Game Theory, Robotics and the Pursuit-Evasion Problem

Kris Beevers
Rensselaer Polytechnic Institute
Algorithmic Robotics Laboratory
beevek@cs.rpi.edu

November 6, 2002

What is Game Theory?

- In a nutshell: multiperson decision-making [1]
- Psychologists would say: the theory of social situations [2]
- Two main branches [2]
- Cooperative: formation of coalitions
- Non-cooperative
- Dynamic game theory: the order in which decisions are made is important [1]

Non-cooperative Game Theory [1]

- Each person involved pursues his or her own (partly conflicting) interests
- A 'game':
- 'players'
- 'moves'
- what players know (about moves of other players, the environment, etc)
- payoffs (both good and bad): depend on the values of the player
- Conflict situation: players value possible outcomes differently

Strategies [2]

- Strategy: fundamental notion in noncooperative game theory
- play on their behalf) "Set of instructions that a player could give to a friend or program" (to
- Strategic form: map from strategies to payoffs

Strategic Form: Prisoners' Dilemma

5,5	0,9		not confess
0,0	1,1		confess
not confess	confess	Player 2	Player 1

- Total payoff highest when neither confesses (5,5)
- BUT reasoning is as follows:
- if other player doesn't confess, best for me to confess (9 instead of 5)
- if other player confesses, also best to confess (1 instead of 0)
- no matter what other player does, it's best for me to confess
- Game theory predicts each player will thus follow their own self-interests and contess

Zero- vs. Nonzero-sum Games [1]

- Zero-sum game: sum of cost functions of the players is zero
- usually two players
- constant-sum: transform to zero-sum
- Nonzero-sum games: sum of cost functions nonconstant
- cooperation between two or more players may lead to mutual advantage

Nash Equilibrium

- Another example game [3]: 'Chicken' (nonzero-sum)
- ullet Players $\mathit{Johnny},\ \mathit{Oscar}$: both have option to escalate a brawl or give in
- Payoff matrix for Johnny:

yield	escalate	Johnny
		Oscar
-1	-10	escalate
0	1	yield

- by giving in, both can maximize their minimal payoff
- BUT: both won't necessarily give in
- * if one guesses the other will give in, he will escalate
- * if both escalate, both are worse off

Nash Equilibrium (cont.)

- x,y: probabilities that J,O (resp.) escalate
- Expected payoff for J: $p_J = -10xy + x y$
- so, if O escalates with probability $>\frac{1}{10}$, J should yield if O escalates with probability $<\frac{1}{10}$, J should escalate
- if both J and O escalate with probability $=rac{1}{10}$, they are in Nash equilibrium
- * neither has anything to gain by deviating from equilibrium

Game Theory: Applications in Robotics

- S. LaValle
- A game-theoretic framework for robot motion planning (PhD thesis)
- * motion planning under uncertainty in sensing and control
- motion planning under environment uncertainties
- * multiple-robot motion planning (coordination)
- J. Hespanha, M. Prandini, S. Sastry
- Probabilistic Pursuit-Evasion Games: A One-Step Nash Approach [6]

Pursuit-Evasion Games

- Several obvious applications in robotics/distributed robotics [4]
- 'Degenerate' cases (inanimate 'opponents')
- obstacle avoidance
- foraging/search-and-rescue
- navigation
- Collective behaviors
- following
- flocking
- aggregation
- dispersion

Pursuit-Evasion and Game Theory [4]

- Problem first posed by Isaacs in 1950s [5]
- Considered extensively in aerial combat context (e.g. missiles)
- Different from previous games
- continuous unfolding of moves, continuous variation in strategies
- Game theory can handle pursuit-evasion
- optimal pursuit strategy depends on evasion strategy adopted by other player and vice-versa—just what game theory is good at
- continuous nature modeled by differential equations
- approach: pursuers minimize time to capture, evaders maximize time to capture

Probabilistic Pursuit-Evasion Games: A One-Step Nash Approach [6]

- Team of agents pursuing smart evader in non-accurately mapped terrain
- Integrates map-learning and pursuit
- (mus describes problem as a partial-information Markov game (nonzero
- Finds Nash solution to the game
- shows solution always exists
- method to compute: reduce to an equivalent zero-sum matrix game

Notation

- n_p pursuers (called player U), single evader (player D)
- Pursuit region: finite collection of cells $\mathcal{X} = \{1, 2, \dots, n_c\}$
- All events take place at a set of equally-spaced times $\mathcal{T} = \{1, 2, \ldots\}$
- Some cells may contain obstacles; configuration of obstacles not perfectly known
- Positions at time t: $\mathbf{x}_p^i(t)$ (pursuer i), $\mathbf{x}_e(t)$ (evader)
- Obstacle positions (fixed): $\mathbf{x}_o^i(t) = \mathbf{x}_o^i(t+1) \; orall t \in \mathcal{T}$
- Game state at time t: $\mathbf{s}(t) = (\mathbf{x}_e(t), \mathbf{x}_p(t), \mathbf{x}_o(t)) \in \mathcal{S}$

Transitions

- Every time instant t each player can choose control actions from \mathcal{U}, \mathcal{D} , the sets of actions available to U, D resp.
- Next desired positions for pursuers, evader: $\mathbf{u}(t) \in \mathcal{U}, \mathbf{d}(t) \in \mathcal{D}$
- $\mathbf{u}(t), \mathbf{d}(t)$ Transition probability: probability that next state will be $\mathbf{s}'(t) \in \mathcal{S}$ given
- e.g., modelling uncertainty that an action will produce the desired
- Set of cells reachable in one time step by an agent at $x\colon \mathcal{A}(x)\subseteq \mathcal{X}$
- Pursuers, evaders reach chosen adjacent cells with probability $ho_p,
 ho_e$

Observations

- A set of measurements is available to each player at every t: $\mathbf{Y}_t = \{y_0, y_1, \dots, y_t\}, \mathbf{Z}_t = \{z_0, z_1, \dots, z_t\}$ (for U, D resp.)
- \mathcal{Y}, \mathcal{Z} : measurement space for U, D resp. (finite sets); realizations of random variables $\mathbf{y}(t), \mathbf{z}(t)$
- Assume worst-case scenario: D has access to all information available to

$$-|\mathbf{Y}_t \subseteq \mathbf{Z}_t$$

Game over set:

$$\mathcal{S}_{over} = \{(x_e, x_p, x_o) \in \mathcal{S} | x_e = x_p^i \text{ for some } i \in \{1, \dots, n_p\} \}$$

both players can detect end of game

Stochastic Policies

- μ, δ : stochastic 'policies'
- each player selects action for time t according to some probability distribution (a 'policy')
- Probability measures vary with policies, so we denote them as $P_{\mu,\delta}$ (e.g. for a probability that depends on μ and $\delta)$

Problem Formulation

- Pursuers/evader choose stochastic actions so as to maximize/minimize (resp.) probability of finishing game at next instant
- Consider:
- $-t \in \mathcal{T}, \mathbf{s}(t) \notin \mathcal{S}_{over}$
- current measurements available to U, D are $Y \in \mathcal{Y}, Z \in \mathcal{Z}$ respectively
- player U: select action $\mu(Y)$ to maximize $V_U(Y,t) = P_{\mu,\delta}(\mathbf{T}_{over} = t+1|Y)$
- player D: select action $\delta(Z)$ to minimize

$$V_D(Z,t) = P_{\mu,\delta}(\mathbf{T}_{over} = t + 1|Z)$$

evolves through a succession of nonzero-sum static games Since each player has a different set of information, the resulting game

One-Step Nash Equilibrium Solution

Cost functions:

$$J_{D}(p,q,Z) = \sum_{u,d} p_{u}q_{d}(Z) \sum_{s' \in \mathcal{S}_{over}} p(s,s',u,d) \left(P_{\mu_{t-1},\delta_{t-1}}(\mathbf{s}(t) = s | \mathbf{Z}_{t} = Z) \right)$$

$$J_{U}(p,q) = E_{\mu_{t-1},\delta_{t-1}} [J_{D}(p,q,\mathbf{Z}_{t}) | \mathbf{Y}_{t} = Y]$$

- $-\ p(s,s',u,d)$ is a *transition probability function* (e.g. probability given s and actions u,d that next state will be s' at t+1)
- p_u : scalar in distribution p over $\mathcal U$ corresponding to action u
- $q_d(Z)$: similar to p_u , but takes into account Y (pursuer's information) since the evader knows it
- So, pursuers try to maximize estimate of evader's cost based on observations

- ullet J_U,J_D represent cost functions optimized at time t by ${\sf U}$ and ${\sf D}$
- Since each player's incurred cost depends on the other player's choice of moves, what exactly does "optimize a cost" mean?
- Well-known solution: Nash equilibrium
- Natural tendency for the game to be played at Nash equilibrium

Players choose actions $\mu(Y), \delta(Z)$ equal to p^*, q^* satisfying

$$J_{U}(p^{*}, q^{*}) \geq J_{U}(p, q^{*}) \forall p$$

$$J_{D}(p^{*}, q^{*}, Z) \leq J_{D}(p^{*}, q, Z) \forall q$$

Pair (p^*,q^*) is called a *one-step Nash equilibrium*

- Note: in general, for nonzero-sum games there are multiple Nash equilibria corresponding to different values of costs
- However, we can reduce the pursuit-evasion problem to the cost J_U determination of a Nash equilibrium for a fictitious zero-sum game with
- Then, it follows that all Nash pairs (p^*,q^*) are interchangeable and correspond to the same value for $J_U(p^st,q^st)$
- We call this the value of the game
- Essentially, can do this because if persuer chooses p^* , a rational evader is 'torced' to choose q^*

- Pursuers (even though they have less information) can influence the best achievable value for $J_D(p^*,q,Z)$
- game with cost J_U is equivalent to finding 'saddle-point equilibrium' for two-player zero-sum matrix game Paper shows that finding the Nash equilibrium for a one-step zero-sum
- Reduces computation of stochastic policies to a Linear Programming

Example (Simulation)

Pursuers

- can perfectly determine position x
- can perfectly sense adjacent cells $\mathcal{A}(x)$ for obstacles
- senses for evaders
- * perfect sensing for cell pursuer is currently in
- * false positives (f_p) and false negatives (f_n) for $\mathcal{A}(x)$

• Evader

- can perfectly determine position x
- can perfectly sense adjacent cells $\mathcal{A}(x)$ for obstacles
- knows pursuers' locations perfectly (because it has access to their measurement data)

Example (cont.)

- **Parameters**
- $n_c = 400$ cells
- $-\ n_p=3\ {\rm fast\ pursuers\ } (\rho_p=1)\ [{\rm light\ stars}]$ $-\ {\rm slow\ evader\ } (\rho_e=0.5)\ [{\rm dark\ circle}]$ $-\ f_p=f_n=0.01$
- Frames taken every four time steps

Example (cont.)

Some Problems With Game Theory and Robotics Applications

- Computation
- this paper: $pprox 9n_p imes 9^4$ calculations per time 'instant'
- LaValle/Hutchinson [7]: coordination problem solved with Nash equilibrium; 2-3 robots, up to an hour of computation
- 'Rationality' assumption
- who's to say other players aren't irrational
- modern game theory offers (among other approaches) evolutionary game theory [3]
- still can't develop a strategy to deal with 'random' opponents [4]

References

- T. Basar and G.J. Oldser. Dynamic Noncooperative Game Theory. Academic Press, 2nd edition, 1995
- 2. D. Levine. Game Theory. http://levine.sscnet.ucla.edu/general/cogsci.htm
- 3. J. Hofbauer and K. Sigmund. Evolutionary Games and Population **Dynamics.** Cambridge University press, 1998
- G.F. Miller and D.T. Cliff. Co-evolution of pursuit and evasion 1: University of Sussex, School of Cognitive and Computing Science, 1994 Biological and game-theoretic foundations. Technical Report CSRP311.

- 5. Isaacs, R. Games of pursuit. Technical Report P-257, Rand Corporation, 1951
- 6. J. Hespanha, M. Prandini and S. Sastry. Probabilistic Pursuit-Evasion Decision and Contr., Mar. 2000. Games: A One-Step Nash Approach. Submitted to the 39th Conf. on
- 7. S. M. LaValle and S. A. Hutchinson. Path selection and coordination of Robot. & and Autom., pages 1847-1852, May 1994 multiple robots via Nash equilibria. In Proc. 1994 IEEE Int'l Conf.
- <u></u> S. M. LaValle. A game-theoretic framework for robot motion planning. PhD thesis, University of Illinois, Urbana, IL, July 1995.