  "á , we can now apply
the Markov inequality to ÷ to get

��iù÷'² �"Ü J é ê ë+ì íêïî ð Ýàß  "á ko× ��� exp �¥y ñ Ýàß  "áòxó ��ô¨� IÝàß  "á ( �Ø��g#-( � Z$�'ô¨� IÝ�ß  "á ( �
Noting that m�i Ì[²43�ko\³m�iù÷'²�3�k for any 3 , we get the
required bound.Ø��g#-( can be interpreted as the expected total power
expended by the sensing nodes. It should be no surprise
that as the total sensing power approaches infinity, the
coverage approaches Z not only in expected value, but
also with high probability. Theorem 3 also gives a lower
bound on the rate at which it approaches one. If Ø��g#-(¤X� �"!_#�� � �"!t�
�"!t#o� Ø65g�g#-( where Ø65 �g#-(_âÇã , then it is also
the case that ��i Ì¿X¢�/kpâ�Z , [20]. The faster that Ø��g#-(
grows, the faster the convergence to complete coverage.
However, this also means that the power consumption
by all the nodes will be large.

2) Connectivity: We present here two possible notions
of connectivity for a sensor network. The first considers
only the topology of the connectivity graph that can be
derived from the sensor network. The second is a more
stringent condition that also considers contention issues
in the network. The existing results use the first defi-
nition, which is the tradition we will continue with for
the most part, however we will present some heuristics
for addressing the second requirement of connectivity.
The goal of connectivity can be summarized as follows.
Suppose a sensing event fires at some position ºwÆ�Ã ,
and we wish to transmit this occurrence of this event toû�ÆDÃ . We would like to be able to successfully transmit
this occurrence with high probability for any º ^ û . The
situation is illustrated below.
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A path exists from º to û if there is a sequence of nodes
in the receiving state (which is the same as the sensing
state for us) at locations C K ^ C I ^ } } } ^ C+� such that

P1:
� � º�yDC K � � \'� S ( º can be sensed);

P2:
� � C�¯�yDC ¯ J�I � � \È� T for ¶�X Z�} } }¾� , hence the
event can be transmitted from C2¯ J�I to C ¯ , and
it will be received since C ¯ is in the receiving
state); and

P3:
� � C+� y�û � � \'� T ( C2� can transmit to û ).

We will say that the path above is a � -hop path. The
network is path connected if for any º ^ û , there exists
such a path connecting º to û . Notice that while we have
required the existence of this path, we have not required
that the path be contention free. In other words, whenC K transmits to C I , it must be that C I is in the sensing
state and no other node that is within transmission range
of C I is attempting to transmit, and similarly for every
link C�¯ J�I ^ C�¯ in the path. If there exists such a contention
free path for any º ^ û , then we say that the sensor
network is transmission connected. Note that our notions
of connectivity implicitly embed the fact that the network
covers the area as well. We will focus mostly on path
connectivity.

We see that in order to have º covered, the sensing
nodes need to cover the area with respect to � S. However,
to guarantee that û can be transmitted to, it is necessary
that the sensing nodes cover the area with respect to � T as
well. Thus it suffices to apply the results of the previous
section on coverage with � S replaced by ��XE#�F�G�¹�� S

^ � T À .
This leads to the following result.

Proposition 4: Let Ì 5 be the area that cannot be
transmitted to and let Ì be the area not covered. Then,
for any ç�è³� .��i Ì³ÿÖÌ 5 \��"Ü J ß I*J ñ áIlK ó ÝIHïß  "á ks²|ZzyKJ � Ü J ñòxó Ý H ß  "áØ 5 �g#-( � ^
where ØL5��g#-(_Xq#p��� � b S.

Proof: The claim follows from Theorem 3 and the
observation that if � S \'� T, then Ì'ÿDÌM5ON�Ì , otherwiseÌÏÿÖÌ 5 N³Ì 5 .

Thus, we see that the coverage results should imply
conditions P1 and P3 of path connectivity. We now
consider requirement P2. For this requirement, it is
sufficient that the disk graph obtained by taking disks
with radii � T centered at the sensing nodes be connected.
Such results were developed in [13] for the case where #
nodes are uniformly scattered on Ã , each having radius�à�g#-( . The minor complication here is that while # nodes
are scattered in our situation, only about # b

S of them are
sensing. In [13], the following result is proved.

Theorem 5 ([13]): The probability that the random
disk graph is connected asymptotically approaches Z if
and only if ��� � �g#-(¤X ��� �"!t#_��&��g#-(*(*)+# where &"�g#-(_âÇã .

It is also known that in grid-disk graphs, with unre-
liable nodes, the results are very similar to the random
node placement, [18], and in this case it is known that the
number of hops required (or the diameter of the graph) is
of order , #-)o� �"!t# . We expect that such results should
hold in our case as well. For our case, the intuition is
that we can apply these results with # replaced by the
number of sensing nodes, # S. Thus we have the following
theorem,

Theorem 6: Let �à�g#-(YXP#&F�G�¹�� S �g#-( ^ � T �g#-(aÀ , and for
any ��×ÊçV×ÙZ , let # S � ç¾(ÓX �xZ£y�ç¾(¡# b

S. Let Q be the
area that is path connected. If�g¶x(z��� � �g#-(¡# b

S â ã , and�g¶l¶x(���� � �g#-(¡# S � çÄ(_Xq� �"!��g# S � ç¾(*(s�Ï&"�g# S � ç¾(*( ;��F-#RTS$U &"�g��(_Xcã ,
then for any VDè³� , ��F�#  S$U ��i � Q � ²cZ�yWV3k�X¿Z .
(Note: �g¶�( implies that # b

S âÇã .)
Proof: Conditions P1 and P3 of path connectivity

for a large enough area (of size ² Z£yXV ) are implied
by condition �g¶�( in the theorem and Proposition 4. It
remains to show that the disk graph obtained from nodes
in the sensing state is connected with probability 1
in the limit. Let # S be the number of sensing nodes
(randomly scattered). Then, on account of the indepen-
dence assumption, # S is a binomial random variable,�D�g# S �*# ^�b

S ( . Ð%i # S k$XË# b
S, and so the Chernoff bound,

[24], gives �%i # S ×|�xZ�yYç¾(¡# b
S k-×�Ü�¼ b �xyz# b

S ç � )��¥( . Since# b
S â ã , we have that ��i # S ² �xZ�y�çÄ(+Y�k­â Z . Let��i m��+k be the probability that condition P2 holds, and

let # S � ç¾(_X �xZzy{ç¾(¡# b
S. Then,��i m��+k�²³��i m�� � # S ²'# S � çÄ(lkï��i # S ²³# S � ç¾(lk ^&"�g# S (_Xc��� � # S y{� �"!t# S â ã , because # S ²¢�xZzyUç¾(¡# b

S

and # b
S â ã , and so from Theorem 5, we have

that ��i m�� � # S ²Ù# S � ç¾(lk�â Z . Since we also have that��i # S ²w# S � çÄ(lk¤â Z , we then have that ��i m��+k_â�Z . So
there is a sufficiently large area for which we have that��i m]ZÄk�X¿Zpy%Ü I �g#-( for that area, ��i m��+kpX¿Zpy%Ü � �g#-( and��i m[Z+k�X ZÓywÜ � �g#-( for that area, where Ü2¯h�g#-(�â � .
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By the union bound, ��iù� m]Z]\Ò� m��^\ � m[Z+kU\Ü I �g#-(r�[Ü � �g#-(r�¿Ü � �g#-(�â � , hence we conclude that��i m]Z`_£m��a_ mbZ+k�âÔZ for a sufficiently large area, prov-
ing that the network is path connected on a sufficiently
large area, with probability 1 in the asymptotic limit.

While we can provide sufficient conditions under
which the graph is path connected, let us note here
some of the limitations of this result. The first is the
assumption of independence of the nodes (the mean
field theory approximation). This is not strictly true,
since the probability that a node is in the transmit state
(say) will be dependent on whether one of its neighbors
was in the transmit state one time step earlier, and so
the current state of neighboring nodes will exhibit a
weak dependence which we have ignored. The extent
to which this dependence will affect the analysis will be
investigated in the simulations. The second limitation is
of course that while there may exist a path, it may not
be usable due to contention.

To address the contention, we need to look at the
transmission connectivity of the network. However, in-
troducing the constraint that there is no contention along
the path introduces significant dependence among the
nodes. As a result, analysis is difficult, and we present a
heuristic which we refer to as c -flooding. We require that
in the event that a node needs to transmit a message, the
expected number of recipients will be given by c%è|Z .

In such a scenario, it is easy to see that the particular
message will rapidly flood through the network. In fact,
we can expect the message to spread exponentially fast.
Since there are # S nodes, we can expect that in order of� �"!t# S )o�
�"!dc time steps, every member in the network
will have received the message. If we simply use c -
flooding, the contention in the network will become un-
controllable. To alleviate this problem, we would need to
also implement a safety mechanism to prevent such over
flooding – one approach might be to bound the maximum
number of hops a packet is allowed to make. This can
be implemented in practice by adding to each packet
a hop counter, and setting its maximum allowed value
appropriately. Two possibilities are � �"!tÐVi # S kg)o�
�"!ec , the
time we expect it takes to flood the whole network,
or , # S )o� �"!f# S, the expected diameter of the network,
[18]. The requirement of c -flooding sets constraints on
the allowable parameters in the Markov model, which is
what we derive here.

Let’s consider the situation when a node is in the
transmission state, and let f be any one of the other #zy]Z
nodes. Let ® be the probability that you successfully
transmit the packet to f given that f is within transmis-
sion range. Let m �hg]i be the probability to successfully
transmit the packet to f , then m �hg]i X ��� T � ® . To

achieve successful transmission given that f is within
transmission range, either the first try was successful,
or the first try was not successful, and some try after
the first try was successful. Since the process is Markov
and since the nodes are independent, the probability that
some try after the first one is successful (given that
you remain in the transmit state) is also ® . Let ® I
be the probability that you were successful on the first
try given that f is within transmission range. Since the
probability to remain transmitting is S , we have that®|X|® I �w�xZzy�® I ( S ® ^ or that®|X ® IZ�y S � S ® I } (6)

Suppose that f has � neighbors. Then you are successful
on the first try if f is in the sensing state and no
other neighbor of f is transmitting, which occurs with
probability b

S �xZ�y b
T ( � . Multiplying by m�����( , summing

over � using the fact that � has a Binomial distribution�D���U�*# y¨� ^ ��� T � ( , we arrive at ® I X b
S �xZ�yÓ��� T � b T (   J � .

Since there are #_y£Z packets to whom you could transmit,
the expected number of successful transmissions is given
by �g#�y�Z2(�m �hg]i . Requiring that the expected number of
successful transmissions is c then leads to the following
constraint,

Proposition 7: In order to achieve c -flooding, the
following condition must be satisfied,c�X �g#Yy³Z2(���� T � b S �xZ�y���� T � b T (   J �Zzy S � SÞb

S �xZzy���� T � b T (   J � (7)

C. Optimizing The Power Consumption

The main goal of this paper is to develop a systematic
approach for power conservation in sensor networks. The
idea is to select the available parameters in the Markov
model so as to minimize the power consumption, while
at the same time guaranteeing coverage and connectiv-
ity. Accomplishing this involves solving a constrained
optimization problem, which we effect numerically, the
details being given in the Simulation section.

We assume that the power consumption in each of
the three states is given by � O

^ � S
^ � T. Suggested values

for these parameters have been given in the literature,
[9]. For our purposes, we assume that these are exter-
nally supplied parameters, or functional forms that may
depend on � S

^ � T. The expected power consumption per
node in steady state is then given by Ð X � O

b
O �� S

b
S � � T

b
T } In order to guarantee path connectivity

and coverage, it is sufficient to enforce the conditions in
Theorem 6. We are thus led to the following optimization
problem:
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OPT1: Let Á I �g#-( ^ Á � �g#-( be any two functions that
approach infinity in the asymptotic limit, for
example � �"!t# or #aj . Let ��×�çz×cZ .

minimizeO � M � H � L � O
b

O � � S
b

S � � T
b

T
^

subject to the constraints�]\ St^ T ^�bs^a` \|ZS �UT�\cZ��� � # b
S ²�Á I �g#-(��� � # S � ç¾(tXq� �"!��g# S � ç¾(*(s�³Á � �g# S � ç¾(*(

where ��XE#&F�G�¹�� S
^ � T À and # S � ç¾(_X��xZ�y%ç¾(¡# b

S.
Here # and the sensing event density are given,
from which � , the probability of sensing an
event can be calculated. b

O
^�b

S
^�b

T are the so-
lutions to the steady state equations, (3), which
depend on the parameters.Á I �g#-( and Á � �g#-( can chosen so that the connectivity

and coverage converge to Z at the desired rate. In order
to enforce transmission connectivity, one can incorporate
the additional constraint given in Proposition 7. After
this constraint has been incorporated, and the power con-
sumption minimized, one can use the additional heuristic
of a maximum number of hops to avoid over-flooding the
sensor network.

D. Extensions

There are a number of ways in which the general
methodology we have presented may be extended, the
most immediate is to consider different Markov models.
We have presented a relatively simple Markov model for
the state diagram of a single sensor node. We list below
several other interesting models. The analysis of these
models follows virtually identical lines to the model
we have presented, the main difference being the the
introduction of additional parameters and/or states in
the Markov chain of a sensor. The only change in the
form of the steady state equations, (3) may be a change
in the dimensionality of the system and the constant
matrices 7 and 87 . Otherwise, the entire methodology
remains intact, including the constraints for connectivity
and coverage. Thus we will not follow through on most
of the details, and we leave the further theoretical devel-
opment and experimental investigation of these models
as avenues for future work.

a) Off/Sensing–Receive–Transmit: In the state dia-
gram for this Markov model, we combine the off state
with the sensing state, and receiving occurs in a separate
state. Otherwise, it is very similar to the model we have
been describing. This model is basically the model that

was used in [10]. We mention it here to demonstrate how
their model fits within the general methodology we have
developed here. While in [10], the authors develop some
reasonably good parameters for the latency times in each
state, in the present framework, one can optimize these
parameters while at the same time enforcing connectivity
and coverage. Figure 1 illustrates the model.

Event No Event

OS

R T kl
TR

OS mn
o p

@ABYC EtF q GEtF K K Iq K K IG M N O PQ @ARBYC E_F q GE_F H I*J�H Kq K K IG M N O PQ
S �ÏTV��WDX�Z��\ S_^ T ^ W ^�b \cZ

Fig. 1. Off/Sensing–Receive–Transmit

b) Off–Sensing–Receive–Transmit: Here, we have
a separate state for each of the four possible activi-
ties. One possible advantage of this setup is that the
asymmetry between sensing and receiving may allow
one to preferentially treat one of these events and pay
less attention to the other. In fact one could have two
classes of nodes, those with a preference for 5 overr

and those with a preference for
r

over 5 . In this
way, one could have “separately” functioning sensing
and listening networks. While the analysis to take into
account two types of nodes in the ensemble of nodes
is slightly more complex, it follows the same general
approach. The main difference is that the connectivity
would be defined with respect to the “listening” network,
and the coverage would be defined with respect to the
“sensing” network. Figure 2 illustrates the model.

c) Back-off: This is a technique that can be used
with any of the previous models and we illustrate this
concept here with our original model. The idea is to
allow the transmit state one more alternative rather than
simply continue transmitting or exit transmitting. One
also allows transmition to “pause” or back-off into the
back-off state where the node holds the item to be
transmitted, but is not creating contention. Such a model
may allow for better contention management. Figure 3
illustrates the model.
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Event No Event
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� � � �| �
@��ABDC E F q GE H ê H � H]� KF K K K Iq K K K IG M � N O

P���Q @��ARBDC E F q GE H ê H � H]��KF Lh�jL ê L � Kq � � �h��� ê KG M � N O
P���Q

b I � b � � b � X¿Z` I � ` � � ` � X�Z¼�¶ I ��� � ��� � X¿ZS �UTV�X����WDX�Z�]\ S_^ T ^ W ^ � ^a` ¯ ^�b ¯ ^ � ¯�\cZ
Fig. 2. Off–Sensing–Receive–Transmit.

III. SIMULATION STUDY

The goal in this section is to investigate how closely
the theory agrees with a simulation of real packet rout-
ing. In particular we wish to test the mean field theory
assumption of independence. We also compare the power
used by our protocol to that of AFECA [10].

This section consists of three parts. In the first part
we describe the numerical solution of the optimization
problem, in the second part of this section we present the
simulation algorithm and its implementation and finally
in the third part we presents the results of the simulation.

A. Optimization

Solving the optimization problem described in Sec-
tion II-C takes several steps. (i) The first step is solving
the steady state problem of our Markov model formu-
lation. Observe that due to the nonlinearity, it is not
easy to get an exact algebraic solution, thus a numerical
technique must be employed. (ii) The second step is
finding an initial feasible point for the optimization. (iii)
The third step is running the optimizer with the objective
function in Section II-C, which is a linear function of the
steady state probabilities.

First we implement a fixed point iteration algorithm to
find the steady state probabilities given S_^ T ^a`2^�b (these
are also our decision variables). In addition, the steady

Event No Event

T

O

B

S �
��

� �
T

O

B

S ��
��

� �
@��ABYC E F G �E H RH K KF K K I KG M � � O� K K RN N

P���Q @��ARBYC E F G �E H RH K KF L RL K KG M � � O� K K RN N
P���Q

b � 8b X¿Z` � 8` X�ZW¨� 8WDX¿ZS �UTV�X������X¿Z�¨\ S_^ T ^ � ^ � ^a`�^ 8`�^�bs^ 8bs^ W ^ 8W�\cZ
Fig. 3. Back-off

state probabilities will depend on # , the number of
nodes in the network, � , the transmission and sensing
radius and � , the probability of sensing an event, which
is an external parameter that depends on the event
density. We obtain the steady state by iteratively applying
equation (3).

Second, we need a feasible solution to start opti-
mization. We implement a brute–force random search
algorithm, which usually succeeds after a couple of
iterations.

The third and last step is to invoke the optimizer. We
use Matlab’s nonlinear constrained optimizer fmincon,
which is available in the optimization toolbox [25]. We
run the optimizer a number of times, each time, from
a different initial feasible point. This allows us to find
better solutions by combatting the local minima problem.
We consider several different # , � and � . Given an
instantiation of these parameters, the optimizer finds the
Markov model design which minimizes the per node
power consumption. Note that the objective function
minimized is exactly that quantity.

B. Simulator Implementation

We implement a discrete-time simulator in C++. Sim-
ulation is performed on a unit torus. # network nodes
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are randomly distributed on the surface, see Table I. #��
event nodes are also randomly dispersed on the same
surface. Each of the event nodes can generate an event
with a certain firing probability. The firing probability is
related to the user input sensing probability.

The nodes within a distance of � of each other are
adjacent and can communicate. Nodes within a distance
of � to an event node will sense the event, provided that
they are in the sense/receive state and the event node
fires. Each of the network nodes is started in a random
state. At each time step, nodes undergo a state transition
according to the Markov model in Section II-A. To
be able to investigate the node adjacency effect on the
steady state probabilities, each node in the transmit state
sends a message to its neighbors. Each node within � can
receive the message provided that it is in sense/receive
state and there is no collision. A message that is received
is forwarded to the neighbors of the receiving node.

The states of a sample of five randomly chosen nodes
are recorded for up to ���"�"�"� discrete time steps. To
determine the steady state probabilities for each of the
nodes in the sample, the fraction of each of the three
states (off, sense/receive and transmit) is calculated by
averaging over a moving window of size ���"�"� .

TABLE I
SIMULATION PARAMETERS

Simulation Parameter Value� 1000–10000��� 10000� 0.0–1.0  0.01–0.5¡
50000

We also implement the AFECA protocol [10]. AFECA
was implemented with the optimal parameters given in
[10]. The goal is to compare our protocol with that of
our competitors. Since the energy model used by the two
protocols is the same, the comparison will be a fair one.

In [10] the authors use the power consumption figures:
1.6W for radio transmission, 1.2W for reception and 1W
for idle listening. They also have 0.025W consumed in
the off state in [6]. In the simulations and optimization,
we made the same assumptions. For our sense/receive
state we average the idle listening and reception figures,
which are already pretty close to 1.1W.

AFECA has a sleep state which does not turn off the
sensors. That is, during a sleep state a node can sense and
upon a sensing event, it will move to a state called active
to transmit the message. If no sensing event arrives it will
transfer to the listen state after time Ã � j X¿� Å�Z �^¢/Ü�& ,
where � is a random integer between Z and its number

of neighbors. In the listen state it would wait Ã¤£ seconds
(10sec). In the case of traffic or an event, the node moves
to the active state. The authors give the optimal time to
stay in Ã j as 60sec, see Figure 4. All the times Ã j , Ã � j
and Ã¥£ are values chosen by the AFECA’s authors.

upon first traffic or event

after

no traffic

upon sensing eventafter

listening

active¦)§
with

sleeping¦�¨�© ¦ ©
after last traffic

Fig. 4. States and Transitions in AFECA

C. Optimization and Simulation Results

To find out whether the weak dependence between
neighboring node states affects the steady state proba-
bilities we run the simulator to find out how far off the
simulator steady states are from those found by the fixed
point iteration. We use Z �"�"�"� network nodes and we vary
the probability of sensing an event, � between � }
Z and� }«ª , we pick ��Xq� }ù��ª , Figure 5. As can be observed, the
agreement between theory and simulation is convincing.
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Fig. 5. Theory and Simulation, Steady State Probabilities vs.
Probability of Sensing

We also investigate the behavior of the steady state
probabilities as the number of nodes increases. We find
a decrease in the sense/receive and transition steady
state probabilities and an increase in the off steady state
probability, as can be seen in Figure 6.
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This is explained by the increase in the node redun-
dancy of the sensor network. This occurs despite the
fact that we decrease � as we increase # to compensate
for the increasing redundancy. �à�g#-(zX , Z2)/� ö # is the
monotonically decreasing function we use. In Figures 6
and 7, � ranges between � }
Z"Z!2�Z Z and � }ù�^Z Z]ª��^ª . Figure 7
shows the average power consumption per node.
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We compare our network design against AFECA for
different event probabilities in Figure 8. The number of
nodes in the network is fixed to ¬��"� . We fix the radius
to � } � and we vary the probability of an event in the
range i � }ù�ÞZ ^ � }
ZÄk . It can be observed that while AFECA is
still far better than any protocol without energy savings,
it reacts too much to small changes in the probability
of an event, lagging behind our protocol in terms of
the power used. This is because AFECA very quickly
saturates in to a permanently active state as probability
of event increases.
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Fig. 8. AFECA vs. Our Scheme

IV. CONCLUSIONS

In this work we presented a sensor network de-
sign methodology, which conserves energy by asyn-
chronously and probabilistically turning off redundant
nodes while preserving connectivity and coverage. An
important property is that the protocol is local. Each
node independently determines its state transitions. The
network design problem is expressed as an optimization
problem which targets local node parameters. The state
distribution of nodes is assumed to be independent (mean
field approximation) and the simulations show that this
assumption is reasonable by producing steady state dis-
tributions close to the theory. In the simulation study,
we also show that the power savings of our protocol
outperforms that of the existing competitors, by as much
as an order of magnitude in some cases.
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