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Topological maps
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Chatila and Laumond (1985)

Kris Beevers
Rensselaer Polytechnic Institute

Modern Robot Mapping
3



Kuipers and Byun (1991)
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Choset and Nagatani (2001)
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Geometrical maps ( SLAM )

Occupancy grid Landmark
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Occupancy sensor models

Konolige (1997) Pagac et al. (1998)
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Smith et al. (1990)
The stochastic map:

x =


x1
x2
...

xN

 C(x) =


C(x1) C(x1, x2) · · · C(x1, xN)

C(x2, x1) C(x2) · · · C(x2, xN)
... ... . . . ...

C(xN, x1) C(xN, x2) · · · C(xN)


• Updates using the Kalman filter or EKF

• Ignore data association
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Cox and Leonard (1994)

• Data association uncertainty 6= sensing
uncertainty

• Hypothesis tree: branches ≡ different
assignments of measurements to landmarks

• “Deterministic FastSLAM”
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Leonard et al. (2002)
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Lu and Milios (1997)
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Thrun et al. (1998)

E-step (localize), M-step (expand map)
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Fox et al. (1999)
• Grid representation of pdfs

• Markov assumption (static world):
measurements depend only on
current pose

↪→ known path/map ⇒ future
measurements independent of
past measurements
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Murphy (2000)

• Under Markov assumption, landmarks are
independent when conditioned on trajectory

• Factor the map posterior (Rao-Blackwellization):

p(st, Θ) = p(st)
N

∏
n=1

p(θn|st)

• Many small filters
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Thrun et al. (2004): Fast SLAM
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Algorithm

(1) (2) (3) (4)
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Per-particle data association

• Different assignments of measurements to
landmarks for each particle

• Multiple data association hypotheses

• Recall (Cox and Leonard, 1994)
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Fast SLAM 2.0
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Convergence

• Converges for linear Gaussian models

• No better SLAM convergence result is known

• Q: does FastSLAM converge for nonlinear,
non-Gaussian models?

• Q: how many particles to converge?
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Kuipers (2000):
Spatial semantic hierarchy
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Loop closing in SSH

• “Rehearsal”: active graph matching

• Recognized by Kuipers as the weakest link

↪→ “effective but ad hoc”
↪→ decisions? self-similarity? uncertainty?
↪→ “should perhaps be replaced by a more

principled POMDP-based strategy”
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Shatkay and Kaelbling (2002):
Geometrically constrained

HMMs
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Topological map as HMM
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HMMs vs. POMDPs

• HMM:

↪→ hidden state, transitions
↪→ passive (no decision about where to go next)

• POMDP:

↪→ hidden state, transitions
↪→ controlled (robot decides where to explore)
↪→ computes tradeoff between reward (map

expansion) and uncertainty (map accuracy)
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HMMs with geometry
• Learning HMMs: evidence ≡ observations at states

↪→ “sensing signatures”

• Why not incorporate odometry information?

↪→ HMMs augmented with geometric relationships
↪→ consistency enforced

• Faster convergence, better accuracy

• Requires major assumptions: # states known
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Stachniss et al. (2005):
Information-gain based

exploration
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Exploration
vs.

Accuracy

Cost
vs.

Utility
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Utility: Information gain

• Pick action that minimizes cost and
maximizes information

↪→ like a POMDP with one-step lookahead

• Maximizing information ≡ minimizing entropy

H(p(st|data))+∑
i

p(st
i|data) ·H(Θi|st

i, data)
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Details
• Approximating information gain is hard

↪→ averaging of pose entropies in trajectories
↪→ ray casting over expected action trajectory

to approximate measurements and guess
change in map

↪→ statistics for unexplored cells

• Actions: exploration, revisiting, loop-closing
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Ranganathan et al. (2005):
Topological mapping as

Bayesian inference
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Inference in the space of topologies:

1: Start with valid topologies Ti
2: for each measurement do
3: for all samples do
4: Propose new topology T′i
5: Compute likelihood p(T′i |data)
6: Resample based on likelihood
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Details
• Space of topologies ≡ set partitions of

measurements

• Proposal distribution: split or merge nodes

• Requires known priors:

↪→ locations of distinctive places
↪→ topologies / # of places
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Prognostication
• Has been: topological or geometrical

• Will be: topological and geometrical

↪→ topometrical?
↪→ metrilogical?
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Thank you!
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