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Robot mapping

Basic problem: raw sensing data → useful map of the environment

• Useful to whom?
– Navigation (other robots, people)
– Search and rescue
– Reconnaissance, hazmat detection
– Sensor network localization
– etc...

• What context?
– Environment: structured or unstructured, cluttered, 2D, 3D

– Robot: sensing and computational capabilities, actuation, odometry
uncertainty, etc.
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Sensors for mapping

Contact sensor array Zero-range, low-res, accurate, cheap

RF signal strength
Mid-range, no-res, inaccurate, medium-cost
no bearing information (range only)

Infrared array Short-range, low-res, accurate, cheap

SONAR array Mid-range, low-res, inaccurate, medium-cost
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Sensors for mapping (cont.)

Monocular camera
Long-range, high-res, accurate, medium-cost
no range information (bearing only)

Stereo camera Long-range, high-res, accurate, high-cost

Laser rangefinder Long-range, high-res, accurate, high-cost
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Simultaneous localization and mapping (SLAM)
• Odometry is notoriously noisy!

– Cannot simply build map based on odometry-estimated trajectory
– GPS is often not available (e.g., indoors)

• SLAM: Alternate mapping and localization steps:
1. Use sensor returns to improve pose estimate based on current map
2. Update the map with the sensor returns

p(xt|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior

= η p(zt|xt, nt)︸ ︷︷ ︸
measurement

∫
p(xt|xt−1, ut)︸ ︷︷ ︸

motion

p(xt−1|u1:t−1, z1:t−1, n1:t−1)︸ ︷︷ ︸
prior

dxt−1
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Particle filtering SLAM (sequential Monte Carlo)

1: loop
2: Move/sense/extract features
3: for all particles φi do
4: Project forward: xr,i

t ∼ p(xr
t |x

r,i
t−1, ut)

5: Do data association (compute ni
t), update map

6: Compute weight: ωi
t = ωi

t−1 × p(zt|xr,i
t , xm,i, ni

t)
7: end for
8: Resample (with replacement) according to ωi

ts
9: end loop
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Our research
• Broadly: mapping with limited sensing

• Most mapping research assumes:

– Accurate range/bearing measurements
– “Dense” data suitable for feature extraction
– Usually: scanning laser rangefinders

• What about, e.g., arrays of IR sensors?

– Cheap ($10’s vs. $1000’s)
– Less power, smaller
– But: short-range, sparse data

• Challenges:

– Extracting features from data
– Managing lots of pose/map uncertainty
– Characterizing map quality in terms of sensors
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SLAM with sparse sensing
• 5 readings per scan instead of 180 — not enough to extract features

• Basic idea: feature extraction using data from multiple scans

• Challenges:
– Particle filters need per-particle extraction (conditioned on trajectory)
– Augmenting exteroceptive sensing with odometry: more uncertainty

Raw odometry “Multiscan” landmark SLAM Full laser scan-matching
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Improving estimation consistency
• Most practical SLAM algorithms do not use new information to improve

past pose estimates

• Two approaches for doing this inexpensively in particle filtering:
– Fixed-lag roughening: MCMC of particles over a lag time
– Block proposal distribution: “re-draw” poses over lag time from

their joint distribution
– Both techniques: conditioned on the most recent odometry and

sensor measurements
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Exploiting prior knowledge: constrained SLAM

• We often know something about the environment ahead of time

• Example: indoor environments are “mostly” rectilinear

• Encode prior knowledge as constraints on the map

– Infer existence of constraints between landmarks
– Enforce constraints

• Challenge: breaks independence assumptions of
particle filter

Unconstrained
600 particles

Rectilinearity
40 particles

Unconstrained
100 particles

Rectilinearity
20 particles
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Analytical results on sensing and mapping

• Question: how can we relate “sensing capabilities” to map quality?

• Previous work: for every kind of sensor, either design a specific
algorithm or prove no algorithm exists (localization, O’Kane and
LaValle, 2006):

– Binary characterization (can or can’t localize)
– Compass + contact sensor: can localize
– Angular odometer + contact sensor: can’t localize

• An alternative approach: fix the mapping algorithm and define a broad
sensor model
– Encompasses most types of practical mapping sensors
– Characterize which sensors can build a map
– Give quality bounds on the map for a given sensor
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Model
• Environment: M× M grid of cells mij; cells

occupied (F) at rate d, E otherwise

• Trajectory: xr
t , t ∈ [0, T]; assumption: poses

drawn uniformly at random

• Sensor:

– Ring: ρ beams, angles βi = i2π
ρ + U[−σβ, σβ]

– Firing frequency F
– Beam: goes until detecting an occupied cell
– False negative rate εE, false positive rate εF

• Mapping: occupancy grid; cell measurements
depend on “region” in beam

– mij ∈ CF: bel(mij = F)+=p0
– mij ∈ CE: bel(mij = E)+=p0
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Some (synthetic) examples

True map, d = 0.01

SONAR-like sensor Laser-like sensor

Bearing-only sensor Range-only sensor
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Obtaining a bound on expected map error

Bound expected # observations of a cell

↓

Compute likelihood that an observation is incorrect

↙ ↘

Conditions for map convergence Bound expected error in ML map
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Bound on expected # observations

Let:

EE = ((1− d)(1− εE) + dεF) p(some cell in a beam registers as E)
EF = (d(1− εF) + (1− d)εE) p(some cell in a beam registers as F)

Expected # oab of times any cell mab is updated:

E[oab] ≥
2TFρ(∆β+σβ)

M2 ∑

⌈
r++σr

δ

⌉
τ=0 τ · pobs

where:

pobs ≥
{
E∆βτ2

E if τδ > σr
1 otherwise
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Likelihood of an incorrect observation

Let: pf = min
{

1, ∆βEF
δ2

(
(τδ + σr)2 −max{0, τδ− σr}2

)}
If cell mij is unoccupied (E) the likelihood that any update to mij is
incorrect is:

p(inc|mij = E) ≤ ∑

⌈
r++σr

δ

⌉
τ=0 pobs · pf ·

(τδ+σr)2−max{0,τδ−σr}2

(τδ+σr)2

If cell mij is occupied (F) the likelihood that any update to mij is incorrect
is:

p(inc|mij = F) ≤ ∑

⌈
r++σr

δ

⌉
τ=0 pobs · pf ·

max{0,τδ−σr}2

(τδ+σr)2
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Bound on expected ML map error

The map converges if pinc < 1/2

Let ν = ∑ij νij, where νij = 1 if the ML estimate for cell mij is incorrect,
and νij = 0 otherwise.

If pinc < 1/2:

E[ν] ≤ M2 exp
{
−2E[oab]

(
1
2 − pinc

)2
}

(Chernoff bound)
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Application: comparing real sensors
• We obtained model parameters for three real sensors used in mapping:

– SICK LMS 200-30106 scanning laser rangefinder
– Polaroid 6500 series SONAR ranging module
– Sharp GPD12 infrared rangefinder

• “Laser-normalized” running time
– Extra work (time) required for a sensor to build a map of (expected)

quality equivalent to that build by the scanning laser rangefinder
– Depends only on sensor characteristics and environment density
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Future directions
• Big gap between our approach and real SLAM:

– Realistic trajectories
– Structured environments — MRF model
– Modeling measurement correspondences
– Pose uncertainty
– Beyond simulation — how well does our model

match reality?

• Right now, many mapping problems are “solved” if you throw enough $
at them, but:
– Practical mapping with inexpensive robots: limited sensing,

computing, memory, energy
– Sensing capability is a function of the environment
– What are the requirements for a mapping robot?
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Thanks for coming!


