
Software Considerations for Robots in a

Multi-robot System

Kris Beevers
Rensselaer Polytechnic Institute
Algorithmic Robotics Laboratory

beevek@cs.rpi.edu

April 16, 2003



Overview

• We’re making a new mobile robot platform, to be used in multi-robot
systems

• Relatively powerful computing onboard; to be capable of performing
moderately difficult tasks autonomously

• It needs software!

– Operating System
– Low-level control of hardware
– Higher-level ‘API’
– An“architecture” (e.g. reactive, deliberative, hybrid)
– Bonus functionality (e.g. built-in mapping, localization, etc.)

1



Software Scope

• From the basics . . .

– setting motor velocities
– getting and reporting sonar readings

• To the not-so-basics

– reactiveness to the environment
– motion planning
– task-level planning
– mapping/localization
– inter-robot communication and cooperation

2



A Few Requirements

• A number of requirements drive our decisions; here are a few:

• Would like to be able to build in reactive“behaviors” that we can
enable/disable

• Would like to be able to incorporate high-level“bonus functionality” (such as
mapping) when desired, in a modular fashion

• Require extensibility:

– new hardware devices
– new reactive behaviors
– new“bonus functionalities”

3



An Early Proposal

Hardware RTOS

Low-level software ("drivers")

High-level API Reactive Component

Deliberative Component

A
ux

ili
ar

y 
Se

rv
ic

es

4



Operating Systems

• Hardware dependence: we can assume our platform will have an onboard
x86, PowerPC or something approximately equivalent

• Need realtime responsiveness when talking to the hardware

– collection of sensory data
– motor control

• Hard Realtime Operating Systems!

– offer guaranteed worst-case response times on hardware interrupts

5



RTOS Commercial Alternatives

• QNX, vxWorks, TimeSys Linux, . . .

• QNX, vxWorks:

– proprietary microkernel
– proprietary API (vxWorks at least has some POSIX compliance)
– closed source
– expensive!
– but: lots of documentation and commercial support

6



RTOS Commercial Alternatives (cont.)

• TimeSys Linux

– modified Linux kernel with preemption
– a number of proprietary kernel modules for performance, features, etc.
– much better performance than default Linux, but not close to microkernel
performance

– free version available, missing features/support

7



RTOS Free Alternatives

• Patched Linux kernel, RTLinux, RTAI

• Kernel patched for preemption—1-5 ms response time but not really a“hard”
RTOS

• RTLinux, RTAI

– separate high-performance microkernel that runs the Linux kernel as its
lowest priority process

– realtime code runs in the microkernel with an interrupt response time
typically less than 15 µs on x86 (better on PowerPC)

– communication with user-space applications (running in Linux) via FIFO
buffers, semaphores, POSIX signals, etc.

8



RTOS Free Alternatives (cont.)

• RTLinux is actually commercial but a free version with almost all of the
functionality is available (support and some nice development tools can be
bought if we want them)

• FSMLabs (RTLinux makers) also offer RTCore/BSD

• Why not tinker with all of the free ones and see which we like best?

– TimeSys (can get commercial version/support)
– RTLinux (can get commercial version/support)
– RTAI

9



Low-Level Control Of Hardware

• E.g. set motor velocity or get current sonar range

• Think of this as mostly being ‘drivers’ for devices

• What is/isn’t going to be done in hardware?

• This ‘layer’ will make use of RTOS: this makes it hard to debug, so keep it
simple!

• It probably doesn’t matter too much how we implement this layer since it
will rarely be seen by end users (except maybe by someone working on
completely reactive stuff)

10



Higher-Level API

• Provide a higher-level abstraction for controlling the hardware

• For example: methods that take a path and follow it

• But remember,“controlling hardware”doesn’t just mean moving the robot
around!

– controlling sensors/collecting data (especially things like a camera, where
there is definitely room for abstraction between direct control and the
user-space application)

– communication with other robots, with computers, etc.

• Provide functionality here that is independent of“architecture”

– once we get to this stage, are we already defining the architecture?

11



We Need An Architecture!

• Typically hear about reactive, deliberative, hybrid architectures

• Reactive architecture might act on a fairly low level (might want ability to
run realtime code!)

– hybrid architectures might demand this too!

• How much functionality should our architecture provide?

– “go forward 5m at 0.5 m/s”
– “go to (x, y)”
– “go to (x, y) without hitting anything”
– “go get me a Coke”

• Probably want all of these, though we can get our own Cokes for now

12



My Vote: Simple Hybrid Architecture

• Benefits of both reactive and deliberative architectures

• Keep It Simple Stupid: for both developers and end users

• Lots of crazy examples of architectures with“radical new ideas”but none
seem to provide much improvement over a broad range of applications

• We can add bonus functionality (services) in a modular fashion on demand

(like localization, mapping, vision stuff, etc.)

13



Other Architectures to Look At: AuRA

• From R. Arkin, Georgia Institute of Technology

• Hybrid architecture

• Two“separate” systems (reactive/deliberative) that interface to each other

• Makes use of a priori information as well as dynamically-acquired data

14



Other Architectures to Look At: Saphira

• From K. Konolige, Stanford Research Institute

• “Local Perceptual Space”: geometric representation of space around robot

– incorporates various levels of interpretation of sensor information
– occupancy grids, analytic representations (such as linear surfaces),
semantic descriptions (“door”or“wall”)

• “Perception routines”and“action routines,”connected by the“Procedural
Reasoning System”

– incorporates mapping, localization, topological planner, etc.

15



Multi-robot Architectures

• We need to think about how multi-robot coordination fits into our plans!

• A few to look at:

– L. Parker: ALLIANCE
– R. Simmons: market-based cooperation
– GRASP Lab: tightly-coupled cooperation
– many others

16



“Bonus Functionality”

• I.e. “services” to extend our architecture

• Mapping

• Localization

• Vision stuff

• Others have done people-tracking, gesture recognition, voice recognition, etc.

– mostly stuff we probably don’t care about for now
– but our system should still allow stuff like this to be incorporated!

17



Mapping

• The standard approach: occupancy grids

– still works! but lots of improvements have been developed
– Dempster-Shafer model
– K. Konolige: improvements to occupancy grids in specular/realtime
environments

– A. Zelinsky: ‘certainty grid quadtree’

• Topological mapping

• 3D mapping (S. Thrun has lots of neat stuff)

• Multi-robot mapping

18



Localization

• Kalman filtering

• Particle filtering (Monte-Carlo localization)

• Collaborative localization

19



Concurrent Mapping and Localization!

• Thrun, Fox, Burgard: alternate mapping and localization steps to improve
map and location estimates

• J. Leonard, H. Feder: “decoupled stochastic mapping” (linear scaling of
memory requirements with size of area being explored)

• Lots of others!

20



The Early Proposal Again

Hardware RTOS

Low-level software ("drivers")

High-level API Reactive Component

Deliberative Component

A
ux

ili
ar

y 
Se

rv
ic

es

21



Where To Go From Here

• Need to make some choices

– operating system
– languages (how much C++?)
– more concrete architecture decisions

• Get down to specifics

– design documents
– interface specifications
– time estimates
– more fun stuff like that!

22



References

[1] R.C. Arkin and D. MacKenzie. Planning to behave: A hybrid
deliberative/reactive control architecture for mobile manipulation. In 1994
International Symposium on Robotics and Manufacturing, pages 5–12,
Maui, Hawaii, August 1994.

[2] K. Konolige. Improved occupancy grids for map building. Autonomous
Robots, 4(4), December 1997.

[3] K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti. The Saphira
architecture: A design for autonomy. Journal of experimental & theoretical

artificial intelligence: JETAI, 9(1):215–235, 1997.

[4] J.J. Leonard and H.J.S. Feder. A computationally efficient method for
large-scale concurrent mapping and localization. In J. Hollerbach and

23



D. Koditschek, editors, International Symposium on Robotics Research,
pages 169–176, 1999.

[5] H.P. Moravec and A. Elfes. High resolution maps from wide angle sonar.
In Proceedings of the 1985 IEEE International Conference on Robotics &

Automation, pages 116–121, 1985.

[6] D. Pagac, E.M. Nebot, and H. Durrant-Whyte. An evidential approach to
map-building for autonomous vehicles. IEEE Transactions on Robotics &

Automation, 14:623–629, 1998.

[7] L.E. Parker. ALLIANCE: an architecture for fault-tolerant multi-robot
cooperation. IEEE Transactions on Robotics & Automation,
14(2):220–240, 1998.

[8] R. Simmons, T. Smith, M.B. Dias, D. Goldberg, D. Hershberger,

24



A. Stentz, and R. Zlot. A layered architecture for coordination of multiple
robots. In A. Schultz and L. Parker, editors, Multi-Robot Systems: From

Swarms to Intelligent Automata. Kluwer, 2002.

[9] T.G. Sugar and V. Kumar. Multiple cooperating mobile manipulators. In
Proceedings of the 1999 IEEE International Conference on Robotics &

Automation, pages 1538–1543, Detroit, Michigan, 1999.

[10] S. Thrun, D. Fox, and W. Burgard. Probabilistic mapping of an
environment by a mobile robot. In Proceedings of the 1998 IEEE

International Conference on Robotics & Automation, pages 1546–1551,
1998.

[11] A. Zelinsky. A mobile robot exploration algorithm. IEEE Transactions on

Robotics & Automation, 8(6):707–717, 1992.

25


