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Robot mapping

Basic problem: raw sensing data — useful map of the environment

e Useful to whom?
— Navigation (other robots, people)

— Search and rescue
— Reconnaissance, hazmat detection

— Sensor network localization
— etc...

e What context?
— Environment: structured or unstructured, cluttered, 2D, 3D

— Robot: sensing and computational capabilities, actuation, odometry
uncertainty, etc.
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Map representation
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Sensors for mapping

®
Contact sensor array @ Zero-range, low-res, accurate, cheap
®

Mid-range, no-res, inaccurate, medium-cost

RF signal strength no bearing information (range only)

Infrared array Short-range, low-res, accurate, cheap

SONAR array Mid-range, low-res, inaccurate, medium-cost
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Sensors for mapping (cont.)

Long-range, high-res, accurate, medium-cost
no range information (bearing only)

Monocular camera @<

Stereo camera Long-range, high-res, accurate, high-cost

Laser rangefinder Long-range, high-res, accurate, high-cost
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Simultaneous localization and mapping (SLAM)

e Odometry is notoriously noisy!
— Cannot simply build map based on odometry-estimated trajectory
— GPS is often not available (e.g., indoors)
e SLAM: Alternate mapping and localization steps:
1. Use sensor returns to improve pose estimate based on current map
2. Update the map with the sensor returns

(Xt|u1t Z1, Nt) = 1] p(zt!xt n;) /p Xt|xt 1,U) p(Xe—1|Wi-1, 211, Mae—1) dXe

V

posterlor measurement motion prior
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Particle filtering SLAM (sequential Monte Carlo)

1 |00p
2:  Move/sense/extract features
3.  for all particles qbi do
4 Project forward: x;" ~ p(x |xt )
Do data association (compute nt) update map

5

6 Compute weight: w! = 1_ x p(z¢]x,", Ml nt)
7. end for

8: Resample (with replacement) according to wf;s

9: end loop
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Our research

e Broadly: mapping with limited sensing

e Most mapping research assumes:

— Accurate range/bearing measurements

— “Dense” data suitable for feature extraction
— Usually: scanning laser rangefinders

e What about, e.g., arrays of IR sensors?

— Cheap ($10’s vs. $1000’s)
— Less power, smaller
— But: short-range, sparse data

e Challenges:

— Extracting features from data
— Managing lots of pose/map uncertainty
— Characterizing map quality in terms of sensors
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SLAM with sparse sensing

e 5 readings per scan instead of 180 — not enough to extract features

e Basic idea: feature extraction using data from multiple scans

e Challenges:

— Particle filters need per-particle extraction (conditioned on trajectory)
— Augmenting exteroceptive sensing with odometry: more uncertainty

Raw odometry “Multiscan” landmark SLAM Full laser scan-matching
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Improving estimation consistency

e Most practical SLAM algorithms do not use new information to improve
past pose estimates

e Two approaches for doing this inexpensively in particle filtering:
— Fixed-lag roughening: MCMC of particles over a lag time

— Block proposal distribution: “re-draw” poses over lag time from
their joint distribution

— Both techniques: conditioned on the most recent odometry and
sensor measurements
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Exploiting prior knowledge: constrained SLAM

e We often know something about the environment ahead of time

e Example: indoor environments are “mostly” rectilinear

e Encode prior knowledge as constraints on the map E:j Ej

— Infer existence of constraints between landmarks
— Enforce constraints

e Challenge: breaks independence assumptions of
particle filter

Unconstrained Rectilinearity
Unconstrained Rectilinearity 100 particles 20 particles
600 particles 40 particles
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Analytical results on sensing and mapping

e Question: how can we relate “sensing capabilities” to map quality?

e Previous work: for every kind of sensor, either design a specific
algorithm or prove no algorithm exists (localization, O’Kane and

LaValle, 2006):

— Binary characterization (can or can’t localize)
— Compass + contact sensor: can localize
— Angular odometer + contact sensor: can’t localize

e An alternative approach: fix the mapping algorithm and define a broad
sensor model

— Encompasses most types of practical mapping sensors
— Characterize which sensors can build a map
— Give quality bounds on the map for a given sensor
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Model

e Environment: M x M grid of cells m;;; cells
occupied (F) at rate d, E otherwise

e Trajectory: xj,t € [0, T]; assumption: poses
drawn uniformly at random

e Sensor;

— Ring: p beams, angles pB; = i%ﬂ + U|[—0p, 0g]

— Firing frequency F
— Beam: goes until detecting an occupied cell
— False negative rate ¢, false positive rate ex

e Mapping: occupancy grid; cell measurements
depend on “region” in beam

— mi]- - CFZ bel(ml-j = F)+=p0
— mi]' - CEZ bel(ml-]- = E)+=p0
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Some (synthetic) examples

Bearing-only sensor
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Obtaining a bound on expected map error

‘ Bound expected # observations of a cell

l

Compute likelihood that an observation is incorrect

/

N

Conditions for map convergence

Bound expected error in ML map
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Bound on expected # observations

Let:

Er = ((1—d)(1 —egr) +dep) p(some cell in a beam registers as E)
Er = (d(1—¢ep)+ (1 —d)eg) p(some cell in a beam registers as F)

Expected # o0, of times any cell m ;, is updated:

1’+-|—0'r
2TFo(Ag+0o 5
Elogp) > pg\/pﬁ B) E£_0 W T Pobs

where:

A[ﬂ'z .
Dope > Ep if 70 > oy
1 otherwise
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Likelihood of an incorrect observation

Let: ps = min {1, A%‘EF ((75 + 07)% — max{0, 75 — ar}z) }

If cell mij Is unoccupied (E) the likelihood that any update to m]
Incorrect Is:
: {ﬁ;w-‘ (t6+0;)*—max{0,16—0; }*
p(incim;; =E) <Y o ' Pobs" Pf GETAY

If cell mij is occupied (F) the likelihood that any update to Mij IS Incorrect
IS:

~max{0,T6—0;}°
(td+0;)?

. 5|
p(lnc|mi]- =F) < ZT:() Pobs * Pf
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Bound on expected ML map error

Letv =) ;i vjj, where v;; = 1 if the ML estimate for cell m;; is incorrect,

The map converges if pijpe < 1/2

and v;; = 0 otherwise.

If pinc < 1/2:

Elv] < M?exp { ~2E(ou) (3 - pinc) |

(Chernoff bound)
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Application: comparing real sensors

e We obtained model parameters for three real sensors used in mapping:
— SICK LMS 200-30106 scanning laser rangefinder
— Polaroid 6500 series SONAR ranging module
— Sharp GPD12 infrared rangefinder

e “Laser-normalized” running time

— Extra work (time) required for a sensor to build a map of (expected)
quality equivalent to that build by the scanning laser rangefinder

— Depends only on sensor characteristics and environment density

Environmen t density (d)
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Future directions

e Big gap between our approach and real SLAM:

— Realistic trajectories

— Structured environments — MRF model
— Modeling measurement correspondences

— Pose uncertainty

— Beyond simulation — how well does our model
match reality?

e Right now, many mapping problems are “solved” if you throw enough $
at them, but:

— Practical mapping with inexpensive robots: limited sensing,
computing, memory, energy

— Sensing capability is a function of the environment
— What are the requirements for a mapping robot?
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Thanks for coming!




