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Abstract

The traditional association rule mining framework produces many redundant rules. The extent of redundan-
cy is a lot larger than previously suspected. We present a new framewaork for associations based on the novel
concept ofclosedfrequent itemsets. The number of non-redundant rules produced by the new approach is
exponentially (in the length of the longest frequent itemset) smaller than the rule set from the traditional ap-
proach. Experiments using several “hard” real and synthetic databases confirm the utility of our framework
in terms of reduction in the number of rules presented to the user, and in terms of time.

1 Introduction

Association rule discovery, a successful and important mining task, aims at uncovering all frequent patterns
among transactions composed of data attributes or items. Results are presented in the form of rules between
different sets of items, along with metrics like the joint and conditional probabilities of the antecedent and
conseguent, to judge a rule’s importance.

It is widely recognized that the set of association rules can rapidly grow to be unwieldy, especially as
we lower the frequency requirements. The larger the set of frequent itemsets the more the number of rules
presented to the user, many of which are redundant. This is true even for sparse datasets, but for dense
datasets it is simply not feasible to mine all possible frequent itemsets, let alone to generate rules between
itemsets. In such datasets one typically finds an exponential number of frequent itemsets. For example,
finding long itemsets of length 20 or 30 is not uncommon [2].

Prior research has mentioned that the traditional association rule mining framework produces too many
rules, but the extent of redundancy is a lot larger than previously suspected. We present a new framework for
association rule mining based on the novel conceplasfedfrequent itemsets. The set of all closed frequent
itemsets can be orders of magnitude smaller than the set of all frequent itemsets, especially for real (dense)
datasets. At the same time, we don’t loose any information (which we would, if we were to use maximal
frequent itemsets); the closed itemsets uniquely determine the set of all frequent itemsets. We show that
the new framework produces exponentially (in the length of the longest frequent itemset) fewer rules than
the traditional approach, again without loss of information. Our framework allows us to mine even dense
datasets, where it is not possible to find all frequent itemsets. Experiments using several “hard” (i.e., dense)
databases confirm the utility of our framework in terms of reduction in the number of rules presented to the
user, and in terms of time.



The rest of the paper is organized as follows. Section 2 describes the association mining task. Section 3
introduces the new notion of closed itemsets. Section 4 looks at the problem of eliminating redundant rules.
We discuss related work in Section 5. We experimentally validate out theoretical results in Section 6, and
conclude in Section 7 (the Appendix contains proofs for all theorems presented in this paper, and it can be
read at the discretion of the reviewer).

2 Association Rules

The association mining task can be stated as follows:7Let {1,2,---,m} be a set of items, and let
T =1{1,2,---,n} be asetof transaction identifierstats. The input database is a binary relatio@ Zx 7.
If an itemi occurs in a transactiof) we write it as(i, t) € 4, or alternately asjt. Typically the database is
arranged as a set of transactions, where each transaction contains a set of items. For example, consider the
database shown in Figure 1, used as a running example throughtout this papér.Hére C, D, T, W },
and7 = {1,2,3,4,5,6}. The second transaction can be represented’@®, D42, W 2}; all such pairs
from all transactions, taken together form the binary relafion

A setX C T is called antemset and a sel” C 7T is called atidset For convenience we write an
itemset{ A, C,W} asACW, and a tidse{2, 4,5} as245. Thesupportof an itemsetX, denotedr(X), is
the number of transactions in which it occurs as a subset. An itemBetjigentif its support is more than
or equal to a user-specifiedinimum support (minsupjlue, i.e., ifo(X) > minsup

An association rulds an expressiodl — B, whereA andB are itemsets, andNB = (). Thesupport
of the rule is given as (A U B) (i.e., the joint probability of a transaction containing botrand B), and
theconfidenceasp = o(A U B)/o(A) (i.e., the conditional probability that a transaction contdigiven
that it contains4). A rule is frequent if the itemset U B is frequent. A rule iconfidentf its confidence is
greater than or equal to a user-specifieiimum confidence (minconfalue, i.ep > minconf.
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Figure 1. Generating Frequent Itemsets

Association rule mining consists of two steps [1]: 1) Find all frequent itemsets, and 2) Generate high
confidence rules.



Finding frequent itemsets This step computationally and 1/O intensive. As a running example, consider
Figure 1, which shows a bookstore database with six customers who buy books by different authors. It
shows all the frequent itemsets withinsup = 50% (i.e., 3 transactions)ACTW and CDW are the
maximal-by-inclusion frequent itemsets (i.e., they are not a subset of any other frequent itemset).

Let |Z| = m be the number of items. The search space for enumeration of all frequent itemsets is
2™ which is exponential inn. One can prove that the problem of finding a frequent set of a certain
size is NP-Complete, by reducing it to the balanced bipartite clique problem, which is known to be NP-
Complete [7, 13]. However, if we assume that there is a bound on the transaction length, the task of finding
all frequent itemsets is essentially linear in the database size, since the overall complexity in this case is
given asO(r - n - 2!), where|T| = n is the number of transactionkis the length of the longest frequent
itemset, anad- is the number of maximal frequent itemsets.
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Figure 2: Generating Confident Rules

Generating confident rulesThis step is relatively straightforward; rules of the fotm-2s X — Y, are
generated for all frequent itemseXs for all Y ¢ X, Y # (), and provideth > minconf. For example,

from the frequent itemsed C'W we can generate 6 possible rules (all of them have support 044§—0>

Cw,C 0-67 AW W 08, AC, AC LN W, AW L0, C, andCW 9% A. This process is also shown

pictorially in Figure 2. Notice that we need access to the support of all subsdiS'df to generate rules
from it. To obtain all possible rules we need to examine each frequent itemset and repeat the rule generation
process shown above fafC'T/ . Figure 2 shows the set of all other association rules with confidence above
or equal tominconf= 80%.

For an itemset of sizé there are2® — 2 potentially confident rules that can be generated. This follows
from the fact that we must consider each subset of the itemset as an antecedent, except for the empty and the
full itemset. The complexity of the rule generation step is g - 2'), wheref is the number of frequent
itemsets, and is the longest frequent itemset.



3 Closed Frequent Itemsets

In this section we develop the concept of closed frequent itemsets, and show that this set is necessary and
sufficient to capture all the information about frequent itemsets, and has smaller cardinality than the set of
all frequent itemsets.

3.1 Partial Order and Lattices

We first introduce some lattice theory concepts (see [5] for a good introduction).

Let P be a set. Apartial orderon P is a binary relatiorn<, such that for alk;, y, z € P, the relation is:

1) Reflexive:xz < z. 2) Anti-Symmetric:z < y andy < x, impliesz = y. 3) Transitive:xz < y andy < z,
impliesz < z. The setP with the relation< is called arordered setand it is denoted as a paiP(<). We
write z < y if x < y andz # y.

Let (P, <) be an ordered set, and I6tbe a subset oP. An element, € P is anupper boundf S if
s<uforalls € S. Anelement € P is alower boundof S if s > [ for all s € S. The least upper bound
is called thejoin of S, and is denoted ag S, and the greatest lower bound is called theetof S, and is
denoted ag\ S. If S = {z,y}, we also writez \ y for the join, andz A y for the meet.

An ordered sefL, <) is alattice, if for any two elements: andy in L the joinz V y and meet: A y
always exist.L is acomplete latticaf \/ S and A S exist for all.S C L. Any finite lattice is completeL is
called gjoin semilatticeif only the join exists.L is called ameet semilatticé only the meet exists.

Let P denote the power set f (i.e., the set of all subsets of). The ordered setH(S),C) is a
complete lattice, where the meet is given by set intersection, and the join is given by set union. For example,
the partial ordergP(Z), C), the set of all possible itemsets, af®(7 ), C), the set of all possible tidsets
are both complete lattices.

The set of all frequent itemsets, on the other hand, is only a meet-semilattice. For example, consider
Figure 3, which shows the semilattice of all frequent itemsets we found in our example database (from
Figure 1). For any two itemsets, only their meet is guaranteed to be frequent, while their join may or may
not be frequent. This follows from the well known principle in association mining that, if an itemset is
frequent, then all its subsets are also frequent. For exadgle) AT = AC N AT = Ais frequent. For
the join, whileAC' v AT = AC U AT = ACT is frequent,AC' U DW = ACDW is not frequent.

3.2 Closed Iltemsets

Let the binary relatiod C 7 x 7T be the input database for association mining. KeC Z, andY C 7.
Then the mappings

t:Z—=T, t(X)={yeT| VeeX, ziy}

i:T—Z, i(Y)={zel| YyeY, ziy}

define aGalois connectiorbetween the partial orde(®(Z), C) and(P(T), C), the power sets df andT,
respectively. We denote &, t(X) pair asX x ¢(X), and a(Y"),Y pair asi(Y') x Y. Figure 4 illustrates
the two mappings. The mappingX) is the set of all transactions (tidset) which contain the iteniSet
similarly i(Y") is the itemset that is contained in all the transactionk irfFor example{(ACW') = 1345,
andi(245) = CDW. In terms of individual elementyX) = N,y t(z), andi(Y) = N,y i(y). For
examplet(ACW) = t(A) Nt(C) N (W) = 1345 N 123456 N 12345 = 1345.

The Galois connection satisfies the following properties (Whér&;, X, € P(Z) andY,Y1,Ys €
P(T)):
1) X; C Xy = t(X1) D t(X3). E.g., forACW C ACTW , t(ACW) = 1345 D 135 = t(ACTW).
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Figure 3. Meet Semi-lattice of Frequent Itemsets

2)Y1 C Yy =i(Y1) 2i(Y2). For example, foR45 C 2456, we havei(245) = CDW 2O CD = i(2456).
3) X Ci(t(X)) andY C ¢(i(Y)). For example AC C i(t(AC)) = i(1345) = ACW.

Let S be a set. A functior : P(S) — P(S) is aclosure operatoon S if, for all X, Y C S, ¢ satisfies
the following properties: 1) ExtensionrX C ¢(X). 2) Monotonicity: if X C Y, thenc(X) C ¢(Y). 3)
ldempotencye(c(X)) = ¢(X). A subsetX of S is calledclosedif ¢(X) = X.

Theorem 1 Let X C ZandY C T. Letc;(X) denote the composition of the two mappingst(X) =
i(t(X)). Dually, letc;(Y) = toi(Y) = ¢(i(Y)). Thenc;, : P(Z) — P(Z) andcy; : P(T) — P(T) are
both closure operators on itemsets and tidsets respectively.

We define alosed itemseds an itemseX that is that same as its closure, i.&.,= ¢;;(X). For example
the itemsetACTV is closed. Aclosed tidsets a tidsetY” = ¢;;(Y). For example, the tidsaB45 is closed.

The mappings;; andc;;, being closure operators, satisfy the three properties of extension, monotonicity,
and idempotency. We also call the applicatior ot or ¢t o around-trip. Figure 4 illustrates this round-trip
starting with an itemseX . For example, leX = AC, then the extension property say ttais a subset of
its closure, since;;(AC) = i(t(AC)) = i(1345) = ACW. SinceAC # c¢;;(AC) = ACW, we conclude
that AC' is not closed. On the other hand, the idempotency property say that once we map an itemset to
the tidset that contains it, and then map that tidset back to the set of items common to all tids in the tidset,
we obtain a closed itemset. After this no matter how many such round-trips we make we cannot extend a
closed itemset. For example, after one round-tripA6t we obtain the closed itemsdiC'W . If we perform
another round-trip oddCW, we getc; (ACW) = i(t(ACW)) = i(1345) = ACW.

For any closed itemseY, there exists a closed tidset given By with the property that” = ¢(X) and
X = i(Y) (conversely, for any closed tidset there exists a closed itemset). We can sé&eithelbsed by
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Figure 4: A) Galois Connection: Mappings between Items and Transactions, B) Closed Itemset:

Round-Trip

the fact thatX = i(Y"), then pluggingy” = ¢(X), we getX = i(Y) = i(¢(X)) = ¢;(X), thusX is closed.
Dually, Y is closed. For example, we have seen above that for the closed ite@$&t the associated
closed tidset i4345. Such a closed itemset and closed tidset faix Y is called aconcept
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Figure 5: Galois Lattice of Concepts
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Figure 6: Frequent Concepts

A conceptX; x Y; is asubconcepbf X, x Y5, denoted as{; x Y7 < X5 x Yy, iff X7 C X, (iff
Y> C Y1) LetB(6) denote the set of all possible concepts in the database. Then the orddi@@d set ) is
a complete lattice, called th@aloislattice. For example, Figure 5 shows the Galois lattice for our example
database, which has a total of 10 concepts. The least element is the cOhgelt3456 and the greatest
element is the conceptC DTW x 5. Notice that the mappings between the closed pairs of itemsets and
tidsets are anti-isomorphic, i.e., concepts with large cardinality itemsets have small tidsets, and vice versa.



The concept generated by a single iteme 7 is called anitem conceptand is given a€;(z) =
cit(z) x t(x). Similarly, the concept generated by a single transagjien7 is called atid conceptand is
given ag’(y) = i(y) x ¢y (y). For example, the item conceB( A) = i(t(A)) x t(A) = i(1345) x 1345 =
ACW x 1345. Further, the tid concepdl;(2) = i(2) x t(i(2)) = CDW x t(CDW) = CDW x 245.

In Figure 5 if we relabel each concept with the item concept or tid concept that it is equivalent to, then
we obtain a lattice withminimal labelling with item or tid labels, as shown in the figure in bold letters.
Such a relabelling reduces clutter in the lattice diagram, which provides an excellent way of visualizing
the structure of the patterns and relationships that exist between items. We shall see its benefit in the next
section when we talk about high confidence rules extraction.

It is easy to reconstruct the concepts from the minimal labeling. For example, consider the tid concept
C:(2) = X x Y. To obtain the closed itemsét, we append all item labels reachable below it. Conversely,
to obtain the closed tidsé&f we append all labels reachable abdy€). We see thatV, D andC are all
the labels reachable by a path below it. TBus= C DW forms the closed itemset. We also see thahd5
are the only labels reachable ab@y€2). ThusY = 245, giving the concepC DW x 245, which matches
the concept shown in the figure.

3.3 Frequent Closed Itemsets vs. Frequent Iltemsets

We begin this section by defining the join and meet operation on the concept lattice (see [6] for the formal
proof): The set of all concepts in the database relafiariven by(B(4), <) is a (complete) lattice with join
and meet given by

join: (X1 X Yl) V (XQ X Yz) = Cit(Xl UXQ) X (Y1 ﬂYz)
meet: (X1 X Yl) A (XQ X YQ) = (X1 ﬁXQ) X Cti(YI UYQ)

For the join and meet of multiple concepts, we simply take the unions and joins over all of them. For
example, consider the join of two conceptsdl CDW x 45) V (CDT x 56) = ¢y (ACDW U CDT) x
(45N 56) = ACDTW x 5. On the other hand their meet is given 64C' DW x 45) A (CDT x 56) =
(ACDW NCDT) x ¢;(45 U 56) = CD X ¢4;(456) = CD x 2456. Similarly, we can perform multiple
concept joins or meets; for exampl&;T" x 1356) V (C'D x 2456) V (CDW x 245) = ¢;;(CT UCD U
CDW) x (1356 N 2456 N 245) = ¢;;(CDTW) x 5 = ACDTW x 5.

We define the support of a closed item3ebr a conceptX x Y as the cardinality of the closed tidset
Y =t(X), i.e,0(X) = |Y] = [t(X)|. A closed itemset or a conceptfiequentif its support is at least
minsup Figure 6 shows all the frequent concepts witimsup= 50% (i.e., with tidset cardinality at least 3).
The frequent concepts form a meet-semilattice, where the meet is guaranteed to exist, while the join may
not.

All frequent itemsets can be determined by the join operation on the frequent item concepts in Figure 6.
For example, since join of item concedbsandT’, C;(D) v C;(T'), doesn’t existDT is not frequent. On the
other handC;(A) vV C;(T) = ACTW x 135, thusAT is frequent. Furthermore, the support4ff’ is given
by the cardinality of the resulting concept's tidset, i€ AT') = |t(AT)| = |135| = 3.

Theorem 2 For any itemsetX,, its support is equal to the support of its closure, id.X) = o(cit(X)).

This theorem states that all frequent itemsets are uniquely determined by the frequent closed itemsets
(or frequent concepts). Furthermore, the set of frequent closed itemsets is bounded above by the set of
frequent itemsets, and is typically much smaller, especially for dense datasets. For very sparse datasets,
in the worst case, the two sets may be equal. To illustrate the benefits of closed itemset mining, contrast
Figure 3, showing the set of all frequent itemsets, with Figure 6, showing the set of all closed frequent
itemsets (or concepts). We see that while there are only 7 closed frequent itemsets, in contrast there are 19
frequent itemsets. This example clearly illustrates the benefits of mining the closed frequent itemsets.
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4 Rule Generation

Recall that an association rule is of the fop —2 X5, whereX;, X, C Z. Its support equals(X; UX5)],
and its confidence is given @as= P(X5|X) = |¢(X; U X2)|/|t(X1)|. We are interested in finding all high
support (at leaghinsup and high confidence rules (at leasinconj.

It is widely recognized that the set of such association rules can rapidly grow to be unwieldy. In this
section we will show how the closed frequent itemsets help us form a generating set of rules, from which
all other association rules can be inferred. Thus, only a small and easily understandable set of rules can be
presented to the user, who can later selectively derive other rules of interest.

In the last section, we showed that the support of an itedisetjuals the support of its closutg (X).

Thus it suffices to consider rulemly among the frequent concepts. In other words the iile-2 X is
exactly the same as the rulg(X;) L cit(X2).

Another observation that follows from the concept lattice is that it is sufficient to consider rules among
adjacent concepts, since other rules can be inferred by transitivity, that is:

Theorem 3 Transitivity: Let Xy, Xo, X3 be frequent closed itemsets, wikh C X, C X3. If X, L X,
and X, i> X3, thenX; ﬂ) X3.

In the discussion below, we consider two cases of association rules, those with 100% confidence, i.e.,
with p = 1.0, and those withp < 1.0.

(ACTWx135) (W 245)
1,3 2
0N

w — A
1| TW —AC
cTw —> A

A —W
11A —CW
AC— W

(Cx 123456)
Figure 7: Rules with 100% Confidence

4.1 Rules with 100% Confidence

Theorem 4 An association ruleX; L0, X has confidence = 1.0 if and only ift(X;) C ¢(X5).
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This theorem says that all 100% confidence rules are those that are directed from a super-égneept (
t(X1)) to a sub-conceptX(, x t(X3)),i.e., down-arcs, since it is in precisely these cases tht) C ¢(X5)
(or X; C X»). For example, consider the item conce@dV ) = CW x 12345 andC;(C) = C x 123456.
The ruleW 1% C'is a 100% confidence rule. Note that if we take the itemset closure on both sides of the
rule, we obtainCW % ¢, i.e., a rule between closed itemsets, but since the antecedent and consequent
are not disjoint in this case, we prefer to write the ruleias—% C, although both rules are exactly the
same. Figure 7 shows some of the other rules among adjacent concepts with 100% confidence.

We notice that some down-arcs are labeled with more than one rule. In such cases, all rules within a
box are equivalent, and we prefer the rule that is most general. For example, consider tHEwuS
A TW REUN AC, andCTW 19 4. we prefer the ruld'W 1% A since the latter two are obtained by
adding one (or more) items to either the antecedent or conseqUEWofg A. Inother word'w % A
is more general than the latter two rules. In fact, we can say that the addit@ricoéither the antecedent
or the consequent has no effect on the support or confidence of the rule. In this case we also call the other
two rules redundant.

Theorem 5 Let R; stand for a 100% confidence rubg; EEN X4, and letR = {Ry,---,R,} be a set of
rules such thatl; = ¢;; (X} U X3), and > = ¢;;(X3) for all rules R;. Then all the rules are equivalent to

the 100% confidence rulg L0, I,, and thus areedundant

Let's apply this theorem to the three rules we considered above. We find that for the first rule that
cit(TW U A) = cy(ATW) = ACTW. Similarly for the other two rules we see thgt(TW U AC) =
cit(ACTW) = ACTW , andc;;(CTW U A) = ¢yt (ACTW) = ACTW . Thus for these three rules we get
the closed itemsely = ACTW . By the same process we obtdin= ACW . All three rules correspond to
the arc between the tid concept 1, 3) and the item conceygt;(A). Finally TW L% Ais the most general
rule, and so the other two are redundant.

A set of such general rules constitutegienerating seti.e., a rule set, from which all other 100%
confidence rules can inferred. Note that in this paper we do not address the question of eliminating self-
redundancy within this generating set, i.e., there may still exist rules in the generating set that can be derived
from other rules in the set. In other words we do not claim anything about the minimality of the generating
set; that is the topic of a forthcoming paper.

Figure 7 shows the generating set in bold arcs, which includes the 5 most genereﬂﬂﬂl’esﬂ

A A 10, W, W LN C,T L0, C,D L0, C} (the down-arcs that have been left out produce rules that
cannot be written with disjoint antecedent and consequent. For example, befyeandC;(D), the

most general rule iDW L% D. Since the antecedent and conseqguent are not disjoint, as required by
definition, we discard such rules). All other 100% confidence rules can be derived from this generating set

by application of simple inference rules. For example, we can obtain thelrdi& C by transitivity from
the two rulesd ~% W andw =% €. The rueDW % ¢ can be obtained by augmentation of the two

rulesw X% ¢ andD 1% C, etc. One can easily verify that all the 18 100% confidence rules produced by
using frequent itemsets, as shown in Figure 2, can be generated from this set of 5 rules, produced using the
closed frequent itemsets!

4.2 Rules with Confidence less than 100%

We now turn to the problem of finding a generating set for association rules with confidence less than 100%.
As before, we need to consider only the rules between adjacent concepts. But this time the rules correspond



to the up-arcs, instead of the down-arcs for the 100% confidence rules, i.e., the rules go from sub-concepts
to super-concepts.

A T 245 X CDW
(135 X ACTW) (245 x CDW)
A —=CT 1,3 2
A —TW jﬁ , as %
- | 7% w0y,
AT CTW 34=075 0 N
JMiaw—>1 |7 | SR 5
AW — CT (1345 xAcw) A X(msexcn 40 (2456 x CD)
/o 1 K
AC —T 45=08 | /4 :
T / N /
AC —TW ; /o) © Qcé
ACW —T W 3 /’/{o//
| (12345 x CW) o
| N §
W —=A | ) L/
45| W —AC |« | /
cw —=A | C
(123456 x C)
56| C—=W |

Figure 8: Rules with Confidence 100%

Consider Figure 8. The edge between item conagifts) andC; (V') corresponds t6’ 2% W . Rules

between non-adjacent concepts can be derived by transitivity. For example -for A we can obtain the
value ofp using the rule€? =24° W andw "=° A. We havep = gr = 5/6 - 4/5 = 4/6 = 0.67.

Theorem 6 Let R; stand for ap < 1.0 confidence ruleXi? - X%, and letR = {Ry,---, R, } be a set of
rules such thatl; = ¢;;(X7), andIy = ¢;;(X] U X3) for all rules R;. Then all the rules are equivalent to
the rulel; -2 I, and thus areedundant

This theorem differs from that of the 100% confidence rules to account for the up-arcs. Consider the
rules produced by the up-arc between item concégtd’) andC;(A). We find that for all three rules,
L = Cit(W) = Cit(CW) = CW, andl, = Cit(W U A) = Cit(W U AC) = Cit(CW U A) = ACW.
The support of the rule is given by(I; U Iz)| = [t(ACW)| = 4, and the confidence given &1, U

L)|/|t(I1)] = 4/5 = 0.8. Finally, sinceW 9% A is the most general rule, the other two are redundant.

Similarly for the up-arc betweef;(A) andC;(1,3), we get the general ruld %78 7. The other 8 rules in

the box are redundant!

The set of all such general rules forms a generating set of rules from which other rules can be inferred.
The two bold arrows in Figure 8 constitute a generating set for all rulessth< p < 1.0. Due to the
transitivity property, we only have to consider arcs with confidence at freastonf= 0.8. No other rules
can be confident at this level.
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By combining the generating set for rules wjith= 1.0, shown in Figure 7 and the generating set for rules

with 1.0 > p > 0.8, shown in Figure 8, we obtain a generating set for all association rulegwiitsup=

50%, andminconf= 80%: {TW ~% 4,4 S w,w 2S5 1 % ¢, p L% oow 25 4,c X8 wy.

It can be easily verified that all the association rules shown in Figure 2, for our example database from
Figure 1, can be derived from this set. Using the closed itemset approach we produce 7 rules versus the 22
rules produced in traditional association mining. To see the contrast further, consider the set of all possible
association rules we can mine. Withinsup= 50%, the least value of confidence can be 50% (since the
maximum support of an itemset can be 100%, but any frequent subset must have at least 50% support; the
least confidence value is thus 50/100 = 0.5). There are 60 possible association rules versus only 13 in the
generating set (5 rules with= 1.0 in Figure 7, and 8 rules with < 1.0 in Figure 8)

4.3 Complexity of Rule Generation: Traditional vs. Closed Itemset Frame-
work

The complexity of rule generation in the traditional framewor®{g -2!), which is exponential in the length
[ of the longest frequent itemsef {s the total number of frequent itemsets). On the other hand using the
closed itemset framework, the number of non-redundant rules is linear in the number of closed itemsets. To
see how much savings are possible using closed frequent itemsets, lets consider the case where the longest
frequent itemset has lengthwith all 2! subsets also being frequent.

In the traditional association rule framework, we would have to consider for each frequent itemset all its
subsets as rule antecedents. The total number of rules generated in this approach isEﬁxA@r(ﬁa)sQl*i <
Zi‘:o (i) -2l =2 Zi‘:o (i) =22l = 0(22l)-

On the other hand the number of non-redundant rules produced using closed itemsets is given as follows.
Let's consider two extreme cases: In the best case, there is only one closed itemset'isibabts have the
same support as the longest frequent itemset. Thus all rules between itemsets must have 100% confidence.
The closed itemset approach doesn't produce any rule; it just lists the closed itemset with its frequency, with
the implicit assumption that all possible rules from this itemset have 100% confidence. This corresponds to
a reduction in the number of rules by a factor@f2?).

On the other hand, in the worst case, Zlifrequent itemsets are also closed. In this case there can
be no 100% confidence rules and all {00% confidence) rules point upwards, i.e., from subsets to their
immediate supersets. For each subset of lekgtle havek rules from each of ité — 1 length subsets to
that set. The total number of rules generated is |, () - (1 —4) < Xty () -1 = O(1-2"). Thus we get
a reduction in the number of rules by of a factorf2! /1), i.e., asymptotically exponential in the length of
the longest frequent itemset.

5 Related Work

There has been a lot of research in developing efficient algorithms for mining frequent itemsets [1, 2, 4, 7, 8,
10, 14]. Most of these algorithms enumerate all frequent itemsets. Using these for rule generation produces
many redundant rules. Some methods only generate maximal frequent itemsets [2, 8]. Maximal itemsets
cannot be used for rule generation, since support of subsets is required for confidence computation. While it
is easy to make one more data scan to gather the supports of all subsets, we still have the problem of many
redundant rules. Further, for all these methods it is simply not possible to find rules in dense datasets which
may easily have frequent itemsets of length 20 and more [2]. In contrast thedesedfrequent itemsets

can be orders of magnitude smaller than the set of all frequent itemsets, and they can be used to generate
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rules even in dense domains. We use the recently propos@dR® algorithm [12] for mining all closed
frequent itemsets, in a fraction of the time it takes to mine all frequent itemsets using the Apriori [1] method.

There has been some work in pruning discovered association rules by forming rule covers [11]. How-
ever, the problem of constructing a generating set has not been studied previously. The recent work in [3]
addresses the problem of mining the most interesting rules. They do not address the issue of rule redundancy,
however their work is complimentary to ours.

A number of algorithms have been proposed for generating the Galois lattice of concepts [6]. These
algorithms will have to be adapted to enumerate only the frequent concepts. Further, they have only been
studied on small datasets. Our framework builds upon and adapts the work in [9]. However our characteri-
zation of the generating set is different, and we also present an experimental verification. An early version
of this paper appeared in [13], but no experiments were shown.

6 Experimental Evaluation

All experiments described below were performed on a 400MHz Pentium PC with 256MB of memory, run-
ning RedHat Linux 6.0. Algorithms were coded in C++.

Database # Items| Avg. Record Length # Records|
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
pumsb 7117 74 49,046
T20112D100K| 1000 20 100,000
T4018D400K | 1000 40 100,000

Table 1: Database Characteristics

Table 1 shows the characteristics of the real and synthetic datasets used in our evaluation. The real
datasets were obtained from IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html). All datasets
except the PUMS (pumsb and pumsb*) sets, are taken from the UC Irvine Machine Learning Database
Repository. The PUMS datasets contain census data. pumsb* is the same as pumsb without items with 80%
or more support. The mushroom database contains characteristics of various species of mushrooms. Finally
the connect and chess datasets are derived from their respective game steps. Typically, these real datasets
are very dense, i.e., they produce many long frequent itemsets even for very high values of support.

We also chose a few synthetic datasets (also available from IBM Almaden), which have been used as
benchmarks for testing previous association mining algorithms. These datasets mimic the transactions in
a retailing environment. Usually the synthetic datasets are sparse when compared to the real sets, but we
modified the generator to produce longer frequent itemsets.

6.1 Traditional vs. Closed Itemset Framework

Consider Tables 2, 4 and 3, which compares the traditional rule generation framework with the new closed
itemset approach proposed in this paper. The tables shows the experimental results along a number of
dimensions: 1) total number of frequent itemsets vs. closed frequent itemsets, 2) total number of rules in the
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Number of ltemsets

Database Sup | Len | #Freq | #Closed| Ratio
chess 80% | 10 | 8227 | 5083 1.6
chess 70% | 13 | 48969| 23991 | 2.0
connect 97% | 6 487 284 1.7
connect 90% | 12 | 27127| 3486 7.8

mushroom 40% | 7 565 140 4.0
mushroom 20% | 15 | 53583| 1197 | 44.7

pumsb* 60% | 7 167 68 2.5
pumsb* 40% | 13 | 27354| 2610 | 105
pumsb 95% | 5 172 110 1.6
pumsb 85% | 10 | 20533| 8513 2.4

T20112D100K| 0.5%| 9 | 2890 | 2067 1.4
T40I8D400K | 1.5%| 13 | 12088| 4218 2.9

Table 2: Number of ltemset (Supsnsup Len=longest frequent itemset)

traditional vs. new approach, and 3) total time taken for mining all frequent itemsets (using Apriori) and the
closed frequent itemsets (usingiBRM).

Table 2 shows that the number of closed frequent itemsets can be much smaller than the set of all
frequent itemsets. For the support values we look at here, we got reductions (shown in the Ratio column) in
the cardinality anywhere from a factor of 1.4 to 44.7. For lower support values the gap widens rapidly [12].
It is noteworthy, that @ARM finds these closed sets in a fraction of the time it takes Apriori to mine all
frequent itemsets as shown in Table 3. The reduction in running time ranges from a factor of 1.2 to more
than 100 times (again the gap widens with lower support).

Table 4 shows that the reduction in the number of rules (with all possible consequent lengths) generated
is drastic, ranging from a factor of 4 to more than 3000 times! Incidentally, these ratios are in agreement
with the complexity formula we presented in Section 4.3. For example, consider the mushroom dataset. At
40% support, the longest frequent itemset has length 7. The complexity figure predicts a reduction in the
number of rules by a factor & /7 = 128/7 = 18, which is close to the ratio of 15 we got empirically.
Similarly for 20% support, we expect a reduction2éf /15 = 2185, and empirically it is 3343. The table
also shows that even if we restrict the traditional rule generation to a single item consequent, the reduction
with the closed itemset approach is still substantial, ranging from a factor of 2 to a factor of 66 reduction
(once again, the reduction is more for lower supports).

The results above present all possible rules that are obtained by seitingnfequal to theminsup
Figure 9 shows the effect afiinconfon the number of rules generated. It shows that a majority of the rules
have very high confidence, a particularly distressing result for the traditional rule generation framework.
The new approach produces a rule set that can be orders of magnitude smaller. In general it is possible to
mine closed sets usingHARM for low values of support, where it is infeasible to find all frequent itemsets.
Thus, even for dense datasets we can generate rules, which may not be possible in the traditional approach.

7 Conclusions

This paper has demonstrated in a formal way, supported with experiments on several datasets, the well
known fact that the traditional association rule framework produces too many rules, most of which are
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Running Time

Database Sup | Len | Apriori | ChARM | Ratio
chess 80% | 10 | 18.54 1.92 9.7
chess 70% | 13 | 213.03| 8.17 26.1
connect 97% | 6 19.7 4.15 4.7
connect 90% | 12 | 2084.3| 43.8 47.6

mushroom 40% | 7 1.56 0.28 5.6
mushroom 20% | 15 | 167.5 1.2 144 .4

pumsb* 60% | 7 11.4 1.0 11.1
pumsb* 40% | 13 | 847.9 17.1 49.6
pumsb 95% | 5 19.7 1.7 11.7
pumsb 85% | 10 | 1379.8| 76.1 18.1
T20112D100K| 0.5%| 9 6.3 51 1.2

T4018D400K | 1.5%| 13 | 41.6 15.8 2.6

Table 3: Running Time (Supminsup Len=longest frequent itemset)

redundant. We proposed a new framework based on closed itemsets that can drastically reduce the rule set,
and that can be presented to the user in a succinct manner.

This paper opens a lot of interesting directions for future work. For example we plan to use the concept
lattice for interactive visualization and exploration of a large set of mined associations. Keep in mind that
the frequent concept lattice is a very concise representation of all the frequent itemsets and the rules that can
be generated from them. Instead of generating all possible rules, we plan to generate the rules on-demand,
based on the user’s interests. Finally, there is the issue of developing a theory for extracting a base, or a
minimal generating set, for all the rules.
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8 APPENDIX (Theorem Proofs)

Theorem 1l LetX C ZandY C 7. Letey(X) denote the composition of the two mappings
iot(X) = i(t(X)). Dually, lete,;(Y) = toi(Y) = t(i(Y)). Theney : P(Z) — P(Z) and
¢i - P(T) — P(T) are both closure operators on itemsets and tidsets respectively.

PROOFE This is a well established result; see [8].
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Theorem 2 For any itemsetX, its support is equal to the support of its closure, i®&.X) =

o(ei(X)).

PROOF. The support of an itemseY is the number of transactions where it appears, which is
exactly the cardinality of the tidsetX), i.e.,o(X) = [¢(X)]|. Sinceo(c;(X)) = |t(cu(X))], to
prove the theorem, we have to show th@') = #(c;;(X)).

Sincecy; is closure operator, it satisfies the extension property, #(&) C c;(t(X)) =
t(i(t(X))) = t(ci(X)). Thust(X) C t(ci(X)). On the other hand sines, is also a closure
operator,X C ¢;(X), which in turn implies that(X) D t(¢;(X)), due to property 1) of Galois
connections. Thug X) = t(cu(X)). m

Theorem 3 Transitivity: Let X, X,, X3 be frequent closed itemsets, with C X, C Xj. If
X, i) X5 anng L) X3, thenX1 ﬂ> Xs.

PROOF From the three rules we haye= |t(X; U X5)|/|t(X1)], ¢ = [t(X2 U X3)|/[t(X2)], and
pg = |t(X; U X3)|/|t(Xy)|. SinceX; C X,, we havep = [t(X5)|/[t(X1)|. Similarly, using other
subset relationships, we get= [t(X3)|/|t(X2)|, andpg = [t(X3)|/]t(X71)|. Now consider the
product of the first two confidences, i.g.q = |t(Xo)|/[t(X1)|-[t(X3)|/|t(X2)| = [¢(X3)|/|t(X1)],
which matches the confidence of the third rue.

Theorem 4 An association ruleX; —% X, has confidencg = 1.0 if and only ift(X;) C ¢(X5).

ProoF If X; 190, X, it means thatX, always occurs in a transaction, whenewgroccurs in
that transaction. Put another way, the tidset whereccurs must be a subset of the tidset where
X, occurs. But this is precisely given asX1) C t(Xy).

The confidence of the rul&; -+ X, is given asp = | (X1 U Xo)|/[t(Xy) = [t(Xy) N
t(Xo)|/[t(X1)|- I 1(X0) C ¢(X2), thenp = [¢(X0)[/[t(X4)| =

Theorem 5 Let R; stand for a 100% confidence rubé! 10 Xi and letR = {R),---,R,} bea
set of rules such that, = ¢, (X} U X¢), andI, = ¢;(X%) for all rules R;. Then all the rules are
equivalent to the 100% confidence rLﬂle& I,. Further, all rules other than the most general
ones araedundant

PrROOF. Consider any rule?; = X! L9, Xi. Then the support of the rule is given agand its
confidence as/r, wheres = [¢t(X{U X})| andr = |¢(X?)]. Also according to Theorem 4 we have
HX?) C t(X’) Then according to property 2 of Galois connections, we h@y&?)) D i(t(X3%)),
i.e,Cit(X ) D) Clt(X )

Now consider the ruld, =% I,. Its support ist(I; U I,)| = |t(cit(Xi U X1) U cy(X2))| =
[t(cy(XT U XL))| = [¢(XT U XE)| = s. The last step follows from the fact that the support of an
itemset equals the support of its closure.

Now we need to show that the denominator in the confidence formula eguale denomi-
nator is given ag(/1)| = [t(ci (X7 U X3))| = [t(XT U X3)| = [H(XT) N t(X5)] = [H(XF)[ = .
The last step follows from the fact thgt\i) C #(X:). m

17



Theorem 6 Let R; stand for ap < 1.0 confidence ruleX? -2+ X}, and letR = {Ry,---, R,} be
a set of rules such thdt = ¢;;(X?), andl, = ¢;; (X! U X%) for all rules R;. Then all the rules are
equivalent to the rulé, -2 I,. Further, all rules other than the most general ones@éundant

PROOF Consider any rule?; = Xi -2+ Xi. Then the support of the rule is given asnd its
confidence ag = s/r, wheres = |t(X} U X3)| andr = [t(X7})].

We will show that thel; -~ I, also has confidenge = s/r. Let’s consider the denominator
first. We havet(1,)| = |t(cq(X1))| = [t(X])] = 7.

Now consider the numerator. We halél; U )| = |t(c;(Xi) U ¢;r(Xi U X3))|. Since
Xi C (XiuU X3}), we have, from the property of closure operatgr,Xi) C c;(X{ U X3). Thus,
61, U )| = [t(ea (X} U X3))] = [¢(X] UX3)| = s.m
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