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1 Properties of probabilities
Let, A, B, C be events. Then the following properties hold:

• A ⊆ B ⇒ P (A) ≤ P (B)

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B), so P (A ∪ B) ≤ P (A) + P (B)

Definition 1.1. Conditional probability:

P (A|B) =
P (A ∩ B)

P (B)
(1)

Definition 1.2. The Law of Total Probability: if A1, . . . , An are disjoint events that partition
the sample space, then

P (B) = P (A1 ∩ B) + . . . + P (An ∩ B) (2)

Definition 1.3. Bayes’ Rule: By the def of conditional probability,

P (A ∩ B) = P (A|B) P (B) = P (B|A) P (A) (3)

so
P (A|B) =

P (B|A) P (A)

P (B)
(4)

and by the Law of Total Probability

P (A|B) =
P (B|A) P (A)

P (A) P (B|A) + P (A) P (B|¬A)
(5)

Definition 1.4. Independence: A and B are independent iff P (A ∩ B) = P (A) P (B) or equiv-
alently P (A|B) = P (A).

Definition 1.5. Conditional independence: A and B are independent when conditioned on C
iff P (A ∩ B|C) = P (A|C) P (B|C). Note that independence and conditional independence
do not imply each other.

∗The primary sources for most of this material are: “Introduction to Probability,” D.P. Bertsekas and J.N. Tsit-
siklis, Athena Scientific, Belmont, MA, 2002; and “Randomized Algorithms,” R. Motwani and P. Raghavan, Cam-
bridge University Press, Cambridge, UK, 1995; and the author’s own notes.
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2 Random variables
Let X and Y be random variables.

Definition 2.1. A probability density function (PDF) is a function fX (x) such that:

• For every B ⊆ R, P (X ∈ B) =
∫

B fX (x) dx

• For all x, fX (x) ≥ 0

•
∫ ∞

−∞ fX (x) dx = 1

• Note that fX (x) 6= the probability of an event; in particular, fX (x) may be greater
than one.

Definition 2.2. A cumulative density function (CDF) is defined as:

FX (x) = P (X ≤ x) =

∫ x

−∞

fX (t) dt (6)

So a CDF is defined in terms of a PDF, and given a CDF, the PDF can be obtained by
differentiating, i.e.: fX (x) = dFX (x) /dx.

Definition 2.3. The expectation (expected value or mean) of X is defined as:

E [X] =

∫ ∞

−∞

x fX (x) dx (7)

Some properties of the expectation:

• E [∑i Xi] = ∑i E [Xi] regardless of independence

• For α ∈ R, E [αX] = αE [X]

• E [XY] = E [X] E [Y] iff X and Y are independent

• Linearity of expectation: given Y = aX + b, a linear function of the random variable
X, E [Y] = aE [X] + b, which we show for the discrete case:

E [Y] = ∑
x

(ax + b) fX (x) (8)

= a ∑
x

x fX (x) + b ∑
x

fX (x) (9)

= aE [X] + b (10)

• Law of iterated expectations or law of total expectation: if X and Y are random vari-
ables in the same space, then E [E [X|Y]] = E [X], shown as follows:

E [E [X|Y]] = E

[

∑
x

xP (X = y|Y = y)

]

(11)

= ∑
y

(

∑
x

xP (X = x|Y = y)

)

P (Y = y) (12)

= ∑
y

∑
x

xP (Y = y|X = x) P (X = x) (13)

= ∑
x

xP (X = x) · ∑
y

P (Y = y|X = x) (14)

= ∑
x

xP (X = x) (15)

= E [X] (16)
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Note that E [X|Y] is itself a random variable whose value depends on Y, i.e. E [X|Y]
is a function of y.

Definition 2.4. The variance of X is defined as:

var (X) = E
[

(X − E [X])2
]

(17)

This can be rewritten into the often useful form var (X) = E
[

X2]− (E [X])2, which we will
illustrate for the discrete case:

var (X) = E
[

(X − E [X])2
]

(18)

= ∑
x

(x − E [X])2 fX (x) (19)

= ∑
x

(

x2 − 2xE [X] + (E [X])2
)

fX (x) (20)

= ∑
x

x2 fX (x) − 2E [X] ∑
x

x fX (x) + (E [X])2 ∑
x

fX (x) (21)

= E
[

X2
]

− 2(E [X])2 + (E [X])2 (22)

= E
[

X2
]

− (E [X])2 (23)

The law of total variance asserts that var (X) = E [var (X|Y)] + var (E [X|Y]), which we can
show using the law of iterated expectation:

var (X) = E
[

X2
]

− (E [X])2 (24)

= E
[

E
[

X2|Y
]]

− E
[

(E [X|Y])2
]

(25)

= E [var (X|Y)] + E
[

(E [X|Y])2
]

− E [E [X|Y]]2 (26)

= E [var (X|Y)] + var (E [X|Y]) (27)

Definition 2.5. The covariance of X and Y is defined as:

cov (X, Y) = E [(X − E [X])(Y − E [Y])] (28)

which can be rewritten:

cov (X, Y) = E [(X − E [X])(Y − E [Y])] (29)
= E [XY − E [X] Y − E [Y] X + E [X] E [Y]] (30)
= E [XY] − E [E [X] Y] − E [E [Y] X] + E [X] E [Y] (31)
= E [XY] − E [X] E [Y] (32)

Note that if X and Y are independent, E [XY] = E [X] E [Y] so cov (X, Y) = 0.

Definition 2.6. The correlation coefficent of X and Y is obtained from the covariance:

ρ(X, Y) =
cov (X, Y)

√

var (X) var (Y)
(33)

The correlation coefficient can be thought of as a “normalized” measure of the covariance
of X and Y. If ρ(X, Y) = 1 X and Y are fully positively correlated; if ρ(X, Y) = −1 they are
fully negatively correlated.
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2.1 The variance of sums of random variables
Let X̃i = Xi − E [Xi]. Then

var

(

n

∑
i=1

X̃i

)

= E





(

n

∑
i=1

X̃i

)2


 (34)

= E

[

n

∑
i=1

n

∑
j=1

X̃iX̃j

]

(35)

=
n

∑
i=1

n

∑
j=1

E
[

X̃iX̃j
]

(36)

=
n

∑
i=1

E
[

X̃2
i

]

+ 2
n−1

∑
i=1

n

∑
j=i+1

E
[

X̃iX̃j
]

(37)

=
n

∑
i=1

var (Xi) + 2
n−1

∑
i=1

n

∑
j=i+1

cov
(

Xi, Xj
)

(38)

2.2 Joint probability density functions
Given two random variables X and Y, their joint PDF is defined as:

fX,Y (x, y) = P (X = x, Y = y) (39)

We also define the marginal PDFs fX (x) and fY(y) and the conditional PDFs fX|Y (x|y) and
fY|X(y|x). We can obtain fX (() x) by marginalizing the joint PDF:

fX (x) =

∫ ∞

−∞

fX,Y (x, y) dy (40)

The definition of conditional probability can be applied to obtain:

fX|Y (x, y) =
fX,Y (x, y)

fY(y)
(41)

Combining these, a different expression for the marginal PDF is:

fX (x) =

∫ ∞

−∞

fY(y) fX|Y (x|y) dy (42)

2.3 Convolutions
Definition 2.7. Suppose X and Y are independent random variables with PDFs fX, fY,
respectively. The PDF fW representing the distribution of W = X + Y is known as the
convolution of fX and fY. To derive the distribution fW we start with the CDF:

P (W ≤ w|X = x) = P (X + Y ≤ w|X = x) (43)
= P (x + Y ≤ w|X = x) (44)

independence
= P (x + Y ≤ w) (45)
= P (Y ≤ w − x) (46)
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This is a CDF of Y. Next we differentiate both sides with respect to w to obtain the PDF:

fW|X(w|x) = fY(w − x) (47)
fX(x) fW|X(w|x) = fX(x) fY(w − x) (48)

fX,W(x, w)
conditional prob.

= fX(x) fY(w − x) (49)

fW(w)
marginalization

=

∫ ∞

−∞

fX(x) fY(w − x) dx (50)

3 Least squares estimation
Suppose we are given the value of a random variable Y that is somehow related to the
value of an unknown variable X. In other words, Y is some form of “measurement” of X.
How can we compute an estimate c of the value of X given Y that minimizes the squared
error (X − c)2?

First, consider an arbitrary c. Then the mean squared error is:

E
[

(X − c)2
]

= var (X − c) + (E [X − c])2 = var (X) + (E [X] − c)2 (51)

by Equation 23. If we are given no measurements, we should pick the value of c that
minimizes this equation. Since var (X) is independent of c, we choose c = E [X] which
eliminates the second term.

Now suppose we are given a measurement Y = y. Then to minimize the conditional
mean squared error, we should choose c = E [X|Y = y]. This value is the least squares
estimate of X given Y. (The proof is omitted.) Note that we have said nothing yet about the
relationship between X and Y. In general, the estimate E [X|Y = y] is a function of y, which
we refer to as an estimator.

3.1 Estimation error
Let X̂ = E [X|Y] be the least squares estimate of X, and X̃ = X − X̂ be the estimation error.
The estimation error exhibits the following properties:

• X̃ is zero mean:

E
[

X̃|Y
]

= E
[

X − X̂|Y
]

= E [X|Y] − E
[

X̂|Y
]

= X̂ − X̂ = 0 (52)

(Note that E
[

X̂|Y
]

= X̂ since X̂ is completely determined by Y.)

• X̃ and the estimate X̂ are uncorrelated; using E
[

X̃|Y
]

= 0:

cov
(

X̂, X̃
)

= E
[

(X̂ − E
[

X̂
]

)(X̃ − E
[

X̃
]

)
]

(53)
iter. exp.
= E

[

(X̂ − E [X|Y])X̃
]

(54)

= E
[

(X̂ − E [X])X̃|Y
]

(55)

= (X̂ − E [X])E
[

X̃|Y
]

(56)
= 0 (57)

• Because X = X̃ + X̂, the var (X) can be decomposed based on Equation 38:

var (X) = var
(

X̂
)

+ var
(

X̃
)

+ 2cov
(

X̂, X̃
)

= var
(

X̂
)

+ var
(

X̃
)

(58)
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3.2 Linear least squares
Suppose we have the linear estimator X = aY + b. In other words, the random variable X is
a linear function of the random variable Y. Our goal is to find values for the coefficients a
and b that minimize the mean squared estimation error E

[

(X − aY − b)2].
First, suppose a is fixed. Then by Equation 51 we choose:

b = E [X − aY] = E [X] − aE [Y] (59)

Substituting this into our objective and manipulating, we obtain:

E
[

(X − aY − E [X] + aE [Y])2
]

= var (X − aY) (60)

= var (X) + a2var (Y) + 2cov (X,−aY) (61)
= var (X) + a2var (Y) − 2acov (X, Y) (62)

Our goal is to minimize this quantity with respect to a. Since it is quadratic in a, it is
minimized when its derivative with respect to a is zero, i.e.:

0 = 2avar (Y) − 2cov (X, Y) (63)
cov (X, Y)

var (Y)
= a (64)

ρ
var (X)

var (Y)
= a (65)

The mean squared error of our estimate is then:

var (X) + a2var (Y) − 2acov (X, Y) (66)

= var (X) + ρ
2 var (X)

var (Y)
var (Y) − 2ρ

√

var (X)
√

var (Y)
ρ
√

var (X) var (Y) (67)

=
(

1 − ρ
2
)

var (X) (68)

The basic idea behind the linear least squares estimator is to start with the baseline
estimate E [X] for X, and then adjust the estimate by taking into account the value of Y −
E [Y] and the correlation between X and Y.

4 Normal random variables
The univariate Normal distribution with mean µ and variance σ2, denoted N(µ, σ), is de-
fined as:

N(µ, σ) =
1√
2πσ

e−(x−µ)2/2σ2
(69)

The Standard Normal distribution is the particular case where µ = 0 and σ = 1, i.e.:

N(0, 1) =
1√
2π

e−x2/2 (70)

The cumulative density function of the Standard Normal (The Standard Normal CDF),
denoted Φ, is thus:

Φ(y) = P (Y ≤ y) =
1√
2π

∫ y

−∞

e−t2/2 dt (71)
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Note that since N(0, 1) is symmetric, Φ(−y) = 1 − Φ(y):

Φ(−y) = P (Y ≤ −y) = P (Y ≥ y) = 1 − P (Y < y) = 1 − Φ(y) (72)

Finally, the CDF of any random variable X ∼ N(µ, σ) can be expressed in terms of the
Standard Normal CDF. First, by simple manipulation:

P (X ≤ x) = P
(

X − µ

σ
≤ x − µ

σ

)

(73)

We see that

E
[

X − µ

σ

]

=
E [X] − µ

σ
= 0 (74)

var
(

X − µ

σ

)

=
var (X)

σ2 = 1 (75)

So Y = (X − µ)/σ ∼ N(0, 1) and the CDF is:

P (X ≤ x) = Φ

(

x − µ

σ

)

(76)

5 Limit theorems
We first examine the asymptotic behavior of sequences of random variables. Let X1, X2, . . . , Xn
be independent and identically distributed, each with mean µ and variance σ2, and let
Sn = ∑i Xi. Then

var (Sn) = ∑
i

var (Xi) = nσ
2 (77)

So as n increases, the variance of Sn does not converge. Instead, consider the sample mean
Mn = Sn/n. Mn converges as follows:

E [Mn] =
1
n ∑

i
E [Xi] = µ (78)

var (Mn) = ∑
i

var (Xi) n =
1
n2 ∑

i
var (Xi) =

σ2

n
(79)

So limn→∞ var (Mn) = 0, i.e. as the number of samples n increases, the sample mean tends
to the true mean.

5.1 Central limit theorem
Suppose Xi are defined as above. Let

Zn =
∑i Xi − nµ

σ
√

n
(80)

The Central limit theorem, which we will not prove, states that as n increases, the CDF of
Zn tends to Φ(z) (the Standard Normal CDF). In other words, the sum of a large number of
random variables is approximately normally distributed.
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5.2 Markov inequality
For a random variable X > 0, define random variable Y as follows:

Y =

{

0 if X < a
1 otherwise (81)

Clearly Y ≤ X so E [Y] ≤ E [X]. Furthermore, by the definition of expectation, E [Y] =
0 · P (X < a) + aP (X ≥ a) so

aP (X ≥ a) ≤ E [X] (82)

P (X ≥ a) ≤ E [X]

a
(83)

Equation 83 is known as the Markov inequality, which essentially asserts that if a nonnega-
tive random variable has a small mean, the probability that variable takes a large value is
also small.

5.3 Chebyshev inequality

Let X be a random variable with mean µ and variance σ2. By the Markov inequality,

P
(

(X − µ)2 ≥ c2
)

≤ E
[

(X − µ)2]

c2 =
σ2

c2 (84)

Since P
(

(X − µ)2 ≥ c2) = P (|X − µ| ≥ c),

P (|X − µ| ≥ c) ≤ σ2

c2 (85)

Equation 85 is known as the Chebyshev inequality. The Chebyshev inequality is often rewrit-
ten as:

P (|X − µ| ≥ kσ) ≤ 1
k2 (86)

In other words, the probability that a random variable takes a value more than k standard
deviations from its mean is at most 1/k2.

5.4 Weak law of large numbers
Applying the Chebyshev inequality to the sample mean Mn, and using Equations 78 and
79, we obtain:

P (|Mn − µ| ≥ ε) ≤ σ2

nε2 (87)

In other words, for large n, the bulk of the distribution of Mn is concentrated near µ. A
common application is to fix ε and compute the number of samples needed to guarantee
that the sample mean is an accurate estimate.

5.5 Jensen’s inequality

Let f (x) be a convex function, i.e. d2 f /dx2
> 0 for all x. First, note that if f (x) is convex,

then the first order Taylor approximation of f (x) is an underestimate:

f (x)
Fund. Thm. of Calculus

= f (a) +

∫ x

a
f ′(t) dt (88)
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Taylor approx.

≥ f (a) +

∫ x

a
f ′(a) dt (89)

= f (a) + (x − a) f ′(a) (90)

Thus if X is a random variable,

f (a) + (X − a) f ′(a) ≤ f (X) (91)

Now, let a = E [X]. Then we have

f (E [X]) + (E [X] − E [X]) f ′(E [X]) ≤ E [ f (X)] (92)
f (E [X]) ≤ E [ f (X)] (93)

Equation 93 is known as Jensen’s inequality.

5.6 Chernoff bound
Finally we turn to the Chernoff bound, a powerful technique for bounding the probability
that a random variable deviates far from its expectation. First, observe that the Chebyshev
inequality provides a polynomial bound on the probability that X takes a value in the “tails”
of its density function.

The “Chernoff-type” bounds, on the other hand, are exponential. We define such a
bound as follows. Let X1, X2, . . . , Xn be independent identically distributed random vari-
ables. Assume that

E [X1] = E [X2] = . . . = E [Xn ] = µ < ∞

and that
var (X1) = var (X2) = . . . var (Xn) = σ

2
< ∞

Further, let X = ∑
n
i=1 Xi, so that E [X] = nµ and var (X) = nσ2. The Chernoff bound states

that, for t > 0 and 0 ≤ Xi ≤ 1, ∀i such that 1 ≤ i ≤ n,

P (|X − nµX | ≥ nt) ≤ 2e−2nt2
(94)

Note that this bound is significantly better than that of the Chebyshev inequality. Cheby-
shev decreases in a manner inversely proportional to n, whereas the Chernoff bound de-
creases exponentially with n.

We now proove the bound stated in equation 94. In particular, we will proove the
bound for the case

P (X − nµ ≥ nt) ≤ e−2nt2

The proof for the second case,

P (X − nµ ≤ −nt) ≤ e−2nt2

is very similar. The complete bound is merely the sum of these two probabilities.
Proof: We first define the function

f (x) =

{

1 if X − nµ ≥ nt
0 if X − nµ < nt

Note that
E [ f (x)] = P (X − nµ ≥ nt) (95)

which is exactly the probability we are interested in computing.
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Lemma 5.1. For all positive reals h,

f (x) ≤ eh(X−nµ−nt)

Proof: If X − nµ − nt ≥ 0, then f (x) = 1 and eh(X−nµ−nt) ≥ 1. Note that this condition
holds only for all positive reals.

So, we now have that
E [ f (x)] ≤ E

[

eh(X−nµ−nt)
]

(96)

We will concentrate on bounding the above expectation, and then minimizing it with re-
spect to h. Let us first manipulate the expectation as follows:

E
[

eh(X−nµ−nt)
]

= E
[

eh[(X1+X2+...+Xn)−nµ−nt]
]

= E
[

e−hnt · eh(X1−µ)+h(X2−µ)+...+(Xn−µ)
]

= e−hntE

[

n

∏
i=1

eh(Xi−µ)

]

So,

E
[

eh(X−nµ−nt)
]

independence
= e−hnt

n

∏
i=1

E
[

eh(Xi−µ)
]

(97)

Lemma 5.2. Let Y be a random variable such that 0 ≤ Y ≤ 1. Then, for any real number h ≥ 0,

E
[

ehY
]

≤ (1 − E [Y]) + E [Y] eh

Proof: This follows directly from the definition of convexity.

So, using equation 97 and lemma 5.2, we have that

e−hnt
n

∏
i=1

E
[

eh(Xi−µ)
]

≤ e−hnt
n

∏
i=1

E
[

e−hµ
(

(1 − µ) + µeh
)]

Lemma 5.3.
e−hµ

(

(1 − µ) + µeh
)

≤ eh2/8 (98)

Proof: First,
e−hµ

(

(1 − µ) + µeh
)

= e−hµ+ln((1−µ)+µeh)

Let
L(h) = −hµ + ln

(

(1 − µ) + µeh
)

Taking the Taylor series expansion,

L′(h) = −µ +
µeh

(1 − µ) + µeh = −µ +
µ

(1 − µ)e−h + µ

L′′(h) =
u(1 − µ)e−h

(

(1 − µ)e−h + µ
)2 ≤ 1

4
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So, we see that the Taylor series is

L(h) = L(0) + L′(0)h + L′′(0)
h2

2!
+ . . .

≤ h2

8

Combining equations 95,96,97 and 98, we have that

E [ f (x)] = P (X − nµ ≥ nt)

≤ e−hnt
n

∏
i=1

eh2/8

= e−hntenh2/8

= e−hnt+nh2/8

So,
E [ f (x)] ≤ e−hnt+nh2/8 (99)

Now we minimize this equation over all positive reals h. Taking the derivative of
(−hnt + nh2/8), we find that (e−hnt+nh2/8) is minimized when h = 4t. Subsituting this
into 99, we see that

P (X − nµ ≥ nt) ≤ e−2nt2
(100)

which is our objective.

5.6.1 Extension of the Chernoff Bound

One of the conditions for the Chernoff bound we have just proven to hold is that 0 ≤
Xi ≤ 1. We can generalize the bound to address this constraint. If X1, X2, . . . , Xn are
independent, identically distributed random variables such that E [Xi] = µ < ∞, ∀i and
var (Xi) = σ2

< ∞, ∀i, and ai ≤ Xi ≤ bi for some constants ai and bi for all i, then for all
t > 0

P (|X − nµ| ≥ nt) ≤ 2e
−2n2t2

∑n
i=1(ai−bi)2 (101)

We will not prove this bound here.
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