Mapping with limited sensing

Kris Beevers

Algorithmic Robotics Laboratory Department of Computer Science Rensselaer Polytechnic Institute

October 17, 2006

Robot mapping

Basic problem: raw sensing data \rightarrow useful map of the environment

- Useful to whom?
 - Navigation (other robots, people)
 - Search and rescue
 - Reconnaissance, hazmat detection
 - Sensor network localization
 - etc...

- What context?
 - Environment: structured or unstructured, cluttered, 2D, 3D
 - Robot: **sensing** and computational capabilities, actuation, odometry uncertainty, etc.

Map representation

Occupancy grid

Hybrid

Sensors for mapping

Contact sensor array

RF signal strength

Mid-range, no-res, inaccurate, medium-cost no bearing information (range only)

Zero-range, low-res, accurate, cheap

Infrared array

Short-range, low-res, accurate, cheap

SONAR array

Mid-range, low-res, inaccurate, medium-cost

Sensors for mapping (cont.)

Monocular camera

Long-range, high-res, accurate, medium-cost **no range information (bearing only)**

Stereo camera

Laser rangefinder

Long-range, high-res, accurate, high-cost

Long-range, high-res, accurate, high-cost

Simultaneous localization and mapping (SLAM)

- Odometry is notoriously noisy!
 - Cannot simply build map based on odometry-estimated trajectory
 - GPS is often not available (e.g., indoors)
- **SLAM**: Alternate mapping and localization steps:
 - 1. Use sensor returns to improve pose estimate based on current map
 - 2. Update the map with the sensor returns

$$\underbrace{p(\mathbf{x}_t | \mathbf{u}_{1:t}, \mathbf{z}_{1:t}, \mathbf{n}_{1:t})}_{\text{posterior}} = \eta \underbrace{p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{n}_t)}_{\text{measurement}} \int \underbrace{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)}_{\text{motion}} \underbrace{p(\mathbf{x}_{t-1} | \mathbf{u}_{1:t-1}, \mathbf{z}_{1:t-1}, \mathbf{n}_{1:t-1})}_{\text{prior}} d\mathbf{x}_{t-1}$$

Particle filtering SLAM (sequential Monte Carlo)

1: **loop**

- 2: Move/sense/extract features
- 3: for all particles ϕ^i do
- 4: Project forward: $\mathbf{x}_{t}^{r,i} \sim p(\mathbf{x}_{t}^{r}|\mathbf{x}_{t-1}^{r,i},\mathbf{u}_{t})$
- 5: Do data association (compute \mathbf{n}_t^i), update map
- 6: Compute weight: $\omega_t^i = \omega_{t-1}^i \times p(\mathbf{z}_t | \mathbf{x}_t^{r,i}, \mathbf{x}^{m,i}, \mathbf{n}_t^i)$
- 7: end for
- 8: Resample (with replacement) according to ω_t^i s
- 9: end loop

Our research

- Broadly: mapping with limited sensing
- Most mapping research assumes:
 - Accurate range/bearing measurements
 - "Dense" data suitable for feature extraction
 - Usually: scanning laser rangefinders
- What about, e.g., arrays of IR sensors?
 - Cheap (\$10's vs. \$1000's)
 - Less power, smaller
 - But: short-range, sparse data
- Challenges:
 - Extracting features from data
 - Managing lots of pose/map uncertainty
 - Characterizing map quality in terms of sensors

SLAM with sparse sensing

- 5 readings per scan instead of 180 not enough to extract features
- Basic idea: feature extraction using data from multiple scans
- Challenges:
 - Particle filters need per-particle extraction (conditioned on trajectory)
 - Augmenting exteroceptive sensing with odometry: more uncertainty

Raw odometry

"Multiscan" landmark SLAM

Full laser scan-matching

Improving estimation consistency

- Most practical SLAM algorithms do not use new information to improve past pose estimates
- Two approaches for doing this inexpensively in particle filtering:
 - Fixed-lag roughening: MCMC of particles over a lag time
 - Block proposal distribution: "re-draw" poses over lag time from their joint distribution
 - Both techniques: conditioned on the most recent odometry and sensor measurements

Exploiting prior knowledge: constrained SLAM

- We often know something about the environment **ahead of time**
- Example: indoor environments are "mostly" rectilinear
- Encode prior knowledge as constraints on the map
 - Infer existence of constraints between landmarks
 - Enforce constraints
- Challenge: breaks independence assumptions of particle filter

Unconstrained 600 particles

Rectilinearity 40 particles

Unconstrained 100 particles

Rectilinearity 20 particles

Analytical results on sensing and mapping

- **Question:** how can we relate "sensing capabilities" to map quality?
- Previous work: for every kind of sensor, either design a specific algorithm or prove no algorithm exists (localization, O'Kane and LaValle, 2006):
 - Binary characterization (can or can't localize)
 - Compass + contact sensor: **can** localize
 - Angular odometer + contact sensor: can't localize
- An alternative approach: **fix** the mapping algorithm and define a broad sensor model
 - Encompasses most types of practical mapping sensors
 - Characterize which sensors can build a map
 - Give quality bounds on the map for a given sensor

Model

- Environment: $M \times M$ grid of cells m_{ij} ; cells occupied (F) at rate d, E otherwise
- Trajectory: $\mathbf{x}_{t}^{r}, t \in [0, T]$; assumption: poses drawn uniformly at random
- Sensor:
 - Ring: ρ beams, angles $\beta_i = i\frac{2\pi}{\rho} + U[-\sigma_{\beta}, \sigma_{\beta}]$
 - Firing frequency F
 - Beam: goes until detecting an occupied cell
 - False negative rate $\varepsilon_{\rm E}$, false positive rate $\varepsilon_{\rm F}$
- Mapping: occupancy grid; cell measurements depend on "region" in beam

-
$$m_{ij} \in \mathcal{C}_{\mathrm{F}}$$
: $\mathrm{bel}(m_{ij} = \mathrm{F}) + p_0$

- $m_{ij} \in \mathcal{C}_{\mathrm{E}}$: $\mathrm{bel}(m_{ij} = \mathrm{E}) + p_0$

Some (synthetic) examples

True map, d = 0.01

Range-only sensor

Obtaining a bound on expected map error

Bound on expected # observations

Let:

 $\begin{aligned} \mathcal{E}_{\mathrm{E}} &= ((1-d)(1-\varepsilon_{\mathrm{E}})+d\varepsilon_{\mathrm{F}}) & p(\text{some cell in a beam registers as } \mathrm{E}) \\ \mathcal{E}_{\mathrm{F}} &= (d(1-\varepsilon_{\mathrm{F}})+(1-d)\varepsilon_{\mathrm{E}}) & p(\text{some cell in a beam registers as } \mathrm{F}) \end{aligned}$

Expected # o_{ab} of times any cell m_{ab} is updated:

$$E[o_{ab}] \geq \frac{2TF\rho(\Delta_{\beta} + \sigma_{\beta})}{M^2} \sum_{\tau=0}^{\left\lceil \frac{r^+ + \sigma_r}{\delta} \right\rceil} \tau \cdot p_{\text{obs}}$$

where:

$$p_{\rm obs} \ge \begin{cases} \mathcal{E}_{\rm E}^{\Delta_{\beta} \tau^2} & \text{if } \tau \delta > \sigma_r \\ 1 & \text{otherwise} \end{cases}$$

Likelihood of an incorrect observation

Let:

$$p_{\rm f} = \min\left\{1, \frac{\Delta_{\beta} \mathcal{E}_{\rm F}}{\delta^2} \left((\tau \delta + \sigma_r)^2 - \max\{0, \tau \delta - \sigma_r\}^2\right)\right\}$$

If cell m_{ij} is unoccupied (E) the likelihood that any update to m_{ij} is incorrect is:

$$p(\mathsf{inc}|m_{ij} = \mathbb{E}) \le \sum_{\tau=0}^{\left\lceil \frac{r^+ + \sigma_r}{\delta} \right\rceil} p_{\mathsf{obs}} \cdot p_{\mathsf{f}} \cdot \frac{(\tau \delta + \sigma_r)^2 - \max\{0, \tau \delta - \sigma_r\}^2}{(\tau \delta + \sigma_r)^2}$$

If cell m_{ij} is occupied (F) the likelihood that any update to m_{ij} is incorrect is:

$$p(\mathsf{inc}|m_{ij} = F) \le \sum_{\tau=0}^{\left\lceil \frac{r^+ + \sigma_r}{\delta} \right\rceil} p_{\mathsf{obs}} \cdot p_{\mathsf{f}} \cdot \frac{\max\{0, \tau\delta - \sigma_r\}^2}{(\tau\delta + \sigma_r)^2}$$

Bound on expected ML map error

The map converges if
$$p_{\rm inc} < 1/2$$

Let $v = \sum_{ij} v_{ij}$, where $v_{ij} = 1$ if the ML estimate for cell m_{ij} is **incorrect**, and $v_{ij} = 0$ otherwise.

If $p_{inc} < 1/2$:

$$E[\nu] \le M^2 \exp\left\{-2E[o_{ab}]\left(\frac{1}{2} - p_{\text{inc}}\right)^2\right\}$$

(Chernoff bound)

Application: comparing real sensors

- We obtained model parameters for three real sensors used in mapping:
 - SICK LMS 200-30106 scanning laser rangefinder
 - Polaroid 6500 series SONAR ranging module
 - Sharp GPD12 infrared rangefinder
- "Laser-normalized" running time
 - Extra work (time) required for a sensor to build a map of (expected) quality equivalent to that build by the scanning laser rangefinder
 - Depends only on sensor characteristics and environment density

Future directions

- Big gap between our approach and real SLAM:
 - Realistic trajectories
 - Structured environments MRF model
 - Modeling measurement correspondences
 - Pose uncertainty
 - Beyond simulation how well does our model match reality?

- Right now, many mapping problems are "solved" if you throw enough \$ at them, but:
 - Practical mapping with inexpensive robots: limited sensing, computing, memory, energy
 - Sensing capability is a function of the environment
 - What are the *requirements* for a mapping robot?

Thanks for coming!