
Heuristic Search Methods

Kris Beevers
Intro to AI 9/15/03

Ch. 4.1-4.2

Overview

� “Informed” (heuristic) algorithms (as opposed to “uninformed” ones like
BFS, DFS, etc.)

� Use problem-specific knowledge beyond the definition of the problem itself

� General approach: best-first search. Select node for expansion based on an
evaluation function

� �� �

– Usually, “best-first” means pick the node with lowest
� �� �

– Note that “best-first” is inaccurate: if we really knew the lowest-cost
node it wouldn’t be a search at all! Instead we pick the node that appears
the best based on the evaluation function

� Searches we will study include Greedy searches (best means “closest to goal”)
and A* (and related) searches (best means “lowest total estimated cost”)

� Key concept: heuristic function (a heuristic is a “rule of thumb”):

� ��� � estimated cost of cheapest path from node � to the goal node

– Example: might estimate the cost of the shortest path from Troy to Syra-
cuse as the straight-line distance

– Assume that if � is goal node,
� ��� � �

Properties of Heuristics

� Admissibility: a heuristic
� �� � is admissible if it never overestimates the cost

to the goal from node �; i.e. it is always optimistic

� Consistency or monotonicity: a heuristic
� ��� is consistent if for any nodes

A and B,
� �� � 	 � �
 � � � �
 � �

1

– Intuitively, this says that our heuristic will become more accurate (less
optimistic) as we approach the goal

– This is just a form of the triangle inequality—a heuristic is consistent iff it
satisfies the triangle inequality

� Example: assume
� �� � is admissible and that it says we are 10 from the goal.

The actual cost to the goal must be more—we are at least 10 from the goal.

� Suppose we then take a step of cost 1. If our heuristic is consistent, it cannot
say we are closer than 9 to the goal. If our heuristic was admissible but not
consistent, it could say we were 2 from the goal.

� Consistency � Admissiblity

Greedy Search

� Algorithm:

– Put the root node on a queue Q

– Repeat:
� if Q is empty, return failure
� remove the node N with the lowest

� ��� value from Q
� if N is the goal, return success
� add children of N to Q

� Just uses the heuristic function
� �� � � � �� �

� Problems:

– Susceptible to false starts (i.e. might end up expanding more nodes than
necessary); like DFS, will tend to follow one solution all the way to the
end (even if it isn’t the best)

– Not complete on infinite depth search trees

– Not optimal

– Time/space complexity: � ��� � (remember � is maximum depth of search
tree,

�
is branching factor)

A* Search

� Let

� �� � � cost to reach node �
� �� � � estimated cost from � to the goal

2

� A* minimizes the total solution cost, using

� �� � � � �� � � � �� �

� Expand node with lowest
� ���

� Note that if
� �� � � � ��, we get uniform cost search!

Queue Implementation
� Put the root node on a queue Q

� Repeat:

– if Q is empty, return failure

– remove the node N with the lowest
� ��� � � ��� � � ��� value from Q

– if N is the goal, return success

– add children of N to Q

OPEN /CLOSED List Implementation

This implementation avoids repeated states:

� Put the root node on OPEN

� Repeat:

– if OPEN is empty, fail

– remove the node N with the lowest
� ��� � � ��� � � ��� value from OPEN

– put N on CLOSED

– if N is a goal, return success

– expand N and compute
� ��� for its successors

– for successors not already on OPEN or CLOSED , add to OPEN

– for those already on OPEN or CLOSED , if the new
� ��� is smaller than

that they currently have, use this instead; if any items on CLOSED are
updated, put them back on OPEN

3

Properties of A*
� A* is complete

� If (and only if)
� ��� is consistent:

– A* is optimal

– A* is optimally efficient: it is guaranteed to expand fewer nodes than any
other search algorithm, given that heuristic

� Time/space complexity: generally still � ��� �

Show A* Example “Animation”

Proof of Optimality of A*

Theorem 1. Given a graph in which

� each node has a finite number of successors; and

� arcs in the graph have a cost greater than some positive �

and a heuristic function
� �� � that is admissible, A* is optimal.

Proof. We first introduce the following lemma:

Lemma 2. At every step of the A* algorithm, there is always a node � on OPEN with the
following properties:

� � is on an optimal path to the goal

� A* has found an optimal path to �
� � �� � � � �

, where
� �

is the optimal cost to the goal

Proof. We prove this by induction, making use of the admissibility of
� ���:

� Base case: at the beginning, S is on the optimal path and is on OPEN and A*
has found this path. Also, because

� ��� is admissible,
� �� � � �� �� � �, so� �� � � � �

.

� Inductive step:

– if � is not expanded, the conditions still hold

– if � is expanded, then
� all its successors will be placed on OPEN and (at least) one will be

on the optimal path

4

� we have found the optimal path to this node, because otherwise,
there would be a better path to the goal, contradicting the assump-
tion that the optimal path goes through �

� � ��� � � �
because:� � ��� � � �� � � � ���

�
because of our optimality assumption, � �� � � � � �� �

�
because of admissibility,

� �� � � �� �� � �
�

so,
� �� � � � � �� � � �� �� � � � � � �� � � � �

Continuing: since it explores the graph in a breadth-first manner, and since
each arc cost � �, A* must terminate (because all nodes on OPEN must eventually
exceed

� �
). A* terminates on an optimal path, because:

� if we reached a suboptimal goal � �, then
� �� �� � � �� �

� but from the lemma,
� �� � � � �

� if � � is a suboptimal goal,
� �� �� � � �

� immediately, we have a contradiction:
� �� �� � � �

and
� �� �� � � �

So, A* is optimal.

More About Heuristics

� Example heuristics: 8-puzzle example

– Number of tiles out of place

– Number of swaps needed

– Manhattan distance

� Generating heuristics from relaxed versions of the problem. E.g. in the 8-
puzzle, where the “real” problem states that a tile can move from A to B
iff

 �� ����� �
 � � � � 	��
 �� �, might relax as follows:

– Can always move from A to B (i.e. number of tiles out of place heuristic)

– Can move from A to B iff

 �� ���� � �
 � � (i.e. manhattan distance)

– Can move from A to B iff
� 	��
 �� � (i.e. number of swaps)

� For two admissible heuristics
� �

and
��

,
��

dominates
� �

if
�� �� � 	 � � �� � for

all nodes �. A* with
� �

will expand at least as many nodes as
��

5

� Consider this: you could have a heuristic that calculated the right answer
by doing a search! But, even if the number of nodes in the “real” search
decreases, the computation time doesn’t. It is important to maintain a balance
between the accuracy of a heuristic and its computational cost.

� Other ideas for creating heuristic functions:

– Statistical heuristics: collect statistics and use them; gives up admissib-
lity but is still likely to succeed

– Learn weightings for hand-picked features

– For a group of admissible heuristics where no one dominates any other,
take the maximum!

Memory Bounded A* Searches

IDA*: Iterative Deepening A*

Like iterative deepening, except use
� ��� as cutoff. Use slide.

SMA*: Simplified Memory-bounded A*

Use slide.

� Uses as much memory as available

� Avoids repeated states as far as memory allows

� Complete and optimal if memory is sufficient to store the shallowest solution
path

� Optimally efficient if memory is sufficient to store the entire tree

6

