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What is Game Theory?

In a nutshell: multiperson decision-making [1]
Psychologists would say: the theory of social situations [2]

Two main branches [2]
— Cooperative: formation of coalitions

— Non-cooperative

Dynamic game theory: the order in which decisions are made is
important [1]



Non-cooperative Game Theory [1]
e Each person involved pursues his or her own (partly conflicting) interests

o A ‘game’:

— ‘players’
— ‘moves’
— what players know (about moves of other players, the environment,

etc.)
— payoffs (both good and bad): depend on the values of the player

e Conflict situation: players value possible outcomes differently



Strategies [2]

e Strategy: fundamental notion in noncooperative game theory

e “Set of instructions that a player could give to a friend or program” (to
play on their behalf)

e Strategic form: map from strategies to payoffs



Strategic Form: Prisoners’ Dilemma

Player 1 || Player 2 | confess | not confess

confess 1,1 9.0
not confess 0,9 5,5

e Total payoff highest when neither confesses (5,5)

e BUT reasoning is as follows:

— if other player doesn't confess, best for me to confess (9 instead of 5)
— if other player confesses, also best to confess (1 instead of 0)
— no matter what other player does, it's best for me to confess

e Game theory predicts each player will thus follow their own self-interests
and confess



Zero- vs. Nonzero-sum Games [1]

e Zero-sum game: sum of cost functions of the players is zero
— usually two players
— constant-sum: transform to zero-sum

e Nonzero-sum games: sum of cost functions nonconstant

— cooperation between two or more players may lead to mutual
advantage



Nash Equilibrium
Another example game [3]: ‘Chicken’ (nonzero-sum)
Players Johnny, Oscar: both have option to escalate a brawl or give in

Payoff matrix for Johnny:

Johnny | Oscar | escalate | yield

escalate -10 1
yield -1 0

— by giving in, both can maximize their minimal payoff
— BUT: both won't necessarily give in
x if one guesses the other will give in, he will escalate
* If both escalate, both are worse off



Nash Equilibrium (cont.)

e 1,y: probabilities that J, O (resp.) escalate

e Expected payoff for J: py = —10zy + = — vy

— so, if O escalates with probability v E. J should yield

— if O escalates with probability < Q. J m:o:_g escalate

— if both J and O escalate with probability = they are in Nash
equilibrium

x neither has anything to gain by deviating from equilibrium

Ho_



Game Theory: Applications in Robotics

e S. LaValle

— A game-theoretic framework for robot motion planning (PhD thesis)

[8]
x motion planning under uncertainty in sensing and control
x motion planning under environment uncertainties

* multiple-robot motion planning (coordination)

e J. Hespanha, M. Prandini, S. Sastry
— Probabilistic Pursuit-Evasion Games: A One-Step Nash Approach [6]



Pursuit-Evasion Games
Several obvious applications in robotics/distributed robotics [4]

‘Degenerate’ cases (inanimate ‘opponents’)

— obstacle avoidance
— foraging/search-and-rescue
— navigation

Collective behaviors

— following

— flocking

— aggregation
— dispersion



Pursuit-Evasion and Game Theory [4]
Problem first posed by Isaacs in 1950s [5]
Considered extensively in aerial combat context (e.g. missiles)

Different from previous games

— continuous unfolding of moves, continuous variation in strategies

Game theory can handle pursuit-evasion

— optimal pursuit strategy depends on evasion strategy adopted by
other player and vice-versa—just what game theory is good at

— continuous nature modeled by differential equations

— approach: pursuers minimize time to capture, evaders maximize time
to capture
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Probabilistic Pursuit-Evasion Games: A One-Step Nash
Approach [6]

e Team of agents pursuing smart evader in non-accurately mapped terrain

e Integrates map-learning and pursuit

— describes problem as a partial-information Markov game (nonzero
sum)

e Finds Nash solution to the game

— shows solution always exists
— method to compute: reduce to an equivalent zero-sum matrix game
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Notation
n, pursuers (called player U), single evader (player D)
Pursuit region: finite collection of cells X = {1,2,...,n.}
All events take place at a set of equally-spaced times 7 = {1,2,...}

Some cells may contain obstacles; configuration of obstacles not
perfectly known

Positions at time ¢: x!(t) (pursuer i), X.(t) (evader)
Obstacle positions (fixed): x'(¢) =x'(t+ 1)Vt € T

Game state at time ¢: s(t) = (Xe(?),X,(t),X0(t)) €S
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Transitions

e Every time instant ¢t each player can choose control actions from U, D,
the sets of actions available to U, D resp.

e Next desired positions for pursuers, evader: u(t) € U,d(t) € D

e Transition probability: probability that next state will be s’(¢) € S given
u(t),d(?)

— e.g., modelling uncertainty that an action will produce the desired
outcome

e Set of cells reachable in one time step by an agent at z: A(z) C X

e Pursuers, evaders reach chosen adjacent cells with probability p,, pe
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Observations

A set of measurements is available to each player at every t:
Yo = {Yo,01,- -9t} Zo = {20, 21, .., 21} (for U, D resp.)

YV, Z: measurement space for U, D resp. (finite sets); realizations of
random variables y(t), z(t)

Assume worst-case scenario: D has access to all information available to
U

-Y; CZ

Game over set:

%0@9; — AA&QURNSROV - nw_&m = Rwo for some 1 - ﬁHu .. gﬁﬁuv“v

— both players can detect end of game
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Stochastic Policies

e 11, 0: stochastic ‘policies’

— each player selects action for time ¢ according to some probability
distribution (a ‘policy’)

e Probability measures vary with policies, so we denote them as P, 5 (e.g.
for a probability that depends on u and 9)
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Problem Formulation

e Pursuers/evader choose stochastic actions so as to maximize/minimize
(resp.) probability of finishing game at next instant

e Consider:

—teT,s(t) € Sover

— current measurements availableto U, DareY € Y. Z € Z
respectively

— player U: select action u(Y') to maximize
Vo (Y,t) = P, 5(Toper =t +1]Y)

— player D: select action §(Z) to minimize
Vp(Z,t) = Py s(Tover =t +1|2)

Since each player has a different set of information, the resulting game
evolves through a succession of nonzero-sum static games
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One-Step Nash Equilibrium Solution

e Cost functions:

,NUCf q, Nv — Mﬁ:Q&ANV M @Amu m\u u, &v Awtﬁlu&ﬁlHAm@V — miNu — va
u,d s'€Sover
ANQQf Qv — Nw_tﬁlfuﬁlH TNUGf q, Nwi%«w — <_

— p(s,s’,u,d) is a transition probability function (e.g. probability given
s and actions u, d that next state will be s’ at ¢t + 1)

— p,: scalar in distribution p over 4 corresponding to action u

— q4(Z): similar to p,, but takes into account Y (pursuer’s
information) since the evader knows it

e So, pursuers try to maximize estimate of evader’s cost based on
observations
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Nash Equilibrium Solution (cont.)

Ju, Jp represent cost functions optimized at time ¢ by U and D

Since each player’s incurred cost depends on the other player’s choice of

moves, what exactly does “optimize a cost” mean?
Well-known solution: Nash equilibrium

Natural tendency for the game to be played at Nash equilibrium
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Nash Equilibrium Solution (cont.)

e Players choose actions u(Y'),d(Z) equal to p*, ¢* satisfying

Ju(p*,q") Ju(p,q*) Vp
Jp(p*,q",Z) < Jp(p*,q,Z)Vq

'V

e Pair (p*,q*) is called a one-step Nash equilibrium
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Nash Equilibrium Solution (cont.)

e Note: in general, for nonzero-sum games there are multiple Nash
equilibria corresponding to different values of costs

e However, we can reduce the pursuit-evasion problem to the
determination of a Nash equilibrium for a fictitious zero-sum game with

cost Jy

— Then, it follows that all Nash pairs (p*, ¢*) are interchangeable and
correspond to the same value for Jy(p*, ¢*)
— We call this the value of the game

e Essentially, can do this because if persuer chooses p*, a rational evader
is ‘forced’ to choose ¢*
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Nash Equilibrium Solution (cont.)

e Pursuers (even though they have less information) can influence the
best achievable value for Jp(p*,q, Z)

e Paper shows that finding the Nash equilibrium for a one-step zero-sum
game with cost Jy is equivalent to finding ‘saddle-point equilibrium’ for
two-player zero-sum matrix game

e Reduces computation of stochastic policies to a Linear Programming
problem
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Example (Simulation)

e Pursuers

— can perfectly determine position z
— can perfectly sense adjacent cells A(x) for obstacles
— senses for evaders
x perfect sensing for cell pursuer is currently in
+ false positives (f,) and false negatives (f,) for A(x)

e Evader

— can perfectly determine position x

— can perfectly sense adjacent cells A(x) for obstacles

— knows pursuers’ locations perfectly (because it has access to their
measurement data)
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Example (cont.)

Parameters

— n. = 400 cells
— n, = 3 fast pursuers (p, = 1) [light stars]
— slow evader (p. = 0.5) [dark circle]

— fo = fu=0.01

Frames taken every four time steps
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Example (cont.)
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Some Problems With Game Theory and Robotics
Applications

e Computation

— this paper: &~ 9n, x 9* calculations per time ‘instant’
— LaValle/Hutchinson [7]: coordination problem solved with Nash
equilibrium; 2-3 robots, up to an hour of computation

e 'Rationality’ assumption

— who's to say other players aren't irrational

— modern game theory offers (among other approaches) evolutionary
game theory [3]

— still can’t develop a strategy to deal with ‘random’ opponents [4]
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