Software Considerations for Robots in a
Multi-robot System

Kris Beevers
Rensselaer Polytechnic Institute
Algorithmic Robotics Laboratory

beevekOcs.rpi.edu

April 16, 2003

Overview

e We're making a new mobile robot platform, to be used in multi-robot
systems

e Relatively powerful computing onboard; to be capable of performing
moderately difficult tasks autonomously

e It needs software!

— Operating System

— Low-level control of hardware

— Higher-level ‘API’

— An “architecture” (e.g. reactive, deliberative, hybrid)

— Bonus functionality (e.g. built-in mapping, localization, etc.)

Software Scope

From the basics . ..

— setting motor velocities
— getting and reporting sonar readings

To the not-so-basics

— reactiveness to the environment

— motion planning

— task-level planning

— mapping/localization

— inter-robot communication and cooperation

A Few Requirements

A number of requirements drive our decisions; here are a few:

Would like to be able to build in reactive “behaviors’ that we can
enable/disable

Would like to be able to incorporate high-level “bonus functionality” (such as
mapping) when desired, in a modular fashion

Require extensibility:

— new hardware devices
— new reactive behaviors
— new “bonus functionalities”

An Early Proposal

Auxiliary Services

Deliberative Component

¢

¢

__»

High-level API Reactive Component

{o—

#

J

Low-level software ("drivers")

#

J

Hardware 1 RTOS

Operating Systems

e Hardware dependence: we can assume our platform will have an onboard
x86, PowerPC or something approximately equivalent
e Need realtime responsiveness when talking to the hardware

— collection of sensory data
— motor control

e Hard Realtime Operating Systems!

— offer guaranteed worst-case response times on hardware interrupts

RTOS Commercial Alternatives

e QNX, vxWorks, TimeSys Linux, ...

o QNX, vxWorks:

— proprietary microkernel

— proprietary APl (vxWorks at least has some POSIX compliance)
— closed source

— expensive!

— but: lots of documentation and commercial support

RTOS Commercial Alternatives (cont.)

TimeSys Linux

— modified Linux kernel with preemption

— a number of proprietary kernel modules for performance, features, etc.

— much better performance than default Linux, but not close to microkernel
performance

— free version available, missing features/support

RTOS Free Alternatives

e Patched Linux kernel, RTLinux, RTAI

e Kernel patched for preemption—1-5 ms response time but not really a “hard”

RTOS

e RTLinux, RTAI

— separate high-performance microkernel that runs the Linux kernel as its
lowest priority process

— realtime code runs in the microkernel with an interrupt response time
typically less than 15 us on x86 (better on PowerPC)

— communication with user-space applications (running in Linux) via FIFO
buffers, semaphores, POSIX signals, etc.

RTOS Free Alternatives (cont.)

e RTLinux is actually commercial but a free version with almost all of the
functionality is available (support and some nice development tools can be
bought if we want them)

e FSMLabs (RTLinux makers) also offer RTCore/BSD

e Why not tinker with all of the free ones and see which we like best?

— TimeSys (can get commercial version /support)
— RTLinux (can get commercial version /support)
— RTAI

Low-Level Control Of Hardware

E.g. set motor velocity or get current sonar range
Think of this as mostly being ‘drivers’ for devices
What is/isn't going to be done in hardware?

This ‘layer’ will make use of RTOS: this makes it hard to debug, so keep it
simple!

It probably doesn’t matter too much how we implement this layer since it

will rarely be seen by end users (except maybe by someone working on
completely reactive stuff)

10

Higher-Level API

e Provide a higher-level abstraction for controlling the hardware
e For example: methods that take a path and follow it

e But remember, “controlling hardware” doesn’t just mean moving the robot
around!

— controlling sensors/collecting data (especially things like a camera, where
there is definitely room for abstraction between direct control and the

user-space application)
— communication with other robots, with computers, etc.

e Provide functionality here that is independent of “architecture”

— once we get to this stage, are we already defining the architecture?

11

We Need An Architecture!

Typically hear about reactive, deliberative, hybrid architectures
Reactive architecture might act on a fairly low level (might want ability to
run realtime code!)

— hybrid architectures might demand this too!

How much functionality should our architecture provide?

— “go forward 5m at 0.5 m/s"

_ ugo tO (,CE, y)n
— “go to (x,y) without hitting anything”
— “go get me a Coke”

Probably want all of these, though we can get our own Cokes for now

12

My Vote: Simple Hybrid Architecture

Benefits of both reactive and deliberative architectures
Keep It Simple Stupid: for both developers and end users

Lots of crazy examples of architectures with “radical new ideas” but none
seem to provide much improvement over a broad range of applications

We can add bonus functionality (services) in a modular fashion on demand
(like localization, mapping, vision stuff, etc.)

13

Other Architectures to Look At: AuRA

From R. Arkin, Georgia Institute of Technology
Hybrid architecture
Two “separate” systems (reactive/deliberative) that interface to each other

Makes use of a priori information as well as dynamically-acquired data

14

Other Architectures to Look At: Saphira

e From K. Konolige, Stanford Research Institute

e “Local Perceptual Space”: geometric representation of space around robot

— incorporates various levels of interpretation of sensor information
— occupancy grids, analytic representations (such as linear surfaces),
semantic descriptions (“door” or “wall”)

e "Perception routines” and “action routines,” connected by the “Procedural
Reasoning System”

— incorporates mapping, localization, topological planner, etc.

15

Multi-robot Architectures

We need to think about how multi-robot coordination fits into our plans!

A few to look at:

— L. Parker: ALLIANCE

— R. Simmons: market-based cooperation
— GRASP Lab: tightly-coupled cooperation
— many others

“Bonus Functionality”

|.e. “services’ to extend our architecture
Mapping

Localization

Vision stuff

Others have done people-tracking, gesture recognition, voice recognition, etc.

— mostly stuff we probably don't care about for now
— but our system should still allow stuff like this to be incorporated!

17

Mapping

The standard approach: occupancy grids

— still works! but lots of improvements have been developed

— Dempster-Shafer model

— K. Konolige: improvements to occupancy grids in specular/realtime
environments

— A. Zelinsky: ‘certainty grid quadtree’

Topological mapping
3D mapping (S. Thrun has lots of neat stuff)

Multi-robot mapping

18

Localization
e Kalman filtering
e Particle filtering (Monte-Carlo localization)

e Collaborative localization

19

Concurrent Mapping and Localization!

e Thrun, Fox, Burgard: alternate mapping and localization steps to improve
map and location estimates

e J. Leonard, H. Feder: “decoupled stochastic mapping” (linear scaling of
memory requirements with size of area being explored)

e |ots of others!

20

The Early Proposal Again

__a
Deliberative Component
I
O
> ¢ ¢
3 B
> High-level API Reactive Component
i I
<
E ¢ ¢
—>r Low-level software ("drivers")
Hardware 1 RTOS

21

Where To Go From Here

Need to make some choices

— operating system
— languages (how much C++7)
— more concrete architecture decisions

Get down to specifics

— design documents

— interface specifications
— time estimates

— more fun stuff like that!

22

References

[1] R.C. Arkin and D. MacKenzie. Planning to behave: A hybrid
deliberative /reactive control architecture for mobile manipulation. In 1994

International Symposium on Robotics and Manufacturing, pages 5-12,
Maui, Hawaii, August 1994.

[2] K. Konolige. Improved occupancy grids for map building. Autonomous
Robots, 4(4), December 1997.

[3] K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti. The Saphira
architecture: A design for autonomy. Journal of experimental & theoretical
artificial intelligence: JETAI, 9(1):215-235, 1997.

[4] J.J. Leonard and H.J.S. Feder. A computationally efficient method for
large-scale concurrent mapping and localization. In J. Hollerbach and

23

[5]

[6]

[7]

8]

D. Koditschek, editors, International Symposium on Robotics Research,

pages 169-176, 1999.

H.P. Moravec and A. Elfes. High resolution maps from wide angle sonar.
In Proceedings of the 1985 IEEE International Conference on Robotics &
Automation, pages 116-121, 1985.

D. Pagac, E.M. Nebot, and H. Durrant-Whyte. An evidential approach to

map-building for autonomous vehicles. /EEE Transactions on Robotics &
Automation, 14:623-629, 1998.

L.E. Parker. ALLIANCE: an architecture for fault-tolerant multi-robot
cooperation. IEEE Transactions on Robotics & Automation,
14(2):220-240, 1998.

R. Simmons, T. Smith, M.B. Dias, D. Goldberg, D. Hershberger,

24

A. Stentz, and R. Zlot. A layered architecture for coordination of multiple
robots. In A. Schultz and L. Parker, editors, Multi-Robot Systems: From
Swarms to Intelligent Automata. Kluwer, 2002.

[9] T.G. Sugar and V. Kumar. Multiple cooperating mobile manipulators. In
Proceedings of the 1999 IEEE International Conference on Robotics &
Automation, pages 1538-1543, Detroit, Michigan, 1999.

[10] S. Thrun, D. Fox, and W. Burgard. Probabilistic mapping of an
environment by a mobile robot. In Proceedings of the 1998 IEEE

International Conference on Robotics & Automation, pages 1546-1551,
1998.

[11] A. Zelinsky. A mobile robot exploration algorithm. IEEE Transactions on
Robotics & Automation, 8(6):707-717, 1992.

25

