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Abstract

The traditional association rule mining framework produces many redundant rules. The extent of redundan-
cy is a lot larger than previously suspected. We present a new framework for associations based on the novel
concept ofclosedfrequent itemsets. The number of non-redundant rules produced by the new approach is
exponentially (in the length of the longest frequent itemset) smaller than the rule set from the traditional ap-
proach. Experiments using several “hard” real and synthetic databases confirm the utility of our framework
in terms of reduction in the number of rules presented to the user, and in terms of time.

1 Introduction

Association rule discovery, a successful and important mining task, aims at uncovering all frequent patterns
among transactions composed of data attributes or items. Results are presented in the form of rules between
different sets of items, along with metrics like the joint and conditional probabilities of the antecedent and
consequent, to judge a rule’s importance.

It is widely recognized that the set of association rules can rapidly grow to be unwieldy, especially as
we lower the frequency requirements. The larger the set of frequent itemsets the more the number of rules
presented to the user, many of which are redundant. This is true even for sparse datasets, but for dense
datasets it is simply not feasible to mine all possible frequent itemsets, let alone to generate rules between
itemsets. In such datasets one typically finds an exponential number of frequent itemsets. For example,
finding long itemsets of length 20 or 30 is not uncommon [2].

Prior research has mentioned that the traditional association rule mining framework produces too many
rules, but the extent of redundancy is a lot larger than previously suspected. We present a new framework for
association rule mining based on the novel concept ofclosedfrequent itemsets. The set of all closed frequent
itemsets can be orders of magnitude smaller than the set of all frequent itemsets, especially for real (dense)
datasets. At the same time, we don’t loose any information (which we would, if we were to use maximal
frequent itemsets); the closed itemsets uniquely determine the set of all frequent itemsets. We show that
the new framework produces exponentially (in the length of the longest frequent itemset) fewer rules than
the traditional approach, again without loss of information. Our framework allows us to mine even dense
datasets, where it is not possible to find all frequent itemsets. Experiments using several “hard” (i.e., dense)
databases confirm the utility of our framework in terms of reduction in the number of rules presented to the
user, and in terms of time.
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The rest of the paper is organized as follows. Section 2 describes the association mining task. Section 3
introduces the new notion of closed itemsets. Section 4 looks at the problem of eliminating redundant rules.
We discuss related work in Section 5. We experimentally validate out theoretical results in Section 6, and
conclude in Section 7 (the Appendix contains proofs for all theorems presented in this paper, and it can be
read at the discretion of the reviewer).

2 Association Rules

The association mining task can be stated as follows: LetI = f1; 2; � � � ;mg be a set of items, and let
T = f1; 2; � � � ; ng be a set of transaction identifiers ortids. The input database is a binary relationÆ � I�T .
If an itemi occurs in a transactiont, we write it as(i; t) 2 Æ, or alternately asiÆt. Typically the database is
arranged as a set of transactions, where each transaction contains a set of items. For example, consider the
database shown in Figure 1, used as a running example throughtout this paper. HereI = fA;C;D; T;Wg,
andT = f1; 2; 3; 4; 5; 6g. The second transaction can be represented asfCÆ2;DÆ2;WÆ2g; all such pairs
from all transactions, taken together form the binary relationÆ.

A setX � I is called anitemset, and a setY � T is called atidset. For convenience we write an
itemsetfA;C;Wg asACW , and a tidsetf2; 4; 5g as245. Thesupportof an itemsetX, denoted�(X), is
the number of transactions in which it occurs as a subset. An itemset isfrequentif its support is more than
or equal to a user-specifiedminimum support (minsup)value, i.e., if�(X) � minsup.

An association ruleis an expressionA
p
�! B, whereA andB are itemsets, andA\B = ;. Thesupport

of the rule is given as�(A [ B) (i.e., the joint probability of a transaction containing bothA andB), and
theconfidenceasp = �(A [B)=�(A) (i.e., the conditional probability that a transaction containsB, given
that it containsA). A rule is frequent if the itemsetA[B is frequent. A rule isconfidentif its confidence is
greater than or equal to a user-specifiedminimum confidence (minconf)value, i.e,p � minconf .
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Figure 1: Generating Frequent Itemsets

Association rule mining consists of two steps [1]: 1) Find all frequent itemsets, and 2) Generate high
confidence rules.
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Finding frequent itemsetsThis step computationally and I/O intensive. As a running example, consider
Figure 1, which shows a bookstore database with six customers who buy books by different authors. It
shows all the frequent itemsets withminsup = 50% (i.e., 3 transactions).ACTW andCDW are the
maximal-by-inclusion frequent itemsets (i.e., they are not a subset of any other frequent itemset).

Let jIj = m be the number of items. The search space for enumeration of all frequent itemsets is
2m, which is exponential inm. One can prove that the problem of finding a frequent set of a certain
size is NP-Complete, by reducing it to the balanced bipartite clique problem, which is known to be NP-
Complete [7, 13]. However, if we assume that there is a bound on the transaction length, the task of finding
all frequent itemsets is essentially linear in the database size, since the overall complexity in this case is
given asO(r � n � 2l), wherejT j = n is the number of transactions,l is the length of the longest frequent
itemset, andr is the number of maximal frequent itemsets.
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Figure 2: Generating Confident Rules

Generating confident rulesThis step is relatively straightforward; rules of the formY
p
�! X � Y , are

generated for all frequent itemsetsX, for all Y � X, Y 6= ;, and providedp � minconf . For example,

from the frequent itemsetACW we can generate 6 possible rules (all of them have support of 4):A
1:0
�!

CW;C
0:67
�! AW;W

0:8
�! AC;AC

1:0
�! W;AW

1:0
�! C, andCW 0:8

�! A. This process is also shown
pictorially in Figure 2. Notice that we need access to the support of all subsets ofACW to generate rules
from it. To obtain all possible rules we need to examine each frequent itemset and repeat the rule generation
process shown above forACW . Figure 2 shows the set of all other association rules with confidence above
or equal tominconf= 80%.

For an itemset of sizek there are2k � 2 potentially confident rules that can be generated. This follows
from the fact that we must consider each subset of the itemset as an antecedent, except for the empty and the
full itemset. The complexity of the rule generation step is thusO(f � 2l), wheref is the number of frequent
itemsets, andl is the longest frequent itemset.
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3 Closed Frequent Itemsets

In this section we develop the concept of closed frequent itemsets, and show that this set is necessary and
sufficient to capture all the information about frequent itemsets, and has smaller cardinality than the set of
all frequent itemsets.

3.1 Partial Order and Lattices

We first introduce some lattice theory concepts (see [5] for a good introduction).
Let P be a set. Apartial order onP is a binary relation�, such that for allx; y; z 2 P , the relation is:

1) Reflexive:x � x. 2) Anti-Symmetric:x � y andy � x, impliesx = y. 3) Transitive:x � y andy � z,
impliesx � z. The setP with the relation� is called anordered set, and it is denoted as a pair (P;�). We
write x < y if x � y andx 6= y.

Let (P;�) be an ordered set, and letS be a subset ofP . An elementu 2 P is anupper boundof S if
s � u for all s 2 S. An elementl 2 P is a lower boundof S if s � l for all s 2 S. The least upper bound
is called thejoin of S, and is denoted as

W
S, and the greatest lower bound is called themeetof S, and is

denoted as
V
S. If S = fx; yg, we also writex _ y for the join, andx ^ y for the meet.

An ordered set(L;�) is a lattice, if for any two elementsx andy in L the joinx _ y and meetx ^ y
always exist.L is acomplete latticeif

W
S and

V
S exist for allS � L. Any finite lattice is complete.L is

called ajoin semilatticeif only the join exists.L is called ameet semilatticeif only the meet exists.
Let P denote the power set ofS (i.e., the set of all subsets ofS). The ordered set (P(S);�) is a

complete lattice, where the meet is given by set intersection, and the join is given by set union. For example,
the partial orders(P(I);�), the set of all possible itemsets, and(P(T );�), the set of all possible tidsets
are both complete lattices.

The set of all frequent itemsets, on the other hand, is only a meet-semilattice. For example, consider
Figure 3, which shows the semilattice of all frequent itemsets we found in our example database (from
Figure 1). For any two itemsets, only their meet is guaranteed to be frequent, while their join may or may
not be frequent. This follows from the well known principle in association mining that, if an itemset is
frequent, then all its subsets are also frequent. For example,AC ^ AT = AC \ AT = A is frequent. For
the join, whileAC _AT = AC [AT = ACT is frequent,AC [DW = ACDW is not frequent.

3.2 Closed Itemsets

Let the binary relationÆ � I � T be the input database for association mining. LetX � I, andY � T .
Then the mappings

t : I 7! T ; t(X) = fy 2 T j 8x 2 X; xÆyg

i : T 7! I; i(Y ) = fx 2 I j 8y 2 Y; xÆyg

define aGalois connectionbetween the partial orders(P(I);�) and(P(T );�), the power sets ofI andT ,
respectively. We denote aX; t(X) pair asX � t(X), and ai(Y ); Y pair asi(Y ) � Y . Figure 4 illustrates
the two mappings. The mappingt(X) is the set of all transactions (tidset) which contain the itemsetX,
similarly i(Y ) is the itemset that is contained in all the transactions inY . For example,t(ACW ) = 1345,
and i(245) = CDW . In terms of individual elementst(X) =

T
x2X t(x), andi(Y ) =

T
y2Y i(y). For

examplet(ACW ) = t(A) \ t(C) \ t(W ) = 1345 \ 123456 \ 12345 = 1345.
The Galois connection satisfies the following properties (whereX;X1;X2 2 P(I) andY; Y1; Y2 2

P(T )):
1)X1 � X2 ) t(X1) � t(X2). E.g., forACW � ACTW , t(ACW ) = 1345 � 135 = t(ACTW ).
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Figure 3: Meet Semi-lattice of Frequent Itemsets

2) Y1 � Y2 ) i(Y1) � i(Y2). For example, for245 � 2456, we havei(245) = CDW � CD = i(2456).
3)X � i(t(X)) andY � t(i(Y )). For example,AC � i(t(AC)) = i(1345) = ACW .

Let S be a set. A functionc : P(S) 7! P(S) is aclosure operatoron S if, for allX;Y � S, c satisfies
the following properties: 1) Extension:X � c(X). 2) Monotonicity: ifX � Y , thenc(X) � c(Y ). 3)
Idempotency:c(c(X)) = c(X). A subsetX of S is calledclosedif c(X) = X.

Theorem 1 LetX � I andY � T . Let cit(X) denote the composition of the two mappingsi Æ t(X) =

i(t(X)). Dually, letcti(Y ) = t Æ i(Y ) = t(i(Y )). Thencit : P(I) 7! P(I) andcti : P(T ) 7! P(T ) are
both closure operators on itemsets and tidsets respectively.

We define aclosed itemsetas an itemsetX that is that same as its closure, i.e.,X = cit(X). For example
the itemsetACW is closed. Aclosed tidsetis a tidsetY = cti(Y ). For example, the tidset1345 is closed.

The mappingscit andcti, being closure operators, satisfy the three properties of extension, monotonicity,
and idempotency. We also call the application ofi Æ t or t Æ i a round-trip. Figure 4 illustrates this round-trip
starting with an itemsetX. For example, letX = AC, then the extension property say thatX is a subset of
its closure, sincecit(AC) = i(t(AC)) = i(1345) = ACW . SinceAC 6= cit(AC) = ACW , we conclude
thatAC is not closed. On the other hand, the idempotency property say that once we map an itemset to
the tidset that contains it, and then map that tidset back to the set of items common to all tids in the tidset,
we obtain a closed itemset. After this no matter how many such round-trips we make we cannot extend a
closed itemset. For example, after one round-trip forAC we obtain the closed itemsetACW . If we perform
another round-trip onACW , we getcit(ACW ) = i(t(ACW )) = i(1345) = ACW .

For any closed itemsetX, there exists a closed tidset given byY , with the property thatY = t(X) and
X = i(Y ) (conversely, for any closed tidset there exists a closed itemset). We can see thatX is closed by
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the fact thatX = i(Y ), then pluggingY = t(X), we getX = i(Y ) = i(t(X)) = cit(X), thusX is closed.
Dually, Y is closed. For example, we have seen above that for the closed itemsetACW the associated
closed tidset is1345. Such a closed itemset and closed tidset pairX � Y is called aconcept.
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A conceptX1 � Y1 is a subconceptof X2 � Y2, denoted asX1 � Y1 � X2 � Y2, iff X1 � X2 (iff
Y2 � Y1). LetB(Æ) denote the set of all possible concepts in the database. Then the ordered set(B(Æ);�) is
a complete lattice, called theGalois lattice. For example, Figure 5 shows the Galois lattice for our example
database, which has a total of 10 concepts. The least element is the conceptC � 123456 and the greatest
element is the conceptACDTW � 5. Notice that the mappings between the closed pairs of itemsets and
tidsets are anti-isomorphic, i.e., concepts with large cardinality itemsets have small tidsets, and vice versa.
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The concept generated by a single itemx 2 I is called anitem concept, and is given asCi(x) =

cit(x) � t(x). Similarly, the concept generated by a single transactiony 2 T is called atid concept, and is
given asCt(y) = i(y)�cti(y). For example, the item conceptCi(A) = i(t(A))� t(A) = i(1345)�1345 =

ACW � 1345. Further, the tid conceptCt(2) = i(2) � t(i(2)) = CDW � t(CDW ) = CDW � 245.
In Figure 5 if we relabel each concept with the item concept or tid concept that it is equivalent to, then

we obtain a lattice withminimal labelling, with item or tid labels, as shown in the figure in bold letters.
Such a relabelling reduces clutter in the lattice diagram, which provides an excellent way of visualizing
the structure of the patterns and relationships that exist between items. We shall see its benefit in the next
section when we talk about high confidence rules extraction.

It is easy to reconstruct the concepts from the minimal labeling. For example, consider the tid concept
Ct(2) = X � Y . To obtain the closed itemsetX, we append all item labels reachable below it. Conversely,
to obtain the closed tidsetY we append all labels reachable aboveCt(2). We see thatW , D andC are all
the labels reachable by a path below it. ThusX = CDW forms the closed itemset. We also see that4 and5
are the only labels reachable aboveCt(2). ThusY = 245, giving the conceptCDW � 245, which matches
the concept shown in the figure.

3.3 Frequent Closed Itemsets vs. Frequent Itemsets

We begin this section by defining the join and meet operation on the concept lattice (see [6] for the formal
proof): The set of all concepts in the database relationÆ, given by(B(Æ);�) is a (complete) lattice with join
and meet given by

join: (X1 � Y1) _ (X2 � Y2) = cit(X1 [X2)� (Y1 \ Y2)
meet: (X1 � Y1) ^ (X2 � Y2) = (X1 \X2)� cti(Y1 [ Y2)

For the join and meet of multiple concepts, we simply take the unions and joins over all of them. For
example, consider the join of two concepts,(ACDW � 45) _ (CDT � 56) = cit(ACDW [ CDT ) �
(45 \ 56) = ACDTW � 5. On the other hand their meet is given as,(ACDW � 45) ^ (CDT � 56) =
(ACDW \ CDT ) � cti(45 [ 56) = CD � cti(456) = CD � 2456. Similarly, we can perform multiple
concept joins or meets; for example,(CT � 1356) _ (CD � 2456) _ (CDW � 245) = cit(CT [ CD [
CDW )� (1356 \ 2456 \ 245) = cit(CDTW )� 5 = ACDTW � 5.

We define the support of a closed itemsetX or a conceptX � Y as the cardinality of the closed tidset
Y = t(X), i.e, �(X) = jY j = jt(X)j. A closed itemset or a concept isfrequentif its support is at least
minsup. Figure 6 shows all the frequent concepts withminsup= 50% (i.e., with tidset cardinality at least 3).
The frequent concepts form a meet-semilattice, where the meet is guaranteed to exist, while the join may
not.

All frequent itemsets can be determined by the join operation on the frequent item concepts in Figure 6.
For example, since join of item conceptsD andT , Ci(D)_Ci(T ), doesn’t exist,DT is not frequent. On the
other hand,Ci(A) _ Ci(T ) = ACTW � 135, thusAT is frequent. Furthermore, the support ofAT is given
by the cardinality of the resulting concept’s tidset, i.e.,�(AT ) = jt(AT )j = j135j = 3.

Theorem 2 For any itemsetX, its support is equal to the support of its closure, i.e.,�(X) = �(cit(X)).

This theorem states that all frequent itemsets are uniquely determined by the frequent closed itemsets
(or frequent concepts). Furthermore, the set of frequent closed itemsets is bounded above by the set of
frequent itemsets, and is typically much smaller, especially for dense datasets. For very sparse datasets,
in the worst case, the two sets may be equal. To illustrate the benefits of closed itemset mining, contrast
Figure 3, showing the set of all frequent itemsets, with Figure 6, showing the set of all closed frequent
itemsets (or concepts). We see that while there are only 7 closed frequent itemsets, in contrast there are 19
frequent itemsets. This example clearly illustrates the benefits of mining the closed frequent itemsets.

7



4 Rule Generation

Recall that an association rule is of the formX1

p
�! X2, whereX1;X2 � I. Its support equalsjt(X1[X2)j,

and its confidence is given asp = P (X2jX1) = jt(X1 [X2)j=jt(X1)j. We are interested in finding all high
support (at leastminsup) and high confidence rules (at leastminconf).

It is widely recognized that the set of such association rules can rapidly grow to be unwieldy. In this
section we will show how the closed frequent itemsets help us form a generating set of rules, from which
all other association rules can be inferred. Thus, only a small and easily understandable set of rules can be
presented to the user, who can later selectively derive other rules of interest.

In the last section, we showed that the support of an itemsetX equals the support of its closurecit(X).
Thus it suffices to consider rulesonly among the frequent concepts. In other words the ruleX1

p
�! X2 is

exactly the same as the rulecit(X1)
p
�! cit(X2).

Another observation that follows from the concept lattice is that it is sufficient to consider rules among
adjacent concepts, since other rules can be inferred by transitivity, that is:

Theorem 3 Transitivity: LetX1;X2;X3 be frequent closed itemsets, withX1 � X2 � X3. If X1

p
�! X2

andX2

q
�! X3, thenX1

pq
�! X3.

In the discussion below, we consider two cases of association rules, those with 100% confidence, i.e.,
with p = 1:0, and those withp < 1:0.
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Figure 7: Rules with 100% Confidence

4.1 Rules with 100% Confidence

Theorem 4 An association ruleX1

1:0
�! X2 has confidencep = 1:0 if and only ift(X1) � t(X2).
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This theorem says that all 100% confidence rules are those that are directed from a super-concept (X1�
t(X1)) to a sub-concept (X2� t(X2)),i.e., down-arcs, since it is in precisely these cases thatt(X1) � t(X2)
(orX1 � X2). For example, consider the item conceptsCi(W ) = CW � 12345 andCi(C) = C � 123456.

The ruleW 1:0
�! C is a 100% confidence rule. Note that if we take the itemset closure on both sides of the

rule, we obtainCW 1:0
�! C, i.e., a rule between closed itemsets, but since the antecedent and consequent

are not disjoint in this case, we prefer to write the rule asW
1:0
�! C, although both rules are exactly the

same. Figure 7 shows some of the other rules among adjacent concepts with 100% confidence.
We notice that some down-arcs are labeled with more than one rule. In such cases, all rules within a

box are equivalent, and we prefer the rule that is most general. For example, consider the rulesTW
1:0
�!

A; TW
1:0
�! AC, andCTW 1:0

�! A. We prefer the ruleTW 1:0
�! A since the latter two are obtained by

adding one (or more) items to either the antecedent or consequent ofTW
1:0
�! A. In other wordsTW 1:0

�! A
is more general than the latter two rules. In fact, we can say that the addition ofC to either the antecedent
or the consequent has no effect on the support or confidence of the rule. In this case we also call the other
two rules redundant.

Theorem 5 LetRi stand for a 100% confidence ruleXi
1

1:0
�! Xi

2, and letR = fR1; � � � ; Rng be a set of
rules such thatI1 = cit(X

i
1 [Xi

2), andI2 = cit(X
i
2) for all rulesRi. Then all the rules are equivalent to

the 100% confidence ruleI1
1:0
�! I2, and thus areredundant.

Let’s apply this theorem to the three rules we considered above. We find that for the first rule that
cit(TW [ A) = cit(ATW ) = ACTW . Similarly for the other two rules we see thatcit(TW [ AC) =

cit(ACTW ) = ACTW , andcit(CTW [A) = cit(ACTW ) = ACTW . Thus for these three rules we get
the closed itemsetI1 = ACTW . By the same process we obtainI2 = ACW . All three rules correspond to

the arc between the tid conceptCt(1; 3) and the item conceptCi(A). Finally TW 1:0
�! A is the most general

rule, and so the other two are redundant.
A set of such general rules constitutes agenerating set, i.e., a rule set, from which all other 100%

confidence rules can inferred. Note that in this paper we do not address the question of eliminating self-
redundancy within this generating set, i.e., there may still exist rules in the generating set that can be derived
from other rules in the set. In other words we do not claim anything about the minimality of the generating
set; that is the topic of a forthcoming paper.

Figure 7 shows the generating set in bold arcs, which includes the 5 most general rulesfTW
1:0
�!

A;A
1:0
�! W;W

1:0
�! C; T

1:0
�! C;D

1:0
�! Cg (the down-arcs that have been left out produce rules that

cannot be written with disjoint antecedent and consequent. For example, betweenCt(2) andCi(D), the

most general rule isDW 1:0
�! D. Since the antecedent and consequent are not disjoint, as required by

definition, we discard such rules). All other 100% confidence rules can be derived from this generating set

by application of simple inference rules. For example, we can obtain the ruleA
1:0
�! C by transitivity from

the two rulesA 1:0
�! W andW 1:0

�! C. The ruleDW 1:0
�! C can be obtained by augmentation of the two

rulesW 1:0
�! C andD 1:0

�! C, etc. One can easily verify that all the 18 100% confidence rules produced by
using frequent itemsets, as shown in Figure 2, can be generated from this set of 5 rules, produced using the
closed frequent itemsets!

4.2 Rules with Confidence less than 100%

We now turn to the problem of finding a generating set for association rules with confidence less than 100%.
As before, we need to consider only the rules between adjacent concepts. But this time the rules correspond
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to the up-arcs, instead of the down-arcs for the 100% confidence rules, i.e., the rules go from sub-concepts
to super-concepts.
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4
/6
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 0

.6
7
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WC5/6

W A
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A T
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0.
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Figure 8: Rules with Confidence< 100%

Consider Figure 8. The edge between item conceptsCi(C) andCi(W ) corresponds toC 0:83
�!W . Rules

between non-adjacent concepts can be derived by transitivity. For example, forC
p
�! A we can obtain the

value ofp using the rulesC
q=5=6
�! W andW

r=4=5
�! A. We havep = qr = 5=6 � 4=5 = 4=6 = 0:67.

Theorem 6 LetRi stand for ap < 1:0 confidence ruleXi
1

p
�! Xi

2
, and letR = fR1; � � � ; Rng be a set of

rules such thatI1 = cit(X
i
1), andI2 = cit(X

i
1 [Xi

2) for all rulesRi. Then all the rules are equivalent to
the ruleI1

p
�! I2, and thus areredundant.

This theorem differs from that of the 100% confidence rules to account for the up-arcs. Consider the
rules produced by the up-arc between item conceptsCi(W ) andCi(A). We find that for all three rules,
I1 = cit(W ) = cit(CW ) = CW , andI2 = cit(W [ A) = cit(W [ AC) = cit(CW [ A) = ACW .
The support of the rule is given byjt(I1 [ I2)j = jt(ACW )j = 4, and the confidence given asjt(I1 [

I2)j=jt(I1)j = 4=5 = 0:8. Finally, sinceW 0:8
�! A is the most general rule, the other two are redundant.

Similarly for the up-arc betweenCi(A) andCt(1; 3), we get the general ruleA 0:75
�! T . The other 8 rules in

the box are redundant!
The set of all such general rules forms a generating set of rules from which other rules can be inferred.

The two bold arrows in Figure 8 constitute a generating set for all rules with0:8 � p < 1:0. Due to the
transitivity property, we only have to consider arcs with confidence at leastminconf= 0:8. No other rules
can be confident at this level.

10



By combining the generating set for rules withp = 1:0, shown in Figure 7 and the generating set for rules
with 1:0 > p � 0:8, shown in Figure 8, we obtain a generating set for all association rules withminsup=

50%, andminconf= 80%:fTW 1:0
�! A;A

1:0
�!W;W

1:0
�! C; T

1:0
�! C;D

1:0
�! C;W

0:8
�! A;C

0:83
�!Wg.

It can be easily verified that all the association rules shown in Figure 2, for our example database from
Figure 1, can be derived from this set. Using the closed itemset approach we produce 7 rules versus the 22
rules produced in traditional association mining. To see the contrast further, consider the set of all possible
association rules we can mine. Withminsup= 50%, the least value of confidence can be 50% (since the
maximum support of an itemset can be 100%, but any frequent subset must have at least 50% support; the
least confidence value is thus 50/100 = 0.5). There are 60 possible association rules versus only 13 in the
generating set (5 rules withp = 1:0 in Figure 7, and 8 rules withp < 1:0 in Figure 8)

4.3 Complexity of Rule Generation: Traditional vs. Closed Itemset Frame-
work

The complexity of rule generation in the traditional framework isO(f �2l), which is exponential in the length
l of the longest frequent itemset (f is the total number of frequent itemsets). On the other hand using the
closed itemset framework, the number of non-redundant rules is linear in the number of closed itemsets. To
see how much savings are possible using closed frequent itemsets, lets consider the case where the longest
frequent itemset has lengthl; with all 2l subsets also being frequent.

In the traditional association rule framework, we would have to consider for each frequent itemset all its
subsets as rule antecedents. The total number of rules generated in this approach is given as

Pl
i=0

�l
i

�
�2l�i �

Pl
i=0

�l
i

�
� 2l = 2l

Pl
i=0

�l
i

�
= 2l � 2l = 0(22l).

On the other hand the number of non-redundant rules produced using closed itemsets is given as follows.
Let’s consider two extreme cases: In the best case, there is only one closed itemset, i.e., all2l subsets have the
same support as the longest frequent itemset. Thus all rules between itemsets must have 100% confidence.
The closed itemset approach doesn’t produce any rule; it just lists the closed itemset with its frequency, with
the implicit assumption that all possible rules from this itemset have 100% confidence. This corresponds to
a reduction in the number of rules by a factor ofO(22l).

On the other hand, in the worst case, all2l frequent itemsets are also closed. In this case there can
be no 100% confidence rules and all (< 100% confidence) rules point upwards, i.e., from subsets to their
immediate supersets. For each subset of lengthk we havek rules from each of itsk � 1 length subsets to
that set. The total number of rules generated is thus

Pl
i=0

�l
i

�
� (l� i) �

Pl
i=0

�l
i

�
� l = O(l �2l). Thus we get

a reduction in the number of rules by of a factor ofO(2l=l), i.e., asymptotically exponential in the length of
the longest frequent itemset.

5 Related Work

There has been a lot of research in developing efficient algorithms for mining frequent itemsets [1, 2, 4, 7, 8,
10, 14]. Most of these algorithms enumerate all frequent itemsets. Using these for rule generation produces
many redundant rules. Some methods only generate maximal frequent itemsets [2, 8]. Maximal itemsets
cannot be used for rule generation, since support of subsets is required for confidence computation. While it
is easy to make one more data scan to gather the supports of all subsets, we still have the problem of many
redundant rules. Further, for all these methods it is simply not possible to find rules in dense datasets which
may easily have frequent itemsets of length 20 and more [2]. In contrast the set ofclosedfrequent itemsets
can be orders of magnitude smaller than the set of all frequent itemsets, and they can be used to generate
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rules even in dense domains. We use the recently proposed CHARM algorithm [12] for mining all closed
frequent itemsets, in a fraction of the time it takes to mine all frequent itemsets using the Apriori [1] method.

There has been some work in pruning discovered association rules by forming rule covers [11]. How-
ever, the problem of constructing a generating set has not been studied previously. The recent work in [3]
addresses the problem of mining the most interesting rules. They do not address the issue of rule redundancy,
however their work is complimentary to ours.

A number of algorithms have been proposed for generating the Galois lattice of concepts [6]. These
algorithms will have to be adapted to enumerate only the frequent concepts. Further, they have only been
studied on small datasets. Our framework builds upon and adapts the work in [9]. However our characteri-
zation of the generating set is different, and we also present an experimental verification. An early version
of this paper appeared in [13], but no experiments were shown.

6 Experimental Evaluation

All experiments described below were performed on a 400MHz Pentium PC with 256MB of memory, run-
ning RedHat Linux 6.0. Algorithms were coded in C++.

Database # Items Avg. Record Length # Records
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
pumsb 7117 74 49,046
T20I12D100K 1000 20 100,000
T40I8D400K 1000 40 100,000

Table 1: Database Characteristics

Table 1 shows the characteristics of the real and synthetic datasets used in our evaluation. The real
datasets were obtained from IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html). All datasets
except the PUMS (pumsb and pumsb*) sets, are taken from the UC Irvine Machine Learning Database
Repository. The PUMS datasets contain census data. pumsb* is the same as pumsb without items with 80%
or more support. The mushroom database contains characteristics of various species of mushrooms. Finally
the connect and chess datasets are derived from their respective game steps. Typically, these real datasets
are very dense, i.e., they produce many long frequent itemsets even for very high values of support.

We also chose a few synthetic datasets (also available from IBM Almaden), which have been used as
benchmarks for testing previous association mining algorithms. These datasets mimic the transactions in
a retailing environment. Usually the synthetic datasets are sparse when compared to the real sets, but we
modified the generator to produce longer frequent itemsets.

6.1 Traditional vs. Closed Itemset Framework

Consider Tables 2, 4 and 3, which compares the traditional rule generation framework with the new closed
itemset approach proposed in this paper. The tables shows the experimental results along a number of
dimensions: 1) total number of frequent itemsets vs. closed frequent itemsets, 2) total number of rules in the
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Number of Itemsets
Database Sup Len #Freq #Closed Ratio
chess 80% 10 8227 5083 1.6
chess 70% 13 48969 23991 2.0
connect 97% 6 487 284 1.7
connect 90% 12 27127 3486 7.8
mushroom 40% 7 565 140 4.0
mushroom 20% 15 53583 1197 44.7
pumsb* 60% 7 167 68 2.5
pumsb* 40% 13 27354 2610 10.5
pumsb 95% 5 172 110 1.6
pumsb 85% 10 20533 8513 2.4
T20I12D100K 0.5% 9 2890 2067 1.4
T40I8D400K 1.5% 13 12088 4218 2.9

Table 2: Number of Itemset (Sup=minsup, Len=longest frequent itemset)

traditional vs. new approach, and 3) total time taken for mining all frequent itemsets (using Apriori) and the
closed frequent itemsets (using CHARM).

Table 2 shows that the number of closed frequent itemsets can be much smaller than the set of all
frequent itemsets. For the support values we look at here, we got reductions (shown in the Ratio column) in
the cardinality anywhere from a factor of 1.4 to 44.7. For lower support values the gap widens rapidly [12].
It is noteworthy, that CHARM finds these closed sets in a fraction of the time it takes Apriori to mine all
frequent itemsets as shown in Table 3. The reduction in running time ranges from a factor of 1.2 to more
than 100 times (again the gap widens with lower support).

Table 4 shows that the reduction in the number of rules (with all possible consequent lengths) generated
is drastic, ranging from a factor of 4 to more than 3000 times! Incidentally, these ratios are in agreement
with the complexity formula we presented in Section 4.3. For example, consider the mushroom dataset. At
40% support, the longest frequent itemset has length 7. The complexity figure predicts a reduction in the
number of rules by a factor of27=7 = 128=7 = 18, which is close to the ratio of 15 we got empirically.
Similarly for 20% support, we expect a reduction of215=15 = 2185, and empirically it is 3343. The table
also shows that even if we restrict the traditional rule generation to a single item consequent, the reduction
with the closed itemset approach is still substantial, ranging from a factor of 2 to a factor of 66 reduction
(once again, the reduction is more for lower supports).

The results above present all possible rules that are obtained by settingminconfequal to theminsup.
Figure 9 shows the effect ofminconfon the number of rules generated. It shows that a majority of the rules
have very high confidence, a particularly distressing result for the traditional rule generation framework.
The new approach produces a rule set that can be orders of magnitude smaller. In general it is possible to
mine closed sets using CHARM for low values of support, where it is infeasible to find all frequent itemsets.
Thus, even for dense datasets we can generate rules, which may not be possible in the traditional approach.

7 Conclusions

This paper has demonstrated in a formal way, supported with experiments on several datasets, the well
known fact that the traditional association rule framework produces too many rules, most of which are
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Running Time
Database Sup Len Apriori ChARM Ratio
chess 80% 10 18.54 1.92 9.7
chess 70% 13 213.03 8.17 26.1
connect 97% 6 19.7 4.15 4.7
connect 90% 12 2084.3 43.8 47.6
mushroom 40% 7 1.56 0.28 5.6
mushroom 20% 15 167.5 1.2 144.4
pumsb* 60% 7 11.4 1.0 11.1
pumsb* 40% 13 847.9 17.1 49.6
pumsb 95% 5 19.7 1.7 11.7
pumsb 85% 10 1379.8 76.1 18.1
T20I12D100K 0.5% 9 6.3 5.1 1.2
T40I8D400K 1.5% 13 41.6 15.8 2.6

Table 3: Running Time (Sup=minsup, Len=longest frequent itemset)

redundant. We proposed a new framework based on closed itemsets that can drastically reduce the rule set,
and that can be presented to the user in a succinct manner.

This paper opens a lot of interesting directions for future work. For example we plan to use the concept
lattice for interactive visualization and exploration of a large set of mined associations. Keep in mind that
the frequent concept lattice is a very concise representation of all the frequent itemsets and the rules that can
be generated from them. Instead of generating all possible rules, we plan to generate the rules on-demand,
based on the user’s interests. Finally, there is the issue of developing a theory for extracting a base, or a
minimal generating set, for all the rules.
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8 APPENDIX (Theorem Proofs)

Theorem 1 Let X � I and Y � T . Let cit(X) denote the composition of the two mappings
i Æ t(X) = i(t(X)). Dually, let cti(Y ) = t Æ i(Y ) = t(i(Y )). Thencit : P(I) 7! P(I) and
cti : P(T ) 7! P(T ) are both closure operators on itemsets and tidsets respectively.

PROOF: This is a well established result; see [6].
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Theorem 2 For any itemsetX, its support is equal to the support of its closure, i.e.,�(X) =
�(cit(X)).

PROOF: The support of an itemsetX is the number of transactions where it appears, which is
exactly the cardinality of the tidsett(X), i.e.,�(X) = jt(X)j. Since�(cit(X)) = jt(cit(X))j, to
prove the theorem, we have to show thatt(X) = t(cit(X)).

Since cti is closure operator, it satisfies the extension property, i.e.,t(X) � cti(t(X)) =
t(i(t(X))) = t(cit(X)). Thust(X) � t(cit(X)). On the other hand sincecit is also a closure
operator,X � cit(X), which in turn implies thatt(X) � t(cit(X)), due to property 1) of Galois
connections. Thust(X) = t(cit(X)).

Theorem 3 Transitivity: Let X1; X2; X3 be frequent closed itemsets, withX1 � X2 � X3. If
X1

p
�! X2 andX2

q
�! X3, thenX1

pq
�! X3.

PROOF: From the three rules we havep = jt(X1 [ X2)j=jt(X1)j, q = jt(X2 [ X3)j=jt(X2)j, and
pq = jt(X1 [X3)j=jt(X1)j. SinceX1 � X2, we havep = jt(X2)j=jt(X1)j. Similarly, using other
subset relationships, we getq = jt(X3)j=jt(X2)j, andpq = jt(X3)j=jt(X1)j. Now consider the
product of the first two confidences, i.e.,p�q = jt(X2)j=jt(X1)j�jt(X3)j=jt(X2)j = jt(X3)j=jt(X1)j,
which matches the confidence of the third rule.

Theorem 4 An association ruleX1

1:0
�! X2 has confidencep = 1:0 if and only ift(X1) � t(X2).

PROOF: If X1

1:0
�! X2, it means thatX2 always occurs in a transaction, wheneverX1 occurs in

that transaction. Put another way, the tidset whereX1 occurs must be a subset of the tidset where
X2 occurs. But this is precisely given ast(X1) � t(X2).

The confidence of the ruleX1

p
�! X2 is given asp = jt(X1 [ X2)j=jt(X1) = jt(X1) \

t(X2)j=jt(X1)j. If t(X1) � t(X2), thenp = jt(X1)j=jt(X1)j = 1:0.

Theorem 5 LetRi stand for a 100% confidence ruleX i
1

1:0
�! X i

2
, and letR = fR1; � � � ; Rng be a

set of rules such thatI1 = cit(X
i
1
[X i

2
), andI2 = cit(X

i
2
) for all rulesRi. Then all the rules are

equivalent to the 100% confidence ruleI1
1:0
�! I2. Further, all rules other than the most general

ones areredundant.

PROOF: Consider any ruleRi = X i
1

1:0
�! X i

2
. Then the support of the rule is given ass and its

confidence ass=r, wheres = jt(X i
1
[X i

2
)j andr = jt(X i

1
)j. Also according to Theorem 4 we have

t(X i
1
) � t(X i

2
). Then according to property 2 of Galois connections, we havei(t(X i

1
)) � i(t(X i

2
)),

i.e, cit(X i
1
) � cit(X

i
2
).

Now consider the ruleI1
1:0
�! I2. Its support isjt(I1 [ I2)j = jt(cit(X

i
1
[ X i

2
) [ cit(X

i
2
))j =

jt(cit(X
i
1
[ X i

2
))j = jt(X i

1
[ X i

2
)j = s. The last step follows from the fact that the support of an

itemset equals the support of its closure.
Now we need to show that the denominator in the confidence formula equalsr. The denomi-

nator is given asjt(I1)j = jt(cit(X
i
1
[ X i

2
))j = jt(X i

1
[ X i

2
)j = jt(X i

1
) \ t(X i

2
)j = jt(X i

1
)j = r.

The last step follows from the fact thatt(X i
1
) � t(X i

2
).
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Theorem 6 LetRi stand for ap < 1:0 confidence ruleX i
1

p
�! X i

2
, and letR = fR1; � � � ; Rng be

a set of rules such thatI1 = cit(X
i
1
), andI2 = cit(X

i
1
[X i

2
) for all rulesRi. Then all the rules are

equivalent to the ruleI1
p

�! I2. Further, all rules other than the most general ones areredundant.

PROOF: Consider any ruleRi = X i
1

p
�! X i

2
. Then the support of the rule is given ass and its

confidence asp = s=r, wheres = jt(X i
1
[X i

2
)j andr = jt(X i

1
)j.

We will show that theI1
p

�! I2 also has confidencep = s=r. Let’s consider the denominator
first. We havejt(I1)j = jt(cit(X

i
1
))j = jt(X i

1
)j = r.

Now consider the numerator. We havejt(I1 [ I2)j = jt(cit(X
i
1
) [ cit(X

i
1
[ X i

2
))j. Since

X i
1
� (X i

1
[X i

2
), we have, from the property of closure operator,cit(X

i
1
) � cit(X

i
1
[X i

2
). Thus,

jt(I1 [ I2)j = jt(cit(X
i
1
[X i

2
))j = jt(X i

1
[X i

2
)j = s.
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