Mapping With Limited Sensing

Kris Beevers and Wes Huang

Algorithmic Robotics Laboratory Department of Computer Science Rensselaer Polytechnic Institute

The tool

The objective

Goal: build an environment model with a robot

Kris Beevers Rensselaer Polytechnic Institute

Issues in robot mapping

- Exploration strategies
- Representation
- Uncertainty management
- Sensing limitations

Sensing limitations

- Sparse, short range
- Cheaper, lighter, less power
- For example: an array of a few IR sensors

Our robots

Kris Beevers Rensselaer Polytechnic Institute

Our work

Topological mapping with limited sensing
 Topological map merging

• SLAM with sparse sensing

Topological mapping with limited sensing

- Map representations
- Exploration strategies
- $\label{eq:WAFR 2004} \hookrightarrow \mathsf{RPICS}\text{-}\mathsf{TR}\ 2005$
- Loop closing \hookrightarrow ICRA 2005

Topological map merging

• DARS 2004

• IJRR 2005

SLAM with sparse sensing (ICRA 2006, submitted)

Courtesy B. Gerkey

The problem

The goal

Kris Beevers Rensselaer Polytechnic Institute

A brief SLAM tutorial

Kris Beevers Rensselaer Polytechnic Institute

The SLAM model

- 1. Move
- 2. Predict
- 3. Sense

$$x_k = [x_r(k) \ x_f(k)]$$

- 4. Update pose/map
 - (Usually) no exploration strategy
 - Maps: landmarks or occupancy grids

SLAM is hard!

$$P(x_k|z_k, u_k, n_k) \approx$$

$$P(z_k|x_k, \theta_{n_k}, n_k) \times$$

$$\int dx_{k-1} \begin{pmatrix} P(x_k|x_{k-1}, u_k) \times \\ P(x_{k-1}|z_{k-1}, u_{k-1}, n_{k-1}) \end{pmatrix}$$

Kris Beevers Rensselaer Polytechnic Institute

Computing the SLAM update

• Extended Kalman Filter (EKF) \hookrightarrow Assume distributions are Gaussian $\hookrightarrow O(n^2)$

• Particle Filter \hookrightarrow Monte Carlo integration $\hookrightarrow O(N \log n)$

Kris Beevers Rensselaer Polytechnic Institute

Move, predict, sense, update

Kris Beevers Rensselaer Polytechnic Institute

SLAM with multiple poses

k = 1 Move, Predict, Sense k = 2 Move, Predict, Sense ... k = m Update

Extract features using a window of *m* poses
Trade off feature uncertainty for scan density

Using multi-pose data

- Now we've got pose error to deal with
- Add the "pose history" to the state:

$$x_r(k) = [x_{t_k} x_{t_{k-1}} \dots x_{t_{k-m+1}}]$$

Leonard, et al. 2002

Too expensive!

$$\int dx_{k-1}$$

Kris Beevers Rensselaer Polytechnic Institute

SLAM with *multiscans*

Kris Beevers Rensselaer Polytechnic Institute

SLAM with *multiscans*

- Treat pose error as measurement error
- Use *expected* pose history for multiscan
- SLAM update every *m* steps

Particle filter: $O(N \log n)$

Data from RADISH courtesy B. Gerkey

Dimensions	64m imes 56m
Trajectory length	517m
Trajectory rotation	495 rad
Landmarks	750

Kris Beevers Rensselaer Polytechnic Institute

Kris Beevers Rensselaer Polytechnic Institute

Topological approaches some highlights

Kris Beevers Rensselaer Polytechnic Institute

Kris Beevers Rensselaer Polytechnic Institute

A simple strategy (WAFR 2004)

- Rectilinear environments; sensing:
- Nodes: interior/exterior corners
- Edges: wall-following, hall-following

Closing loops (ICRA 2005)

- Revisitation problem
- Most corners "look" identical
 Hardest in self-similar environments

Amos Eaton Bldg., RPI $(30 \text{ m} \times 12 \text{ m})$

Simulation

Kris Beevers Rensselaer Polytechnic Institute

Tracing the SGVD $_{\infty}$ (TR 2005)

- Rectilinear environment; sensing: ¥
- Saturated Generalized Voronoi Diagram, L_{∞} :

$$d_{\infty}(\mathbf{p},\mathbf{q}) = \max_{i} |p_{i} - q_{i}|$$

Kris Beevers Rensselaer Polytechnic Institute

Complete algorithm for tracing $SGVD_{\infty}$ from any starting point

Kris Beevers Rensselaer Polytechnic Institute

- Mapping with limited sensing is possible
- SLAM with sparse sensing
- Topological mapping with limited sensing

Thank you!