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Disclaimer!

I will eventually talk about something new and exciting

• But first there is a lot of background

• And the new stuff is sort of technical

• So I’ll only have three slides on the new stuff

• And then I’ll just show a bunch of plots

• And you’ll just have to sort of trust me that everything is correct

• (Or you can read the paper)

• But of course:
– If you see an equation that is simply too beautiful to let slip by . . .
– Please ask about it!
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SLAM

SLAM: simultaneous localization and mapping

• Concurrently estimate:

– map xm = [xm
1 . . . xm

n ]T

– robot pose xr
t = [xt yt θt]T (or trajectory xr

1:t)

• Given:

– control inputs u1:t = [dt αt]T (translation, rotation)
– observations z1:t (e.g., laser, IR, SONAR)
– correspondences n1:t : z → xm

p(xr
1:t, xm|u1:t, z1:t, n1:t)
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raw data (laser + odometry)

landmark map

occupancy map
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Basic algorithm (landmark based SLAM)

1: loop
2: Move according to ut
3: Predict new pose x̂r

t
4: Acquire sensor readings and extract features zt
5: Compute correspondences nt
6: Update pose/map estimate p(xr

t , xm) based on
observed landmarks

7: Add new landmarks to map
8: end loop

• Typically implemented using Bayesian filtering:

p(xt|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior

= η p(zt|xt, nt)︸ ︷︷ ︸
measurement

∫
p(xt|xt−1, ut)︸ ︷︷ ︸

motion

p(xt−1|u1:t−1, z1:t−1, n1:t−1)︸ ︷︷ ︸
prior

dxt−1
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RBPF SLAM

RBPF: Rao-Blackwellized particle filtering

• Compute posterior over trajectories and maps

• Markov assumption: landmarks independent conditioned on trajectory
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p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior over trajectories

n

∏
i=1

p(xm
i |xr

1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior over landmark i
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RBPF SLAM algorithm: “FastSLAM 1”

1: loop
2: Move/sense/extract features
3: for all particles φi do
4: Project forward: xr,i

t ∼ p(xr
t |x

r,i
t−1, ut)

5: Do data association (compute ni
t), update map

6: Compute weight: ωi
t = ωi

t−1 × p(zt|xr,i
t , xm,i, ni

t)
7: end for
8: Resample (with replacement) according to ωi

ts
9: end loop
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Improved proposal

robot pose
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• Standard RBPF doesn’t use zt in “proposing” the pose xr
t

• Typically p(zt|xr
t , nt, xm) is much more precise than p(xr

t |xr
t−1, ut)

• So, only a few samples are highly weighted

This leads to degeneracies

• “FastSLAM 2”: sample new poses from “improved proposal distribution”

p(xr
t |xr

t−1, ut, zt, nt, xm)

• This is (mostly) where things stand
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Rethinking the past

• Key idea: zt tells you something about xr
t . . .

– But also about xr
t−1, xr

t−2, . . .

• Ideally we should update our belief about every pose in the trajectory

– In RBPF: draw new samples for the entire trajectory, estimate new
maps for the new samples, etc.

– Big benefit: avoids degeneracies due to resampling
– Better representation of p(xr

1:t|·)
– Of course this isn’t feasible

• Maybe at least we can do something over a fixed lag time

– Draw new samples for xr
t−L+1:t

– Update maps from t − L conditioned on new samples
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Fixed-lag roughening

• After resampling, apply an MCMC move step to {xr,i
t−L+1:t}

• Fixed-lag Gibbs sampler for RBPF SLAM:

xr,i
t−L+1 ∼ p(xr

t−L+1|xr,i
1:t−L,t−L+2:t, u1:t, z1:t, n1:t)

. . .

xr,i
k ∼ p(xr

k|xr,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

. . .

xr,i
t ∼ p(xr

t|xr,i
1:t−1, u1:t, z1:t, n1:t)

p(xr
k|xr,i

1:k−1,k+1:t, u1:t, z1:t, n1:t) =

η
∫

p(zk|xr,i
k , nk, xm

nk
)︸ ︷︷ ︸

measurement

p(xm
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t)︸ ︷︷ ︸
landmark

dxm
nk

p(xr
k|xr,i

k−1, uk)︸ ︷︷ ︸
forward

p(xr
k|xr,i

k+1, uk+1)︸ ︷︷ ︸
backward

Fixed-lag sampling strategies for RBPF SLAM 9



Block proposal

• Draw {xr,i
t−L+1:t} from joint “L-optimal block proposal” distribution:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L)

• How to do it: forward filtering/backward sampling (Chib, 1996)

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t)︸ ︷︷ ︸

sampling distribution

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)︸ ︷︷ ︸
forward filtering

p(xr
k+1|xr,i

k , uk+1)︸ ︷︷ ︸
backward model

– Filter forward using an EKF

– Sample xr,i
t ∼ p(xr

t |u1:t, z1:t, n1:t, xr,i
t−L)

– Compute sampling distribution for xr,i
t−1 and sample

– Continue back to t − L + 1

• Need to reweight particles: ωi
t = ωi

t−1 p(zt|xr,i
1:t−L, u1:t, z1:t−1, n1:t)
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Results: sparse environment
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• 27 sec., no loops

• 50 Monte Carlo trials averaged for all results
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Norm. est. error sq. (NEES): (xr
t − x̂r

t)(P̂r
t)−1(xr

t − x̂r
t)T
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NEES ratio: NEES(alg) / NEES(FS2)
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# effective particles (N̂eff): 1/ ∑N
i=1

(
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Unique samples of each pose: |{xr,i
k |u1:t, z1:t, n1:t}|, k = 1 . . . t
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Results: dense environment
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• 63 sec., loop

• 50 Monte Carlo trials averaged for all results
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Norm. est. error sq. (NEES): (xr
t − x̂r

t)(P̂r
t)−1(xr

t − x̂r
t)T
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NEES ratio: NEES(alg) / NEES(FS2)
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# effective particles (N̂eff): 1/ ∑N
i=1

(
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Unique samples of each pose: |{xr,i
k |u1:t, z1:t, n1:t}|, k = 1 . . . t
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