Topological map merging

Kris Beevers

Algorithmic Robotics Laboratory Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu

March 9, 2005

Motivation

- Multiple robots create topological maps individually
- From these, we want a single, consistent global map
- In order to do this, we must find correspondences between the individual maps
- Once we have correspondences, it is easy to merge the maps

<u>Overview</u>

- 1. Problem setup
- 2. Previous work
- 3. Inspirations: graph matching, image registration
- 4. The algorithm
 - \hookrightarrow Structural phase
 - \hookrightarrow Geometrical phase
 - \hookrightarrow An example
- 5. Experimental results
- 6. Extensions

The problem

Given two topological maps represented as graphs, embeddable in \mathcal{R}^n : $\mathcal{A} = (V_{\mathcal{A}}, E_{\mathcal{A}}), \mathcal{B} = (V_{\mathcal{B}}, E_{\mathcal{B}})$

Goal: find correspondences that match a subset of V_A to a subset of V_B , and a subset of E_A to a subset of E_B

Correspondences: places where the maps overlap

Maps may overlap in multiple disjoint places
 — to get a consistent global map, we want all correspondences!

Previous work

- Most multi-robot mapping work assumes the robots share a common reference frame
- One exception: Ko et al. (2003) robots exchange occupancy maps, localize with particle filters
- Closely related to our work: Dedeoglu and Sukhatme (2000):
- → Finding correspondences between landmark-based maps
- \hookrightarrow No common reference frame
- \hookrightarrow Estimate transformation based on a single-vertex match
- \hookrightarrow Use simple heuristics to find correspondences

Idea #1: graph matching

- Our problem is a lot like the Maximal Common Subgraph problem: find largest set of compatible vertex/edge pairings
- General formulation of MCS: NP-hard
- But! We can do it in polynomial time:
- \hookrightarrow Edges at vertices have spatial interrelationships \rightarrow linear number of edge pairings (instead of exponential)
- || Fine, but what about disconnected subgraphs?

Idea #2: image registration

Our problem is also a lot like image registration: find matching between feature points and compute a transformation

Well-known algorithm: iterative closest point (ICP):

- → Compute transformation between two feature sets using an initial matching minimize weighted squared error
- \hookrightarrow Update matching by adding features that are close under this transformation
- \hookrightarrow Repeat

| Fine, but this ignores the topology in our maps!

Our approach

- Combine graph matching and image registration ideas:
 - 1. "Grow" hypotheses based on map structure and attributes
 - 2. Compute geometric transforms of hypotheses
 - 3. Cluster in the transform space
 - 4. Pick the "best" cluster

Notation: exact attributes

|| Vertices and edges may have *exact* attributes:

 $\hookrightarrow \text{ For } v \in V_{\mathcal{A}}, V_{\mathcal{B}}: \eta^{v} = \{\eta_{1}^{v}, \eta_{2}^{v}, \ldots\}$ $\hookrightarrow \text{ For } e \in E_{\mathcal{A}}, E_{\mathcal{B}}: \eta^{e} = \{\eta_{1}^{e}, \eta_{2}^{e}, \ldots\}$

 \parallel Can be compared directly: $(\eta_i = = \eta_j) \rightarrow \{ \# t, \# f \}$

|| Example: vertex degree

Notation: inexact attributes

Vertices and edges may also have *inexact* attributes (noisy measurements):

$$\hookrightarrow \iota^{\upsilon} = \{\iota^{\upsilon}_1, \iota^{\upsilon}_2, \ldots\} \text{ and } \iota^{\varrho} = \{\iota^{\varrho}_1, \iota^{\varrho}_2, \ldots\}$$

We assume we have an error model $\Phi_i[\iota_i]$: a pdf parameterized by the value of the *i*th inexact attribute

 $\|$ Compared by similarity test: SIM $(\iota_i^{\upsilon_1}, \iota_i^{\upsilon_2}, \Phi_i) \rightarrow \{ \#t, \#f \}$

Example: path length

Algorithm: $MERGE(\mathcal{A}, \mathcal{B})$

- 1: $H \leftarrow \text{GROW-HYPOTHESES}(\mathcal{A}, \mathcal{B})$
- 2: Embed ${\mathcal A}$ and ${\mathcal B}$ in ${\mathcal R}^n$
- 3: $C \leftarrow \text{CLUSTER-HYPOTHESES}(H)$
- 4: $c \leftarrow \mathsf{PICK}\mathsf{-}\mathsf{BEST}\mathsf{-}\mathsf{CLUSTER}(C)$
- 5: **if** *c* is too small or has large error **then**
- 6: **return** failure
- 7: Using vertex/edge correspondences in c, merge A and B.
- 8: return the merged map

Growing hypotheses

Start by finding compatible *single-vertex* correspondences

| Compatible:
$$\forall_i, \eta_i^{v_1} == \eta_i^{v_2}$$
 and $\forall_j, SIM(\iota_j^{v_1}, \iota^{v_2}j, \Phi_j) == \#t$

∥ Correspondence: $(a, b, E_{a,b}), a \in V_A, b \in V_B$, and $E_{a,b}$ is a set of pairings of incident edges; $O(|V_A||V_B|d)$ of these

Growing a hypothesis:

- 1. Pick a correspondence
- 2. Try to add incident edges/vertices
- 3. If incompatible, discard hypothesis
- 4. Otherwise, grow as far as possible

Algorithm: GROW-HYPOTHESES(A, B)

1: $H \leftarrow \{\}$ // valid hypotheses

2: Initialize *M* to the set of all single vertex pairs $(a, b, E_{a,b})$ where $a \in V_A, b \in V_B$, COMPAT(a, b) == #t, and $E_{a,b}$ is a set of edge matchings for edges incident to *a* and *b*.

3: while *M* is not empty do

4: remove an element m of M

5: $P \leftarrow \{m\}$ // pairs to expand

6:
$$Q \leftarrow \{\}$$
 // pairs in hypothesis

7: while *P* is not empty do

8: remove an element
$$p = (a, b, E_{a,b})$$
 from P, add p to Q

9: for all
$$(e_a, e_b) \in E_{a,b}$$
 do

10: Let
$$t_a = \text{TARG}(a, e_a), t_b = \text{TARG}(b, e_b)$$

11: if $(t_a, t_b, E_{t_a, t_b}) \in Q \cup P$ then continue // already have these vertices

2: if
$$(t_a, t_b, E_{t_a, t_b}) \in M \mid (e_a, e_b) \in E_{t_a, t_b}$$
 and COMPAT (e_a, e_b) then

3: remove
$$(t_a, t_b, E_{t_a, t_b})$$
 from M , add (t_a, t_b, E_{t_a, t_b}) to F

 $P \leftarrow \{\}, Q \leftarrow \{\};$ break // discard this hypothesis

16: end for

17: end while

18: if $Q \neq \{\}$ then add Q to H

```
19: end while
```

14: 15:

20: return *H*

Hypothesis growth example

Simple 2D rectilinear maps (just for the example!)

Also assume static environment for the example (implies vertex degrees much match exactly)

Degree-2 vertices (corners): single correspondence

|| Degree-4 vertices: four correspondences

Hypothesis growth example (cont.)

Нур.	Rot.	Vertex correspondences
H_1	0°	a3–b6
H_2	180°	a7–b2, a1–b8, a2–b7, a4–b5, a5–b4
H_3	180°	a7-b6
H_4	0°	a1–b4, a2–b5, a4–b7, a5–b8
H_5	0°	a1–b7, a2–b8
H_6	0°	a1-b8
H_7	0°	a2-b7
H_8	90°	a2–b8
H_9	180°	a1–b7, a4–b4
H_{10}	180°	a4-b7
H_{11}	270°	a1–b4, a2–b7
H_{12}	270°	a1–b5, a2–b8, a4–b4, a5–b5
H_{13}	270°	a1–b7
H_{14}	270°	a1–b8, a4–b7
H_{15}	$\overline{270^{\circ}}$	a4b8

Algorithm: $MERGE(\mathcal{A}, \mathcal{B})$

1: $H \leftarrow \text{GROW-HYPOTHESES}(\mathcal{A}, \mathcal{B})$

- 2: Embed \mathcal{A} and \mathcal{B} in \mathcal{R}^n
- 3: $C \leftarrow \text{CLUSTER-HYPOTHESES}(H)$
- 4: $c \leftarrow \mathsf{PICK}\mathsf{-}\mathsf{BEST}\mathsf{-}\mathsf{CLUSTER}(C)$
- 5: if c is too small or has large error then
- 6: **return** failure
- 7: Using vertex/edge correspondences in c, merge A and B.
- 8: **return** the merged map

Transform estimation

- Once we finish growing hypothesized correspondences, we compute transformations using the matched vertices
- First need to embed the maps in \mathcal{R}^n (measurements alone may be inconsistent)
- \hookrightarrow Plenty of approaches; we use Duckett and Saffiotti (2000) spring-based method
- | Then compute transform using methods from image registration
- \hookrightarrow We use 2D SVD-based closed form solution from Fitzpatrick, Hill, and Maurer (2000) — SVD of a 2x2 covariance matrix

Clustering

Hypotheses that are close together in transformation space are "geometrically consistent"

- If they do not conflict structurally, they are likely to be disconnected but consistent matches
- Since we want all consistent matches, cluster the hypotheses in transformation space
- | Use simple agglomerative clustering: $O(n^2 \log n)$, implemented well ($n \equiv$ number of hypotheses)

Algorithm: CLUSTER-HYPOTHESES(H)

- 1: for all $h \in H$ do
- 2: Compute t[h] (hypothesis transform) using SVD-based registration
- 3: end for
- 4: Let C = H
- 5: repeat
- 6: Find c_i, c_j such that $d = \min_{c_i, c_j \in C} ||\mathbf{t}[c_i] \mathbf{t}[c_j]||$
- 7: if $d < \epsilon$ then
- 8: $C \leftarrow \overline{C} \{c_i, c_j\}$
- 9: $C \leftarrow C \cup \{c_i \cup c_j\}$
- 10: Compute $\mathbf{t}[\{\overline{c_i \cup c_j}\}]$
- 11: **end if**
- 12: until $d \ge \epsilon$
- 13: **return** *C*

Clustering example

Algorithm: $MERGE(\mathcal{A}, \mathcal{B})$

- 1: $H \leftarrow \text{GROW-HYPOTHESES}(\mathcal{A}, \mathcal{B})$
- 2: Embed ${\mathcal A}$ and ${\mathcal B}$ in ${\mathcal R}^n$
- 3: $C \leftarrow \text{CLUSTER-HYPOTHESES}(H)$
- 4: $c \leftarrow \mathsf{PICK}\mathsf{-}\mathsf{BEST}\mathsf{-}\mathsf{CLUSTER}(C)$
- 5: if c is too small or has large error then
- 6: **return** failure

7: Using vertex/edge correspondences in c, merge A and B.

8: return the merged map

Choosing a cluster

"Quality" of a cluster depends on application, a priori knowledge

|| Some heuristics (by priority):

- 1. Total number of vertices
- 2. Squared error between matched vertices under cluster transform
- 3. Number of hypotheses in a cluster

|| If the "best" cluster is very small or has large error, return failure

Algorithm: PICK-BEST-CLUSTER(*C***)**

1:
$$v_{\max} \leftarrow \max_{x \in C} \sum_{h \in x} |h| // most vertices$$

2: $B \leftarrow \{c \in C \mid \sum_{h \in c} |h| = v_{\max}\}$
3: $\epsilon_{\max} \leftarrow \min_{x \in B} \sum_{a,b \in h \in x} ||a - b|| // smallest error$
4: $B \leftarrow \{c \in B \mid \sum_{a,b \in h \in c} ||a - b|| = \epsilon_{\max}\}$
5: $h_{\max} = \min_{x \in B} |x| // fewest hypotheses$
6: $B \leftarrow \{c \in B \mid |c| = h_{\max}\}$
7: if $|B| == 1$ then
8: return $c \in B$
9: else
10: return an arbitrarily chosen $c \in B$

Algorithm: $MERGE(\mathcal{A}, \mathcal{B})$

- 1: $H \leftarrow \text{GROW-HYPOTHESES}(\mathcal{A}, \mathcal{B})$
- 2: Embed ${\mathcal A}$ and ${\mathcal B}$ in ${\mathcal R}^n$
- 3: $C \leftarrow \text{CLUSTER-HYPOTHESES}(H)$
- 4: $c \leftarrow \mathsf{PICK}\mathsf{-}\mathsf{BEST}\mathsf{-}\mathsf{CLUSTER}(C)$
- 5: if c is too small or has large error then
- 6: **return** failure
- 7: Using vertex/edge correspondences in c, merge A and B.
- 8: **return** the merged map

Merge measurements for vertices/edges in *c*, combine the rest

Results

| Implemented for arbitrary 2D topological maps

|| Preliminaries:

- \hookrightarrow Assume degree of vertices is known once they are discovered
- \hookrightarrow Edge angles (inexact) and an ordering can be obtained
- \hookrightarrow Similarity of edge lengths computed using a χ^2 test based on a Gaussian odometry error model
- \hookrightarrow Intra-cluster translational distance threshold: 0.5 m
- \hookrightarrow Intra-cluster rotational distance threshold: $\pi/8$

Maze maps

Random planar maps

Hand generated maps

Real-world maps (Amos Eaton)

Performance: correctness

Map merging statistics (1000 runs for each trial) — varying map overlap and measurement error; error model assumed $\sigma\% = 7\%$:

Overlap	% correct	map σ %	% correct
0%	99.2%	1%	99.0%
2%	99.1%	3%	99.5%
4%	99.6%	5%	99.6%
6%	99.4%	7%	91.9%
8%	99.2%	9%	36.5%
10%	99.3%	11%	12.6%
12%	99.3%		

Performance: correctness (cont.)

Structure-only growth map merging statistics (200 runs for each trial) — no inexact attribute similarity tests performed:

Overlap	% correct	map σ %	% correct
0%	99.0%	1%	99.5%
2%	98.5%	3%	98.5%
4%	99.0%	5%	99.5%
6%	99.5%	7%	99.0%
8%	98.0%	9%	98.5%
10%	99.0%	11%	99.5%
12%	99.0%		

Performance: running time

|| Growth phase: $s = O(|V_A||V_B|d)$ initial matches; assuming d is a constant and each map has O(n) vertices, $s = O(n^2)$

|| Worst case: m = O(s) hypotheses remaining after growth

|| Clustering (implemented efficiently): $O(m^2 \log m) =$

Theoretical worst case: $O(n^4 \log n)$

|| In reality: $m \ll n^2$, and growth phase dominates:

Practical worst case: $O(n^2)$

Performance: running time (cont.)

|| Merging two ~ 100 -vertex maps: < 0.05 s (P3-650 MHz)

Extension ideas

Rollback-capable map storage

- \hookrightarrow Store maps from each robot separately
- \hookrightarrow Extends to > 2 robots with a dependency tree structure

|| Iterative reclustering

- → Problem: sometimes small hypotheses have significantly skewed transformations, and they are not clustered correctly
- → Idea: after initial clustering, add new hypotheses to cluster based on metric error under hypothesis transform
- \hookrightarrow Repeat until no changes occur

Extension ideas (cont.)

- Incremental updates for "re-"merging already-merged maps
 - 1. Discard old hypotheses invalidated by updates
 - 2. Extend existing hypotheses from new and modified edges
 - 3. Create/grow hypotheses from new and modified vertices
 - 4. Recluster hypotheses

Can trade off computational savings vs. information retention:

- \hookrightarrow Only retain best (few) cluster(s)
- \hookrightarrow Only expand best (few) cluster(s)
- \hookrightarrow Retain all clusters, expand all clusters
- \hookrightarrow Etc.

<u>References</u>

- Dedeoglu, G. and Sukhatme, G. 2000. Landmark-based matching algorithm for cooperative mapping by autonomous robots. In *Proceedings of the 2000 International Symposium on Distributed Autonomous Robotic Systems (DARS)*, 251–260.
- Duckett, T. and Saffiotti, A. 2000. Building globally consistent gridmaps from topologies. In *Proceedings of the 6th International IFAC Symposium on Robot Control (SYROCO)*, 357–361.
- Fitzpatrick, J., Hill, D., and Maurer, Jr., C. Image registration. In Sonka, M. and Fitzpatrick, J., editors, *Handbook of Medical Imaging, volume 2: Medical Image Processing and Analysis*, chapter 8. SPIE, 2000.
- Ko, J., Stewart, B., Fox, D., Konolige, K., and Limketkai, B. 2003. A practical, decision-theoretic approach to multi-robot mapping and exploration. In *Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots & Systems*, 212–217.