Heuristic Search Methods

Kris Beevers Intro to AI 9/15/03 Ch. 4.1-4.2

Overview

- "Informed" (heuristic) algorithms (as opposed to "uninformed" ones like BFS, DFS, etc.)
- Use problem-specific knowledge beyond the definition of the problem itself
- General approach: **best-first search**. Select node for expansion based on an evaluation function f(n)
 - Usually, "best-first" means pick the node with lowest f(n)
 - Note that "best-first" is inaccurate: if we really knew the lowest-cost node it wouldn't be a search at all! Instead we pick the node that *appears* the best based on the evaluation function
- Searches we will study include Greedy searches (best means "closest to goal") and A* (and related) searches (best means "lowest total estimated cost")
- Key concept: **heuristic function** (a heuristic is a "rule of thumb"):
 - h(n) = estimated cost of cheapest path from node n to the goal node
 - Example: might estimate the cost of the shortest path from Troy to Syracuse as the straight-line distance
 - Assume that if *n* is goal node, h(n) = 0

Properties of Heuristics

- Admissibility: a heuristic *h*(*n*) is admissible if it *never overestimates* the cost to the goal from node *n*; i.e. it is *always optimistic*
- Consistency or monotonicity: a heuristic *h*(*n*) is consistent if for any nodes A and B, *h*(*B*) ≥ *h*(*A*) + *c*(*A*, *B*)

- Intuitively, this says that our heuristic will become more accurate (less optimistic) as we approach the goal
- This is just a form of the *triangle inequality*—a heuristic is consistent iff it satisfies the triangle inequality
- Example: assume h(n) is admissible and that it says we are 10 from the goal. The actual cost to the goal must be more—we are *at least* 10 from the goal.
- Suppose we then take a step of cost 1. If our heuristic is consistent, it cannot say we are closer than 9 to the goal. If our heuristic was admissible but not consistent, it could say we were 2 from the goal.
- Consistency \Rightarrow Admissiblity

Greedy Search

- Algorithm:
 - Put the root node on a queue Q
 - Repeat:
 - * if Q is empty, return failure
 - * remove the node N with the lowest $h(\cdot)$ value from Q
 - * if N is the goal, return success
 - * add children of N to Q
- Just uses the heuristic function f(n) = h(n)
- Problems:
 - Susceptible to false starts (i.e. might end up expanding more nodes than necessary); like DFS, will tend to follow one solution all the way to the end (even if it isn't the best)
 - Not complete on infinite depth search trees
 - Not optimal
 - Time/space complexity: $O(b^m)$ (remember *m* is maximum depth of search tree, *b* is branching factor)

A* Search

• Let

g(n) = cost to reach node nh(n) = estimated cost from n to the goal • A* minimizes the *total solution cost*, using

$$f(n) = g(n) + h(n)$$

- Expand node with *lowest* $f(\cdot)$
- Note that if $h(n) = 0, \forall n$, we get uniform cost search!

Queue Implementation

- Put the root node on a queue Q
- Repeat:
 - if Q is empty, return failure
 - remove the node N with the lowest $f(\cdot) = g(\cdot) + h(\cdot)$ value from Q
 - if N is the goal, return success
 - add children of N to Q

OPEN /CLOSED List Implementation

This implementation avoids repeated states:

- Put the root node on OPEN
- Repeat:
 - if OPEN is empty, fail
 - remove the node N with the lowest $f(\cdot) = g(\cdot) + h(\cdot)$ value from OPEN
 - put N on CLOSED
 - if N is a goal, return success
 - expand N and compute $f(\cdot)$ for its successors
 - for successors not already on OPEN or CLOSED , add to OPEN
 - for those already on OPEN or CLOSED , if the new $f(\cdot)$ is smaller than that they currently have, use this instead; if any items on CLOSED are updated, put them back on OPEN

Properties of A*

- A* is complete
- If (and only if) h(n) is consistent:
 - A* is optimal
 - A* is *optimally efficient*: it is guaranteed to expand fewer nodes than any other search algorithm, given that heuristic
- Time/space complexity: generally still $O(b^d)$

Show A* Example "Animation"

Proof of Optimality of A*

Theorem 1. *Given a graph in which*

- each node has a finite number of successors; and
- arcs in the graph have a cost greater than some positive ϵ

and a heuristic function h(n) that is admissible, A^* is optimal.

Proof. We first introduce the following lemma:

Lemma 2. At every step of the A* algorithm, there is always a node *n* on OPEN with the following properties:

- *n* is on an optimal path to the goal
- A^* has found an optimal path to n
- $f(n) \leq f^*$, where f^* is the optimal cost to the goal

Proof. We prove this by induction, making use of the admissibility of h(n):

- Base case: at the beginning, S is on the optimal path and is on OPEN and A* has found this path. Also, because *h*(*n*) is admissible, *h*(*S*) ≤ *c**(*S*,*G*), so *f*(*S*) ≤ *f**.
- Inductive step:
 - if *n* is not expanded, the conditions still hold
 - if *n* is expanded, then
 - * all its successors will be placed on OPEN and (at least) one will be on the optimal path

- * we have found the optimal path to this node, because otherwise, there would be a better path to the goal, contradicting the assumption that the optimal path goes through *n*
- * $f(n) \leq f^*$ because:
 - $\cdot f(n) = g(n) + h(n)$
 - · because of our optimality assumption, $g(n) = g^*(n)$
 - because of admissibility, $h(n) \leq c^*(n, G)$
 - so, $f(n) \le g^*(n) + c^*(n, G) = f^*(n) = f^*$

Continuing: since it explores the graph in a breadth-first manner, and since each arc cost > ϵ , A* must terminate (because all nodes on OPEN must eventually exceed f^*). A* terminates on an optimal path, because:

- if we reached a suboptimal goal g', then f(g') < f(n)
- but from the lemma, $f(n) \leq f^*$
- if g' is a suboptimal goal, $f(g') > f^*$
- immediately, we have a contradiction: $f(g') < f^*$ and $f(g') > f^*$

So, A* is optimal.

More About Heuristics

- Example heuristics: 8-puzzle example
 - Number of tiles out of place
 - Number of swaps needed
 - Manhattan distance
- Generating heuristics from *relaxed versions* of the problem. E.g. in the 8-puzzle, where the "real" problem states that a tile can move from A to B iff $Adjacent(A, B) \cap Blank(B)$, might relax as follows:
 - Can always move from A to B (i.e. number of tiles out of place heuristic)
 - Can move from A to B iff Adjacent(A, B) (i.e. manhattan distance)
 - Can move from A to B iff Blank(B) (i.e. number of swaps)
- For two admissible heuristics h_1 and h_2 , h_2 **dominates** h_1 if $h_2(n) \ge h_1(n)$ for all nodes n. A* with h_1 will expand *at least as many* nodes as h_2

- Consider this: you could have a heuristic that calculated the right answer by doing a search! But, even if the number of nodes in the "real" search decreases, the computation time doesn't. It is important to maintain a balance between the accuracy of a heuristic and its computational cost.
- Other ideas for creating heuristic functions:
 - Statistical heuristics: collect statistics and use them; gives up admissiblity but is still likely to succeed
 - Learn weightings for hand-picked features
 - For a group of admissible heuristics where no one dominates any other, take the maximum!

Memory Bounded A* Searches

IDA*: Iterative Deepening A*

Like iterative deepening, except use $f(\cdot)$ as cutoff. Use slide.

SMA*: Simplified Memory-bounded A*

Use slide.

- Uses as much memory as available
- Avoids repeated states as far as memory allows
- Complete and optimal if memory is sufficient to store the shallowest solution path
- Optimally efficient if memory is sufficient to store the entire tree