SLAM with sparse sensing

Kris Beevers

Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu

October 19, 2005

SLAM

The problem

The goal
(Scan matching SLAM result courtesy of Brian Gerkey)

SLAM

- Build a map while localizing
- Approaches:
- ← EKF-driven: landmark based, scan matching
- Landmark based SLAM with EKF:

- \hookrightarrow State: $x(k) = [x_r(k) \ x_f(k)]$, where $x_f(k) = [x_{f_1} \ \dots \ x_{f_n}]$

Particle filters

- Given: an input (motion), motion model, measurement model
- N particles represent posterior (each has own state: pose, map)
 - 1: for all particles do
 - 2: Project pose forward: draw pose from motion model distribution
 - 3: Extract features, perform data association
 - 4: Compute innovation (actual predicted)
 - 5: Update map, initialize new features
 - 6: Compute particle weight \sim data association likelihood
 - 7: end for
 - 8: Resample particles w.p. proportional to weights

Covariance

Full covariance: $O(n^2)$

$$P_{x} = \begin{bmatrix} P_{x_{r}} & P_{x_{r}x_{f}} \\ P_{x_{r}x_{f}}^{T} & P_{x_{f}} \end{bmatrix} \quad P_{x_{f}} = \begin{bmatrix} P_{x_{f_{1}}} & P_{x_{f_{1}}x_{f_{2}}} & \dots & P_{x_{f_{1}}x_{f_{n}}} \\ P_{x_{f_{2}}x_{f_{1}}} & P_{x_{f_{2}}} & \dots & P_{x_{f_{2}}x_{f_{n}}} \\ \vdots & \vdots & \ddots & \vdots \\ P_{x_{f_{n}}x_{f_{1}}} & P_{x_{f_{n}}x_{f_{2}}} & \dots & P_{x_{f_{n}}} \end{bmatrix}$$

Particle filter: O(n) — each particle has

$$P_{\mathcal{X}} = \begin{bmatrix} P_{\mathcal{X}_r} & P_{\mathcal{X}_{f_1}} & P_{\mathcal{X}_{f_2}} & \dots & P_{\mathcal{X}_{f_n}} \end{bmatrix}$$

Sparse sensing

Laser rangefinder

Sparse array

- Cheap (5 infrared rangefinders: < US \$40), low power
- Problem: low density

SLAM with a pose history

- Do feature extraction on scan data from the last m poses
- Trades off measurement uncertainty and scan density
- J. Leonard, R. Rikoski, P. Newman, and M. Bosse. Mapping partially observable features from multiple uncertain vantage points. *IJRR*, 21(10):943–975, October 2002.
- \hookrightarrow Keep most recent m poses in the system state vector:

$$x_r(k) = [x_{t_k} x_{t_{k-1}} \dots x_{t_{k-m+1}}]$$

- Use EKF: high-fidelity, accounts for correlation between poses
- \hookrightarrow Massively expensive: $O((m+n)^2)$, plus feature extraction at every time step

Particle filtering with a pose history

- 1: **for all** particles p^i **do**
- Project state forward: draw $x_{t_k}^i$ from motion model distribution centered at $f(x_{t_{k-1}}^i, u(k-1))$, insert $x_{t_k}^i$ into $x_r^i(k)$, discard $x_{t_{k-m}}^i$
- 3: Extract features using last m scans and $x_r^i(k)$, do data association
- 4: Compute innovation, update map, initialize new features
- 5: Compute particle weight \sim data association likelihood
- 6: end for
- 7: Resample particles w.p. proportional to weights
- Each particle has a unique pose history: particles sample the space of the last m pose histories
- → need to extract features for every particle

SLAM with multiscans

- We want:
- One feature extraction for each SLAM iteration
- Simplifications we make:
- \hookrightarrow Group scans from m consecutive poses into a *multiscan*:

$$\mathbf{z}(k) = [z(k) \ z(k-1) \ \dots \ z(k-m+1)]$$

- \hookrightarrow Perform SLAM update only after each m steps

Algorithm

- 1: For m time steps: move and collect sparse scans
- 2: Extract features from multiscan using expected pose history
- 3: **for all** particles p^i **do**
- 4: **for** $i = (k m + 1) \dots k$ **do**
- 5: Project pose forward by drawing from motion model
- 6: **end for**
- 7: Data association between extracted features and map $x_f^i(k-m)$
- 8: Compute innovation, update map, initialize new features
- 9: Compute particle weight \sim data association likelihood
- 10: end for
- 11: Resample particles w.p. proportional to weights

The computational difference

- Feature extraction (\mathcal{Z}) and SLAM for every particle at every time step
- Each time step: $O(N \log n) + O(NZ)$

- Feature extraction (\mathcal{Z}) once every m time steps
- SLAM for every particle every *m* time steps
- Every m time steps: $O(N \log n) + O(\mathcal{Z})$

Innovation covariance

- $\bullet \ \mathcal{Z}(k) = g(\mathbf{z}(k), \mathbf{x}(k))$: measurement (feature extractor)
- Innovation: $\nu = \mathcal{Z}(k) Mx(k)$
- $\hookrightarrow M \equiv$ selection matrix, result of data association
- We want innovation covariance: $S = J_g P_{(\mathbf{z}, \mathbf{x})} J_g^T + M P_{\chi(k)} M^T$
- Problem: what are J_g , $P_{(\mathbf{z},\mathbf{x})}$?

$$P_{(\mathbf{z},\mathbf{x})} = \begin{bmatrix} P_{\mathbf{z}} & P_{\mathbf{z}\mathbf{x}} \\ P_{\mathbf{z}\mathbf{x}}^T & P_{\mathbf{x}} \end{bmatrix}$$

Maximum likelihood feature extraction

- J_g is hard to compute for complicated feature extractors
- H. White. Maximum likelihood estimation of misspecified models. *Econometrica*, 50(1):1–26, January 1982.
- MLE gives good covariance estimates for the parameters being estimated even for an approximately/poorly specified model
- Use MLE as a feature extractor to get a good approximation of S without computing $J_{\mathcal{S}}$
- We extract line segment features based on this

Results

Data from RADISH

USC SAL Building: Andrew Howard

CMU Newell-Simon Hall: Nick Roy

Stanford Gates Building: Brian Gerkey

- Full laser rangefinder datasets
- Keep only the measurements at 0° , 45° , 90° , 135° , and 180°
- FastSLAM 1.0, modified for sparse sensing SLAM

Results: USC SAL

Scans/multiscan	50
Particles	400
Sensing range	5m

Dimensions	$39m \times 20m$
Trajectory length	122m
Trajectory rotation	338 rad
Landmarks	145

Results: CMU Newell-Simon Hall

Scans/multiscan	40
Particles	600
Sensing range	3m

Dimensions	25m × 25m
Trajectory length	114m
Trajectory rotation	133 rad
Landmarks	168

Results: Stanford Gates Building

Scans/multiscan	18
Particles	1000
Sensing range	5m

Dimensions	64m × 56m
Trajectory length	517m
Trajectory rotation	495 rad
Landmarks	750

Results: sparse vs. scan matching

Sparse sensing (5 sensors)

Scan matching (full scan)

Tradeoffs of sparse sensing SLAM

- Using odometry to augment sensing:

- Sensitive to amount of uncertainty accumulated in a multiscan
- Scans/multiscan (m) is a "magic number"
- Too many approximations:
- → poor data association

This is the last slide!

Questions?