
Inferring and Enforcing
Relative Constraints in SLAM

Kris Beevers and Wes Huang

Department of Computer Science
Rensselaer Polytechnic Institute

{beevek,whuang }@cs.rpi.edu

July 16, 2006



Overview
• Goal: exploit prior knowledge of environment to improve SLAM

• Example: many indoor environments are “mostly” rectilinear

– Linear equality constraints on (r, θ) lines, e.g.: θ1 = θ2 + π
2

predict sense/update

90◦

infer constraints enforce constraints

• Inference : when to apply a relative constraint to the map

• Enforcement : how to apply constraints in (RBPF) SLAM
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Previous work

• Constraint inference:

– Loop closing (Newman, 1999)
– Gating approaches (Rodriguez-Losada et al., 2006)

• Enforcing constraints on the map in EKF-SLAM:

– Treat constraints as zero-uncertainty measurements
(Durrant-Whyte, 1988; Wen and Durrant-Whyte, 1992)

– Project unconstrained estimate onto constraint surface (Simon
and Chia, 2002; Simon and Simon, 2003)

• Relative maps: apply constraints on relationships to ensure
consistency (Csorba and Durrant-Whyte, 1997; Newman, 1999;
Deans and Hebert, 2000)
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Rao-Blackwellized particle filtering SLAM

• Estimate map M = {x1, . . . , xn} and robot trajectory st from
measurements zt, control inputs ut, and correspondences nt
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x1 xn • Landmarks independent
conditioned on trajectory

• Robot’s trajectory st

“d-separates” the landmark
variables {xi}

p(st, M|zt, ut, nt)︸ ︷︷ ︸
posterior

= p(st|nt, zt, ut)︸ ︷︷ ︸
posterior over trajectories

n

∏
i=1

p(xi|st, nt, zt)︸ ︷︷ ︸
posterior over landmark i

• Estimate p(st) by N samples, p(xi|st) by n small EKFs: O(Nn)
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Structured environments
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• RBPF SLAM assumption : environment is unstructured

– Landmarks are randomly and independently distributed

• But : many environments exhibit structure (e.g., indoors)

– Architects do not (usually) throw darts

• Correlation between landmarks arises because of structure
– This breaks the RBPF factorization!
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Extending the model

• Approach: model the correlations

• Model : relationship between xi and
xj is parameterized by ci,j

• Assume environment structure takes
on one of a few forms
– Space of (structured) landmark

relationships is small and discrete
– Rectilinearity: ci,j ∈ {0, 90, 180, 270, ?}

• Do inference in parameter space

• Treat the relationships as constraints
to be enforced
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Superlandmark filter

• Given {ci,j}, how to enforce relative constraints on the map?

• Idea: group sets of constrained landmarks into
“superlandmarks”

• Estimate each superlandmark in a particle’s map
with an EKF

• Superlandmarks are independent conditioned on
st

• Apply EKF-based constraint enforcement techniques to each
superlandmark (Durrant-Whyte, 1988; Simon and Chia, 2002)

• Not a good idea by itself! O(Nn3)
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Reduced state formulation

• A simple improvement for linear equality constraints:

– Instead of: Li = {r1, θ1, r2, θ2, . . .}
– Use: Li = {θ1, r1, r2, . . .} since θi = gi(c1,i; θ1)

• Superlandmark filtering over this is still O(Nn3)

• Instead: apply Rao-Blackwellization to the reduced state
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Rao-Blackwellized constraint filter

• Divide map into constrained and unconstrained variables:
M = {Mc, Mu}
– Rectilinearity: for a superlandmark Li = {θ, r1, r2, . . .}:

Mc = {θ} and Mu = {r1, r2, . . .}
• Sample the trajectory and the constrained variables, estimate

unconstrained variables with EKFs

p(st, M|zt, ut, nt)︸ ︷︷ ︸
posterior

= p(st, Mc|nt, zt, ut)︸ ︷︷ ︸
trajectories/constrained

∏
i

p(xu
i |st, Mc, nt, zt)︸ ︷︷ ︸

unconstrained vars. of LM i

• Computational complexity is now O(Nn) (same as normal RBPF)

• Tricky details:

– How to sample constrained variables?
– Adding new constraints between

previously-constrained landmarks
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Inference of constraints

• Should landmarks xi, xj be constrained with respect to each
other?

• An inference problem on constraint parameters ci,j

• Gating (Rodriguez-Losada et al., 2006):

– Constrain if |θi − θj| ≈ {0◦, 90◦, 180◦, 270◦}
– Ignores confidence in landmark estimates

• Our approach:

– Compute PMF over constraint parameter space (e.g.,
{0, 90, 180, 270, ?}) at landmark initialization time

– Sample from the PMF for each RBPF particle
– Particles with incorrectly constrained landmarks will eventually

be resampled
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Results
• Implementation of rectilinearity constraints on top of

sparse-sensing SLAM (Beevers and Huang, 2006)

– Lack of data requires delayed landmark initialization
– High uncertainty, many particles

• Incorporating rectilinearity constraints when applicable:

– Improves filter consistency
– Allows mapping with many fewer particles
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Real-world results: USC SAL

unconstrained
100 particles
32.02 sec

constrained
20 particles

11.24 sec

Data from Radish courtesy Andrew Howard
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Real-world results: CMU NSH

unconstrained
600 particles
268.44 sec

constrained
40 particles

34.77 sec

Data from Radish courtesy Nick Roy
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Discussion

• Caveat: conditioning on constrained variable values is sensitive
to covariance estimation inaccuracies
– Inaccurate covariance results in landmark drift
– Probably not an issue with more data (e.g., laser rangefinder)

• More variables being estimated by particles — but we need
fewer particles?

– Constraints reduce the DOF of the map
– Reduced state: only one sampled variable per superlandmark
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Simulation results: consistency
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• Inconsistency: filter significantly underestimates its own error

• Bailey et al. (2006): normalized estimation error squared (NEES)
as a measure of RBPF SLAM consistency: (st − ŝt)Σ̂−1

st (st − ŝt)T

• 200 particles, 50 Monte Carlo trials
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Summary

• RBPF SLAM algorithm that models structural relationships of
landmarks as parameterized linear equality constraints

– Perform inference in the space of constraints

– Mechanism for enforcing constraints in RBPF

• Results:

– Improved filter consistency

– Successful mapping (real and simulated) with many fewer
particles than unconstrained SLAM

• Future work:
– Eliminating landmark drift due to poor covariance estimation
– Different types of constraints (e.g., inequality — see paper)
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Thank you!



Some details

• Sampling constrained variables (“particlization”):

– Combine unconstrained estimates from all landmarks in the
superlandmark

– Example: θ̂1 = −1◦, θ̂2 = 90◦ with constraint θ2 = θ1 + 90◦

– Compute maximum likelihood mean θ̂ and variance σ̂θ

– Sample from N (θ̂, σ̂θ)

• Adding constraints between superlandmarks (“reconditioning”):

– Keep measurements since particlization in an “accumulator”
– “Rewind” to time of particlization, condition on new values of

constrained variables, apply accumulated measurements
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