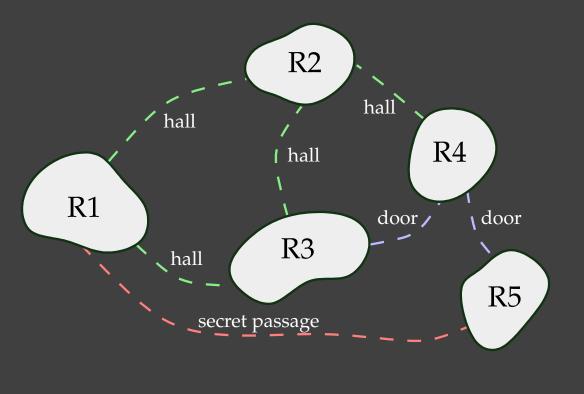
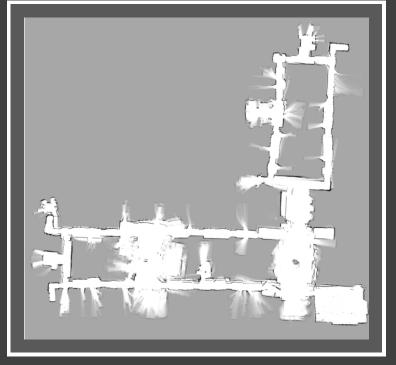
Modern Robot Mapping Research Qualifier

Kris Beevers Algorithmic Robotics Laboratory Department of Computer Science Rensselaer Polytechnic Institute

Robot mapping

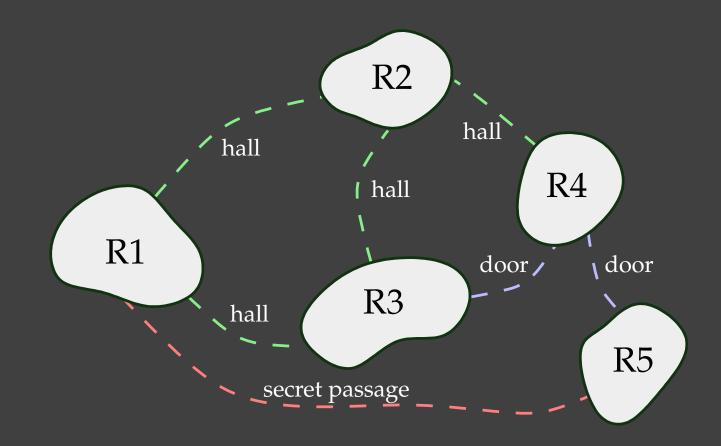


Topological

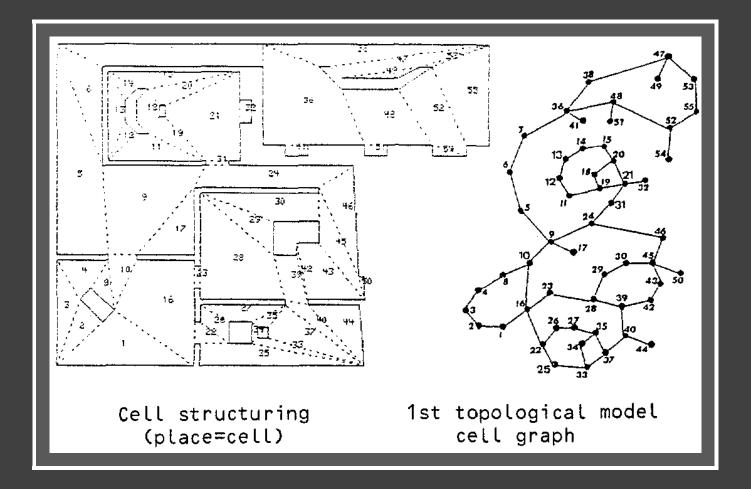


Geometrical

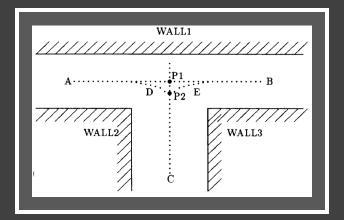
Topological maps

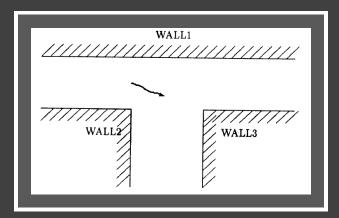


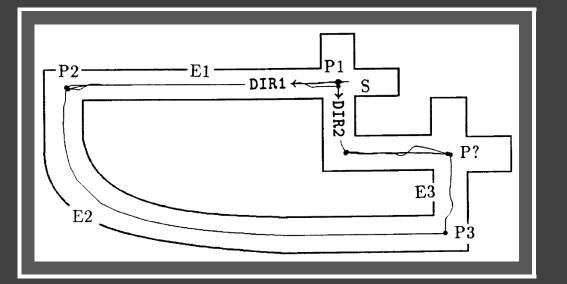
Chatila and Laumond (1985)



Kuipers and Byun (1991)

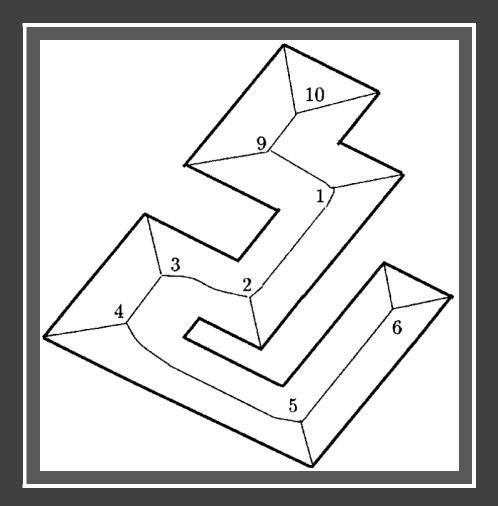






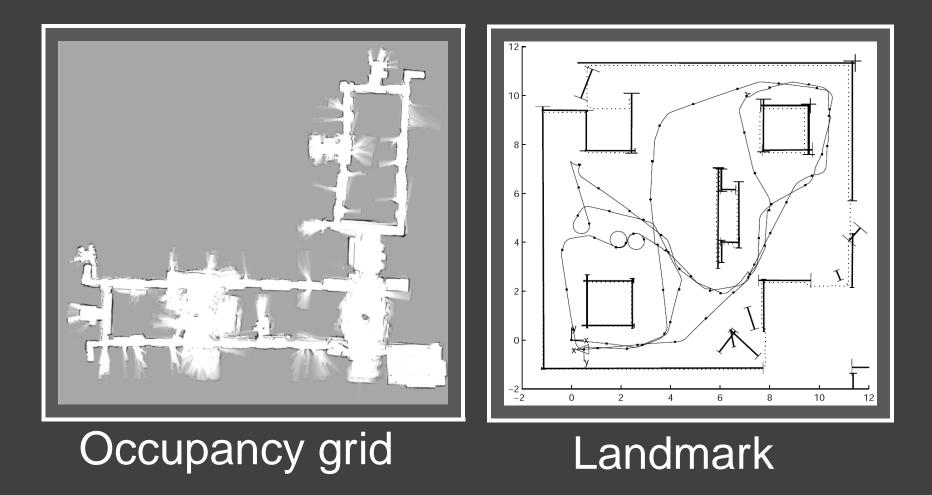
Kris Beevers Rensselaer Polytechnic Institute

Choset and Nagatani (2001)

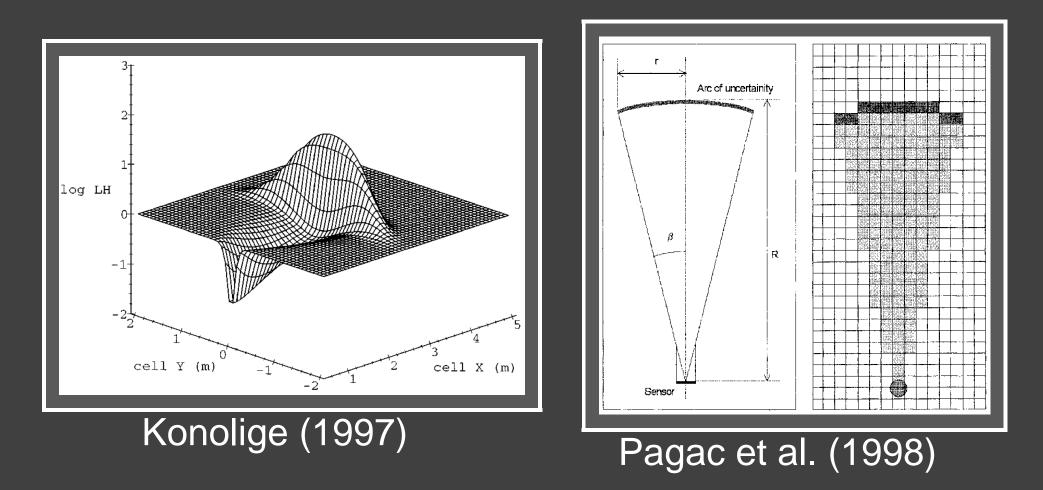


Kris Beevers Rensselaer Polytechnic Institute

Geometrical maps (SLAM)



Occupancy sensor models



Smith et al. (1990)

The stochastic map:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} \mathbf{C}(\mathbf{x}) = \begin{bmatrix} \mathbf{C}(\mathbf{x}_1) & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_N) \\ \mathbf{C}(\mathbf{x}_2, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}(\mathbf{x}_N, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_N, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_N) \end{bmatrix}$$

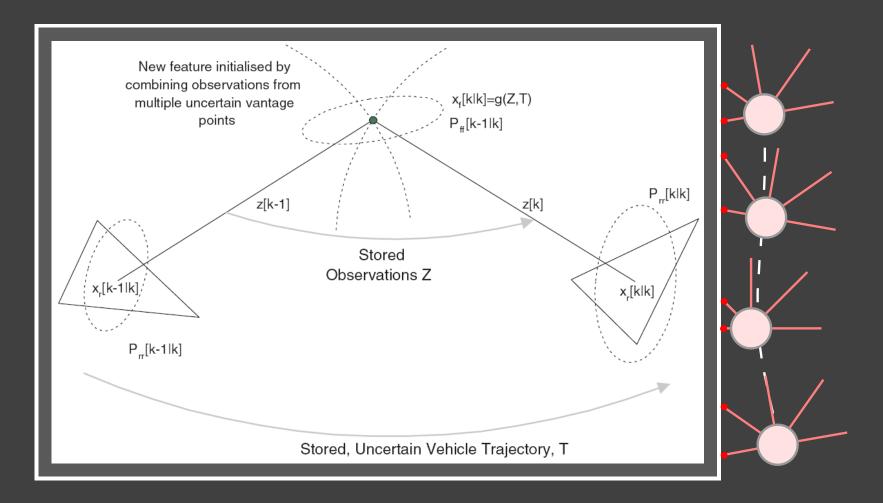
• Updates using the Kalman filter or EKF

Ignore data association

Cox and Leonard (1994)

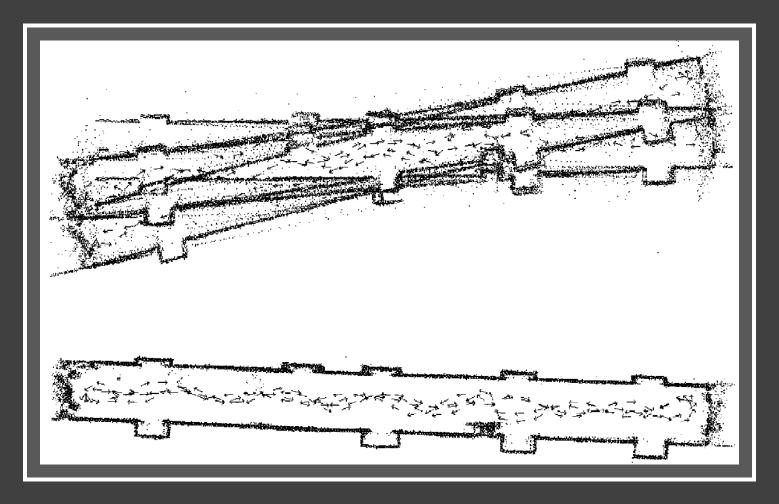
- Data association uncertainty \neq sensing uncertainty
- Hypothesis tree: branches \equiv different assignments of measurements to landmarks
- "Deterministic FastSLAM"

Leonard et al. (2002)



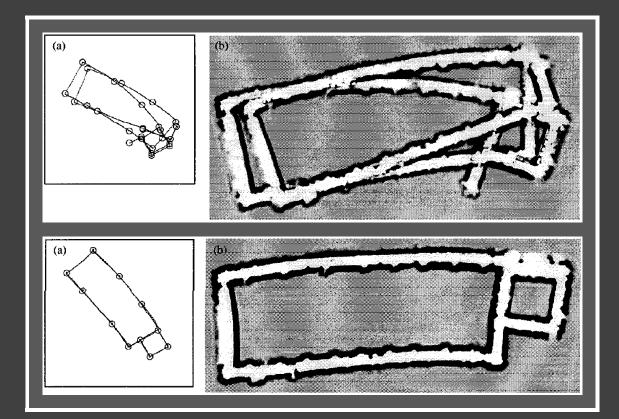
Kris Beevers Rensselaer Polytechnic Institute

Lu and Milios (1997)



Kris Beevers Rensselaer Polytechnic Institute

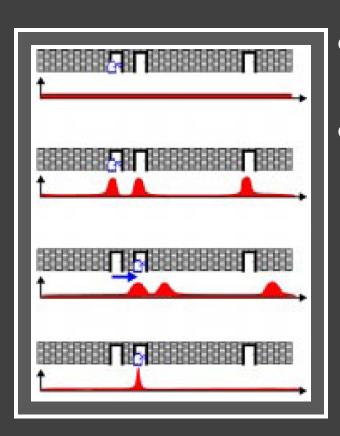
Thrun et al. (1998)



E-step (localize), M-step (expand map)

Kris Beevers Rensselaer Polytechnic Institute

Fox et al. (1999)



- Grid representation of pdfs
- Markov assumption (static world): measurements depend only on current pose
- → known path/map ⇒ future measurements independent of past measurements

Murphy (2000)

- Under Markov assumption, landmarks are independent when conditioned on trajectory
- Factor the map posterior (Rao-Blackwellization):

$$p(s^t, \Theta) = p(s^t) \prod_{n=1}^N p(\theta_n | s^t)$$

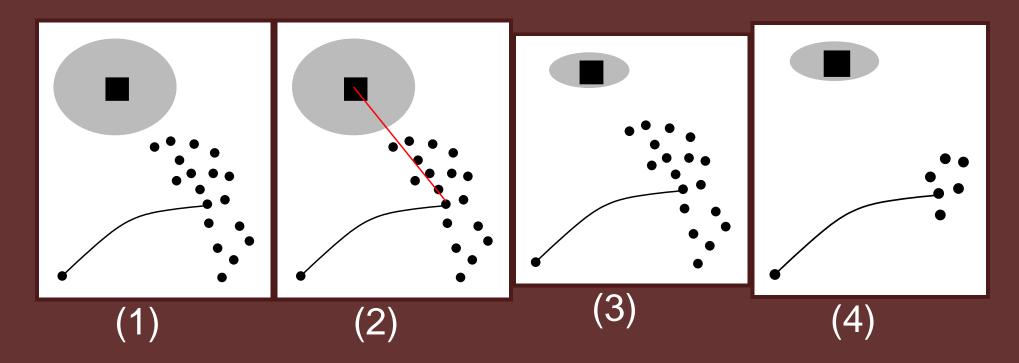
• Many small filters

Kris Beevers Rensselaer Polytechnic Institute

Thrun et al. (2004): FastSLAM

Kris Beevers <u>Rensse</u>laer Polytechnic Institute

Algorithm



Per-particle data association

- Different assignments of measurements to landmarks for each particle
- Multiple data association hypotheses
- Recall (Cox and Leonard, 1994)

Fastslam 2.0



Kris Beevers Rensselaer Polytechnic Institute

Convergence

• Converges for linear Gaussian models

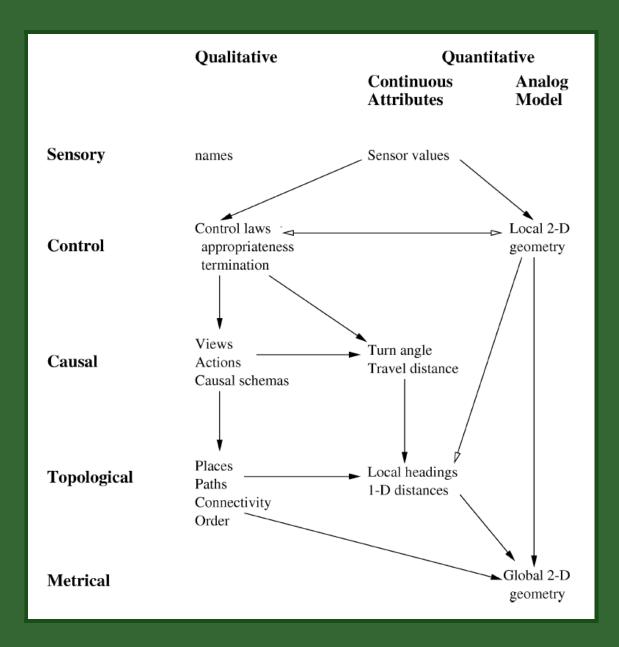
• No better SLAM convergence result is known

• Q: does FastSLAM converge for nonlinear, non-Gaussian models?

• **Q**: how many particles to converge?

Kuipers (2000): Spatial semantic hierarchy

Kris Beevers Rensselaer Polytechnic Institute



Loop closing in SSH

• "Rehearsal": active graph matching

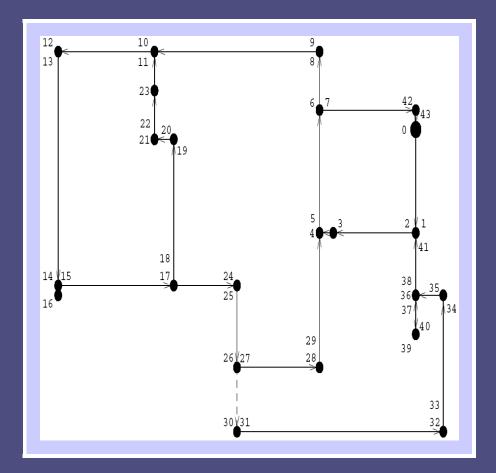
Recognized by Kuipers as the weakest link

- \hookrightarrow "effective but ad hoc"
- \hookrightarrow decisions? self-similarity? **uncertainty?** \hookrightarrow "should perhaps be replaced by a more
 - principled POMDP-based strategy"

Shatkay and Kaelbling (2002): Geometrically constrained HMMS

Kris Beevers Rensselaer Polytechnic Institute

Topological map as HMM



HMMS VS. POMDPS

• HMM:

- \hookrightarrow hidden state, transitions
- \hookrightarrow passive (no decision about where to go next)

• POMDP:

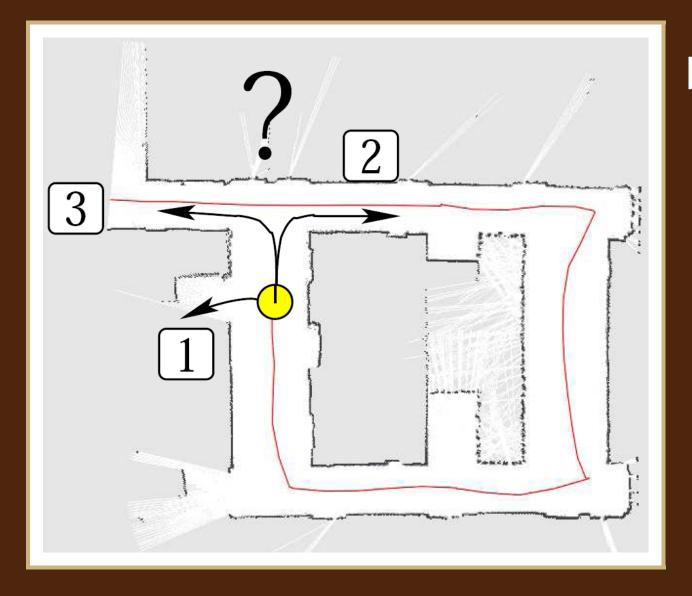
- \hookrightarrow hidden state, transitions
- \hookrightarrow controlled (robot decides where to explore)
- → computes tradeoff between reward (map expansion) and uncertainty (map accuracy)

HMMs with geometry

- Learning HMMs: evidence \equiv observations at states
- \hookrightarrow "sensing signatures"
- Why not incorporate odometry information?
- \hookrightarrow HMMs augmented with geometric relationships \hookrightarrow consistency enforced
- Faster convergence, better accuracy
- Requires major assumptions: **# states known**

Stachniss et al. (2005): Information-gain based exploration

Kris Beevers Rensselaer Polytechnic Institute



Exploration vs. Accuracy

Cost vs. Utility

Utility: Information gain

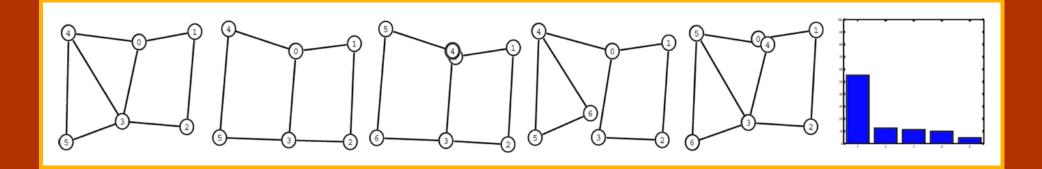
- Pick action that minimizes cost and maximizes information
- \hookrightarrow like a POMDP with one-step lookahead
- Maximizing information \equiv minimizing entropy $H(p(s^t | \text{data})) + \sum_i p(s_i^t | \text{data}) \cdot H(\Theta_i | s_i^t, \text{data})$

Details

- Approximating information gain is hard
- \hookrightarrow averaging of pose entropies in trajectories
- → ray casting over expected action trajectory to approximate measurements and guess change in map
- \hookrightarrow statistics for unexplored cells
- Actions: exploration, revisiting, loop-closing

Ranganathan et al. (2005): Topological mapping as Bayesian inference

Kris Beevers Rensselaer Polytechnic Institute



Inference in the space of topologies:

- 1: Start with valid topologies T_i
- 2: for each measurement do
- 3: for all samples do
- 4: Propose new topology T'_i
- 5: Compute likelihood $p(T'_i|data)$
- 6: Resample based on likelihood

Details

- Space of topologies ≡ set partitions of measurements
- Proposal distribution: split or merge nodes
- Requires known priors:
- $\label{eq:started} \hookrightarrow \text{ locations of distinctive places} \\ \hookrightarrow \text{ topologies / # of places}$

Prognostication

• Has been: topological or geometrical

Will be: topological and geometrical
→ topometrical?
→ metrilogical?

Thank you!

References

- R. Chatila and J.-P. Laumond. Position referencing and consistent world modeling for mobile robots. In *Proceedings of the 1985 IEEE* International Conference on Robotics & Automation, pages 138–145, St. Louis, March 1985.
- H. Choset and K. Nagatani. Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization. *IEEE Transactions on Robotics & Automation*, 17(2):125–137, April 2001.
- I. Cox and J. Leonard. Modeling a dynamic environment using a Bayesian multiple hypothesis approach. *Artificial Intelligence*, 66:311–344, 1994.
- D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments. *Journal of Artificial Intelligence Research*, 11:391–427, November 1999.
- K. Konolige. Improved occupancy grids for map building. *Autonomous Robots*, 4(4):351–367, December 1997.
- B. Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119(1-2):191–233, 2000.
- B.J. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. *Journal of Robotics and Autonomous Systems*, 8:47–63, 1991.
- J.J. Leonard, R. Rikoski, P. Newman, and M. Bosse. Mapping partially observable features from multiple uncertain vantage points. *Intl. Journal of Robotics Research*, 21(10):943–975, October 2002.

F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. *Autonomous Robots*, 4(4):333–349, October 1997.

- K.P. Murphy. Bayesian map learning in dynamic environments. In *Advances in Neural Information Processing Systems*, volume 12, pages 1015–1021. MIT Press, 2000.
- D. Pagac, E.M. Nebot, and H. Durrant-Whyte. An evidential approach to map-building for autonomous vehicles. *IEEE Transactions on Robotics & Automation*, 14(4):623–629, August 1998.
- A. Ranganathan, E. Menegatti, and F. Dellaert. Bayesian inference in the space of topological maps. *IEEE Transactions on Robotics*, 2005. in press.
- H. Shatkay and L.P. Kaelbling. Learning geometrically-constrained Hidden Markov Models for robot navigation: Bridging the topological-geometrical gap. *Journal of Artificial Intelligence Research*, 16:167–207, 2002.
- R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In I. Cox and G. Wilfong, editors, *Autonomous Robot Vehicles*, pages 167–193. Springer-Verlag, 1990.
- C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using Rao-Blackwellized particle filters. In *Proc. Robotics: Science and Systems (RSS05)*, Cambridge, MA, June 2005.
- S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and localization for mobile robots. *Machine Learning*, 31: 29–53, 1998.
- S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot. FastSLAM: An efficient solution to the simultaneous localization and mapping problem with unknown data association. *Journal of Machine Learning Research*, 2004. to appear.