Inferring and Enforcing Relative Constraints in SLAM

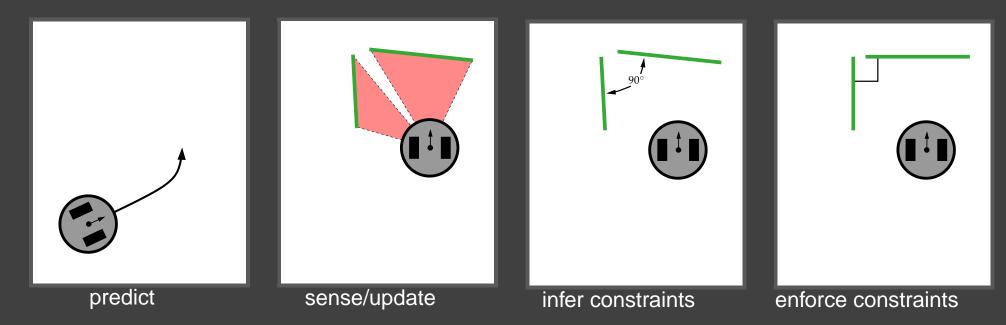
Kris Beevers and Wes Huang

Department of Computer Science Rensselaer Polytechnic Institute {beevek, whuang}@cs.rpi.edu

July 16, 2006

Overview

- Goal: exploit prior knowledge of environment to improve SLAM
- Example: many indoor environments are "mostly" rectilinear
 - Linear equality constraints on (r, θ) lines, e.g.: $heta_1 = heta_2 + frac{\pi}{2}$



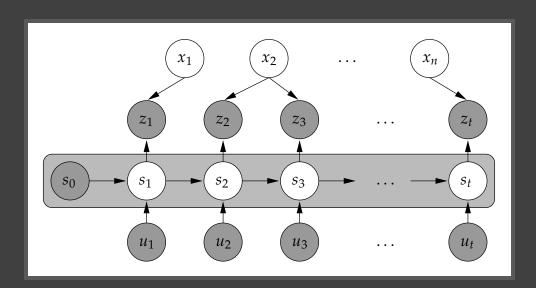
- Inference: when to apply a relative constraint to the map
- Enforcement: how to apply constraints in (RBPF) SLAM

Previous work

- Constraint inference:
 - Loop closing (Newman, 1999)
 - Gating approaches (Rodriguez-Losada et al., 2006)
- Enforcing constraints on the map in EKF-SLAM:
 - Treat constraints as zero-uncertainty measurements (Durrant-Whyte, 1988; Wen and Durrant-Whyte, 1992)
 - Project unconstrained estimate onto constraint surface (Simon and Chia, 2002; Simon and Simon, 2003)
- Relative maps: apply constraints on relationships to ensure consistency (Csorba and Durrant-Whyte, 1997; Newman, 1999; Deans and Hebert, 2000)

Rao-Blackwellized particle filtering SLAM

• Estimate map $M = \{x_1, \dots, x_n\}$ and robot trajectory s^t from measurements z^t , control inputs u^t , and correspondences n^t

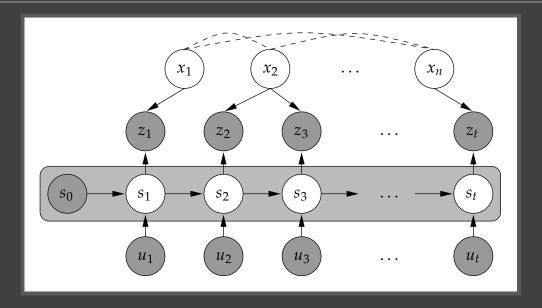


- Landmarks independent conditioned on trajectory
- Robot's trajectory s^t "d-separates" the landmark variables $\{x_i\}$

$$\underbrace{p(s^t, M|z^t, u^t, n^t)}_{\text{posterior}} = \underbrace{p(s^t|n^t, z^t, u^t)}_{\text{posterior over trajectories}} \prod_{i=1}^n \underbrace{p(x_i|s^t, n^t, z^t)}_{\text{posterior over landmark } i}$$

• Estimate $p(s^t)$ by N samples, $p(x_i|s^t)$ by n small EKFs: O(Nn)

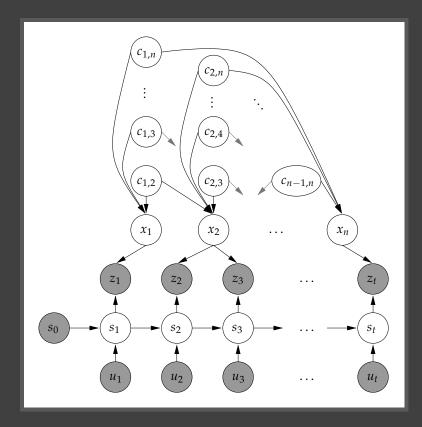
Structured environments



- RBPF SLAM assumption: environment is unstructured
 - Landmarks are randomly and independently distributed
- But: many environments exhibit structure (e.g., indoors)
 - Architects do not (usually) throw darts
- Correlation between landmarks arises because of structure
 - This breaks the RBPF factorization!

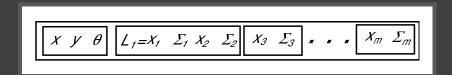
Extending the model

- Approach: model the correlations
- **Model**: relationship between x_i and x_j is parameterized by $c_{i,j}$
- Assume environment structure takes on one of a few forms
 - Space of (structured) landmark relationships is small and discrete
 - Rectilinearity: $c_{i,j} \in \{0, 90, 180, 270, \star\}$
- Do inference in parameter space
- Treat the relationships as constraints to be enforced

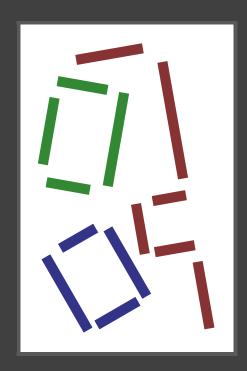


Superlandmark filter

- Given $\{c_{i,j}\}$, how to enforce relative constraints on the map?
- Idea: group sets of constrained landmarks into "superlandmarks"



- Estimate each superlandmark in a particle's map with an EKF
- Superlandmarks are independent conditioned on s^t



- Apply EKF-based constraint enforcement techniques to each superlandmark (Durrant-Whyte, 1988; Simon and Chia, 2002)
- Not a good idea by itself! $O(Nn^3)$

Reduced state formulation

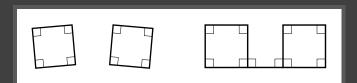
- A simple improvement for linear equality constraints:
 - **–** Instead of: $L_i = \{r_1, \theta_1, r_2, \theta_2, ...\}$
 - Use: $L_i = \{\theta_1, r_1, r_2, \ldots\}$ since $\theta_i = g_i(c_{1,i}; \theta_1)$
- ullet Superlandmark filtering over this is still $O(Nn^3)$
- Instead: apply Rao-Blackwellization to the reduced state

Rao-Blackwellized constraint filter

- Divide map into constrained and unconstrained variables: $M = \{M^c, M^u\}$
 - Rectilinearity: for a superlandmark $L_i=\{\theta,r_1,r_2,\ldots\}$: $M^c=\{\theta\}$ and $M^u=\{r_1,r_2,\ldots\}$
- Sample the trajectory and the constrained variables, estimate unconstrained variables with EKFs

$$\underbrace{p(s^t, M|z^t, u^t, n^t)}_{\text{posterior}} = \underbrace{p(s^t, M^c|n^t, z^t, u^t)}_{\text{trajectories/constrained}} \prod_{i} \underbrace{p(x_i^u|s^t, M^c, n^t, z^t)}_{\text{unconstrained vars. of LM } i$$

- Computational complexity is now O(Nn) (same as normal RBPF)
- Tricky details:
 - How to sample constrained variables?
 - Adding new constraints between previously-constrained landmarks

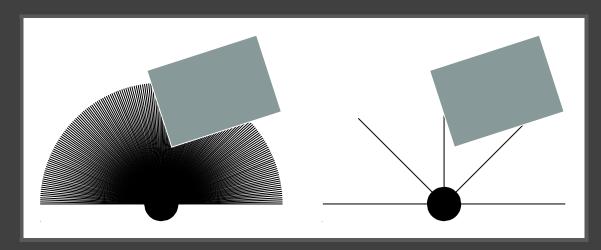


Inference of constraints

- Should landmarks x_i, x_j be constrained with respect to each other?
- ullet An inference problem on constraint parameters $c_{i,j}$
- Gating (Rodriguez-Losada et al., 2006):
 - Constrain if $|\theta_i \theta_j| \approx \{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$
 - Ignores confidence in landmark estimates
- Our approach:
 - Compute PMF over constraint parameter space (e.g., $\{0,90,180,270,\star\}$) at landmark initialization time
 - Sample from the PMF for each RBPF particle
 - Particles with incorrectly constrained landmarks will eventually be resampled

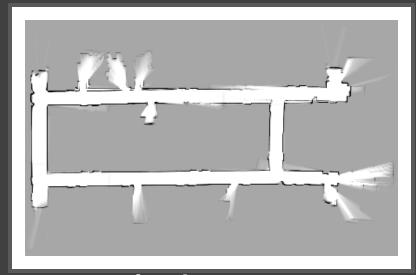
Results

 Implementation of rectilinearity constraints on top of sparse-sensing SLAM (Beevers and Huang, 2006)

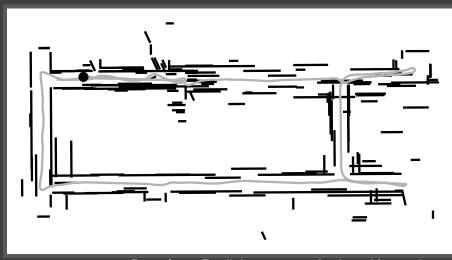


- Lack of data requires delayed landmark initialization
- High uncertainty, many particles
- Incorporating rectilinearity constraints when applicable:
 - Improves filter consistency
 - Allows mapping with many fewer particles

Real-world results: USC SAL



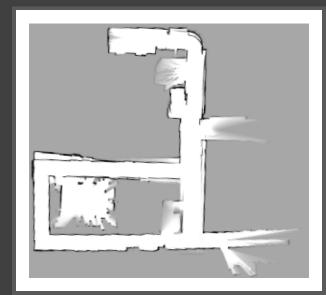
unconstrained 100 particles 32.02 sec



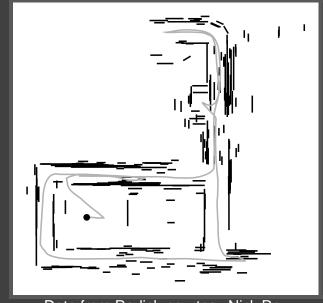
Data from Radish courtesy Andrew Howard

constrained 20 particles 11.24 sec

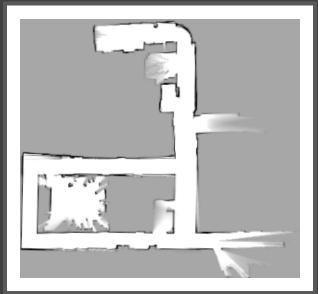
Real-world results: CMU NSH



unconstrained 600 particles 268.44 sec



Data from Radish courtesy Nick Roy

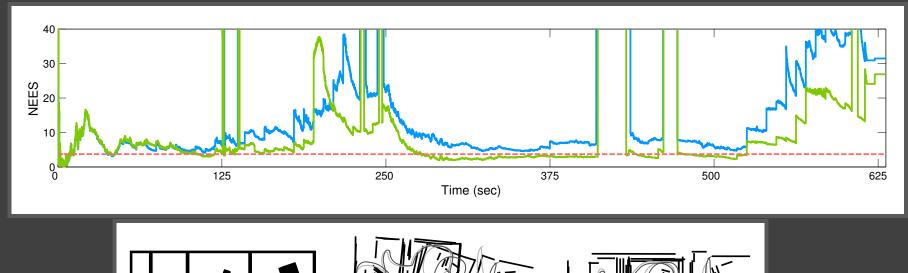


constrained 40 particles 34.77 sec

Discussion

- Caveat: conditioning on constrained variable values is sensitive to covariance estimation inaccuracies
 - Inaccurate covariance results in landmark drift
 - Probably not an issue with more data (e.g., laser rangefinder)
- More variables being estimated by particles but we need fewer particles?
 - Constraints reduce the DOF of the map
 - Reduced state: only one sampled variable per superlandmark

Simulation results: consistency



- Inconsistency: filter significantly underestimates its own error
- Bailey et al. (2006): normalized estimation error squared (NEES) as a measure of RBPF SLAM consistency: $(s_t \hat{s}_t)\hat{\Sigma}_{s_t}^{-1}(s_t \hat{s}_t)^T$
- 200 particles, 50 Monte Carlo trials

Summary

- RBPF SLAM algorithm that models structural relationships of landmarks as parameterized linear equality constraints
 - Perform inference in the space of constraints
 - Mechanism for enforcing constraints in RBPF

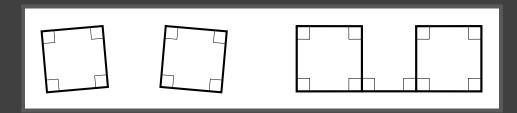
• Results:

- Improved filter consistency
- Successful mapping (real and simulated) with many fewer particles than unconstrained SLAM
- Future work:
 - Eliminating landmark drift due to poor covariance estimation
 - Different types of constraints (e.g., inequality see paper)

Thank you!

Some details

- Sampling constrained variables ("particlization"):
 - Combine unconstrained estimates from all landmarks in the superlandmark
 - Example: $\hat{ heta}_1=-1^\circ$, $\hat{ heta}_2=90^\circ$ with constraint $heta_2= heta_1+90^\circ$
 - Compute maximum likelihood mean $\hat{\theta}$ and variance $\hat{\sigma}_{\theta}$
 - Sample from $\mathcal{N}(\hat{\theta}, \hat{\sigma}_{\theta})$
- Adding constraints between superlandmarks ("reconditioning"):



- Keep measurements since particlization in an "accumulator"
- "Rewind" to time of particlization, condition on new values of constrained variables, apply accumulated measurements

References

- T. Bailey, J. Nieto, and E. Nebot. Consistency of the FastSLAM algorithm. In *IEEE Intl. Conf. on Robotics and Automation*, pages 424–427, 2006.
- Kristopher R. Beevers and Wesley H. Huang. SLAM with sparse sensing. In *IEEE Intl. Conf. on Robotics and Automation*, pages 2285–2290, 2006.
- M. Csorba and H.F. Durrant-Whyte. New approach to map building using relative position estimates. *SPIE Navigation and Control Technologies for Unmanned Systems II*, 3087(1):115–125, 1997.
- M.C. Deans and M. Hebert. Invariant filtering for simultaneous localization and mapping. In *IEEE Intl. Conf. on Robotics and Automation*, pages 1042–1047, 2000.
- H.F. Durrant-Whyte. Uncertain geometry in robotics. *IEEE Journal of Robotics and Automation*, 4(1):23–31, 1988.
- P.M. Newman. On the structure and solution of the simultaneous localization and mapping problem. PhD thesis, University of Sydney, Australia, 1999.

- D. Rodriguez-Losada, F. Matia, A. Jimenez, and R. Galan. Consistency improvement for SLAM EKF for indoor environments. In *IEEE Intl. Conf. on Robotics and Automation*, pages 418–423, 2006.
- D. Simon and T.L. Chia. Kalman filtering with state equality constraints. *IEEE Transactions on Aerospace and Electronic Systems*, 39:128–136, 2002.
- D. Simon and D.L. Simon. Aircraft turbofan engine health estimation using constrained Kalman filtering. In *ASME Turbo Expo*, 2003.
- W. Wen and H.F. Durrant-Whyte. Model-based multi-sensor data fusion. In *IEEE Intl. Conf. on Robotics and Automation*, pages 1720–1726, 1992.