Complete Topological Mapping with Sparse Sensing

Wesley H. Huang Kristopher R. Beevers
Rensselaer Polytechnic Institute
Department of Computer Science
110 8th Street, Troy, New York 12180, U.S.A.
{whuang,beevek }@cs.rpi.edu

Abstract efficiency of subsequent navigation; and so on.

In this paper, we consider two types of sensing limitations:
This paper describes algorithms for a mobile robot with sparsgnited-range sensing and (additionally) sparse range sensing.
short-range sensing to create a topological map of an unknowe consider sensors such as the popular Shamangefind-
environment. While a limited array of sensors is appealing frogts, which have a maximum range of approximately 80 cm. In
the standpoint of having simpler and cheaper hardware, magany office buildings, such a robot would not even be able to
ping is more difficult because the robot cannot guarantee it Wiimultaneously sense both sides of a hallway! By “sparse sens-
detect obstacles as soon as they enter its sensing range. TiigS, we mean that the range to the closest obstacle is provided
the robot’s mapping strategy must ensure that all relevant pastly along a small number of directions from the robot. Our
of the environment are observed. Our approach constructs togshot model has eight range sensors at orientationsZofor
logical maps based on the SGVD a version of the saturated,, — 0, 1,...,7.
generalized Voronoi diagram defined under the distance Our focus is on mapping indoor spaces such as office build-

metric, which is well-suited to robots with sparse sensing. Wgqs  \we make the assumption that the environment consists
f!rst describe behaviors that allow a robot with an omnidireg; 5 (possibly nonconvex) rectilinear polygonal boundary and
tional short-range sensor to trace the SGY[and then extend pqiacies. Since most buildings are rectilinear in their basic

these behaviors to the sparse sensing case by introducing a“¥fycure, this is a reasonable assumption that enables us to for-
tual sensor” that tracks unseen obstacles and emulates the HH}rate complete algorithms.

put of the omnidirectional sensor. We show that our behaviorsWe create topological mas that are defined in terms of be-
are complete for the problem of mapping an arbitrary rectilirb- polog P

carentonment i nave mpemertad o mapping enavi = 11455 1 b oreren o o e o
and report the results of simulated experiments. ’ 9

spond to a behavior (or sequence of behaviors) that moves the
Bobot from one node to another. We have designed our behav-
lors so that the paths taken by the robot lie on the saturated
generalized Voronoi diagram (Acar, Choset, and Atkar, 2001)
under theL ., distance metric. This construct, which we refer

1 Introduction to as the SGVNQ,, contains paths that are either equidistant to
two obstacles or are at the “saturation distance” from one ob-

Mapping is a fundamental capability for mobile robots, allowstacle. For this reason, it is well suited for ropots using sensory
ing them to communicate spatial information about an enJgedback tofollow paths. The. norm results in paths that are
ronment and navigate through that environment using efficigi@Si€" for @ robot with sparse sensing to track and follow than
paths. While often done using powerful sensors such as scHIPSe for theL, (Euclidean) norm. We describe the Voronoi

ning laser rangefinders, it is possible to map and navigate in djagram, generalized Voronoi diagrams, the SGyand the

environment using a more limited array of sensors. Robots wittye NOM in Section 3.

limited sensing can be made very inexpensively, which qualifiesVVe first present mapping behaviors for a robot with a limited-
them for applications where a large number of potentially di§@nge omnidirectional sensor in Section 4, and then for a robot
posable robots would be required, e.g. hazard assessment With sparse limited-range sensing in Section 6. Our behaviors
contaminated building, urban reconnaissance, security patr®$,sparse sensing are very similar to those for omnidirectional
rescue operations, etc. sensing. This is possible because of a “virtual sensor,” de-
Another reason for our interest in sensing-limited robots is &fibed in Section 5, that monitors the inputs from the sparse
ultimately address fundamental questions about mapping: wg&fsors and maintains state, enabling it to compute an output
sensing is required for mapping; how limitations on sensing 4hat emulates that of the omnidirectional sensor.
fect the ability to map, the quality of the resulting maps, the Our behaviors are designed for an arbitrary rectilinear en-
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vironment, even though real rectilinear environments would loé hallways and use metric maps to represent rooms. We focus
far less complex. We show that these algorithms are completgiimarily on topological mapping with limited-range sensors,
a sense analogous to graph search, where a complete algoritrich are well-suited to mapping in narrow corridors. How-
visits every node in a connected component. Our algorithrager, we also map the perimeters of open spaces in the en-
are guaranteed to trace a connected component of the SGVI¥ironment. Our use of the saturated generalized Voronoi dia-
However, the robot is not guaranteed to map every area of t@am (Acar, Choset, and Atkar, 2001) to generate a map of the
environment — this would be completeness in the “coveragpérimeter of an open area is related to the idea of “coastal navi-
sense. In fact, no algorithm for coverage of an arbitrary engation” (Roy and Thrun, 1999) which recognizes that areas near
ronment by a robot with sparse sensing yet exists. walls and obstacles have “high information content” due to the
We have implemented our virtual sensor and sparse sendiegtures they produce.
behaviors in simulation, and we show several examples. WeOnce the robot has built a map of the boundaries of open
conclude in Section 7 with some observations on the tradeo#fieas, it can safely explore their interiors. Though we do not
for sensing limitations on mapping. address that problem in this work, we have discussed methods
elsewhere (Beevers, 2004; Huang and Beevers, 2004) that allow
a robot with short-range sensing to improve the connectivity of
its topological map in open spaces by “foraying” through the
We consider a differential drive robot with a small number dhteriors of open areas.
short-range sensors. These sensors return the distance to ti\ost research on topological mapping has focused on the
nearest obstacle along a straight line; they are “short-range’dnline construction of topological maps (Kuipers and Byun,
that their maximum range is small compared to the dimensioh891; Rybski et al., 2003; Shatkay and Kaelbling, 1997; To-
of the environment. var, LaValle, and Murrieta, 2003). Many researchers base their
There can be known error in the robot's movement, odomeaps on the idea of “behaviors,” simple control strategies that
try, and sensing. The main problem that arises because of #iigble a robot to travel between “distinctive places” in an en-
error is that of “closing loops” in the map — the robot must reg4ronment (Kuipers and Byun, 1991). In our approach, these
ognize when it has returned to a place it has already been. Watinctive places are meet points in the SGYDf an envi-
do not address the loop-closing problem in this paper. Howenment, which the robot is able to recognize based on several
ever, in previous work (Beevers and Huang, 2005), we hasénple conditions. Topological maps constructed using behav-
presented an evidential approach for solving the loop-closiiys generally consist of edges representing the execution of be-
problem that can be applied to robots with limited sensing. haviors and nodes representing the distinctive places where the
We assume an enclosed, static, rectilinear environment. Reghaviors terminate.
tilinearity is a strong assumption, but it removes uncertainty in Sensing capabilities affect a robot’s ability to map an envi-
the robot’s orientation, and it allows us to focus on the fund&nment, and the mapping and exploration problems have been
mental problem of mapping with limited sensing information.examined over a wide range of sensing modalities and limi-
tations. Deng, Kameda, and Papadimitriou (1998) discuss an
algorithm for observing all visible points in a rectilinear en-
2 Related work vironment with an infinite-range omnidirectional sensor, and
Rao (1989) and Rao and lyengar (1990) have built topological
There are two traditional paradigms for robotic mapping: metaps based on the Voronoi diagram and the visibility graph us-
ric maps and topological maps. In metric maps, e.g. (Pagawy an infinite-range omnidirectional sensor. Grabowski et al.
Nebot, and Durrant-Whyte, 1998; Thrun, 2002), the geomgt999) use “millibots” with short-rangeONAR sensors to build
try of the world is explicitly represented, either through exaehetric maps. Choset (1997) and Choset and Nagatani (2001)
or approximate representations. In topological maps (Kuiperave built topological maps by tracing Voronoi diagrams using
1978), “places” in the world (typically hallway junctions) area short-range omnidirectional sensor.
represented by vertices in a graph, and paths between placéa/e instead build our maps by tracing the SGYDus-
are represented by edges. Metric maps provide a detailed wand sparse short-range sensing, constructing the correspond-
representation but require more storage and are sensitiveniyp graph as we go. Though Acar, Choset, and Atkar (2001)
measurement errors. Topological maps offer a more concisgve the coverage problem using the SGVD, they do so under
representation of the environment that is easy to use for pthie L, distance metric and with omnidirectional limited-range
poses of navigation. sensing. Other researchers have used different techniques to
Some researchers have devised methods for extracting topddress mapping and exploration with sparse sensing. Butler,
logical maps from occupancy grid data (Chatila and Laumonijzzi, and Hollis (2001) describe coverage (equivalent to metric
1985; Thrun and Bcken, 1996). Others have combined thenapping) using robots with only contact sensors but with near-
topological and metric approaches by using “local” metric mapeerfect odometry. Doty and Seed (1994) have shown prelim-
at nodes in topological maps (Duckett and Saffiotti, 200@ary results in creating a “landmark map” using a robot with
Thrun et al., 1998). For example, Tomatis, Nourbakhsh, afmlur short-range infrared sensors and one long-range (and non-
Siegwart (2002) use a topological map to represent a netwaparse) SONAR sensor, but it is not clear that their algorithm is

1.1 Assumptions



suitable for arbitrary environments. N
Erdmann (1995) has examined the question of what sensg- m=— , N —
ing is required to perform certain tasks. Toward that end, he | N g 1

proposed a “top-down” design method for constructing sensors

that provide exactly the information required to perform a task.
Though Erdmann’s work focuses mainly on manipulation tasks,
the questions he asks are relevant to mapping. In this work, we
show that mapping can be performed even with significant lim; —. , —
itations on the robot’s sensing capabilities. I — .

3 Properties of the L., norm and the
SGVD, .

The basic mapping strategy followed by our robots is to trace > N N
the saturated generalized Voronoi diagram of the environment N
using theL, distance metric (the SGVD). Meet points in
the diagram constitute vertices in the topological map, and séggure 1: Bisectors of two open-ended line segments under the
ments in the diagram are edges in the map. In this section, ¥vg metric.

define the SGVIQ, and introduce properties of the SGYD
and theL., metric that are important to tracing the SGYD
with sparse, short-range sensing.

3.1 The Voronoi diagram, GVD, and GVD,,

The Voronoi diagram(Aurenhammer, 1991) is a fundamental
structure in computational geometry. Given a set of point
(calledsiteg in the plane, the Voronoi diagram can be defined
as the locus of points equidistant to the two closest sites. Al-
ternatively, the Voronoi diagram can be defined as the unionEijure 2: Examples of the GVD and SGVD,,. Shaded areas
the boundaries of theoronoi regionsof the sites; the Voronoi are regions of points equidistant to two or more walls.
region of a site is the set of points closer to that site than to

any other. The Voronoi diagram can also be defined in higher . ] .
dimensions, under different topologies, and with different di& ©ne dimensional curve, typically one of the boundary curves.

tance metrics (Lee, 1980). When the sites are not points, tHe€ bisector between two line segment sites uddeihas sim-
result is ageneralized Voronoi diagrarGVD) (Kirkpatrick, ilar properties to that between two points; Figure 1 shows sev-
1979; Lee and Drysdale, 1981). eral examples. _

We will define a version of the GVD under the,, metric _ Following (Aurenhammer, 1991), we define a *half plane”
that we refer to as the GVD. The GVD,, will be defined for for @ pair of sitess;, s; € S, whereS is the set of all sites. Our
axis-aligned rectilinear polygons that are represented by sip@df plane is thepenset of points on one side of a bisector, i.e.:
that are open line segments. Our G_gél_:)s slightly differe_nt h(si,s;) = {r € R2 | doo(r, 51) < doo(r, s;)} )
than the usual GVD under the,, metric in the way we define
bisectors and half planes. This is not a half plane in the traditional sense because it is not

The L., distance metric defines the distance between twecessarily bounded by a straight line. Also, the boundary of a
pointsp andq as: half-plane may be a proper subset of a bisector; this only occurs

when the bisector is not one-dimensional.
d(p,q) = max |p; — ¢ 1) The Voronoi region of a site is the locus of points closer to
‘ that site than to any other sité/(s;) = (,; h(si,s;). We

Note that under thd ., norm, the locus of points equidistantdefine the GVI, to be the union of all Voronoi region bound-
from a given point (a circle unddr,) is an axis-aligned squarearies: GVD,(S) = |J, 9V (s;). The GVD,, in R? is a one-
underL,. Bisectors between two points undeg, may consist dimensional construct that partitions the plane into the Voronoi
of multiple segments or even include unbounded regions. Qegions and regions of equidistant points. It is composed en-
definition of a bisector differs from the usual approach taken tirely of straight line segments; each edge is on the boundary of
defining a Voronoi diagram under,, because we include all a bisector. “Meet points” are junctions of two or more edges;
equidistant points, even though this results in a bisector thatl&se points are equidistant from the closest three or more sites.
not always one dimensional; the usual approach is to choddgure 2 shows an example.

GVDo SGVD,



3.2 The SGVD, Proof: The directional derivative of [a] can be written

The saturated generalized Voronoi diagra(®GVD) (Acar,

Choset, and Atkar, 2001) is a modification of the GVD that df

can be constructed by robots with limited-range sensors. In re- ds

gions where the distance to the two closest sites is less than the ) ,

“saturation distancef'sy, the SGVD is identical to the GVD. At th?n the;frobot is not on a diagonal to an obstacle vertex, one

points on the GVD that are equidistant to two sites, and whe?& @ OF a; must be 0 and the otherl by the definition of

the distance to the sites is equahtg, the SGVD “diverges,” the Lo, norm (Equation 1). This implies thgt can always be

maintaining the saturation distance to one site. We define tgtten in the formeos(¢ — n %) for some integer..

SGVD,, in the same manner with respect to the GYD The derivative is not continuous across diagonals, so in these
More formally, letM be the Minkowski sum of the sites withcases¢ = +%, +3T), the directional derivative depends upon

a “disk” with a radius equal to the saturation distance. (Und#te side of the diagonal in which lies. The resulting cases,

the L., metric, this disk is an axis-aligned square.) Then while lengthy, are straightforward to compute, yielding Equa-

[a](0) = % cosf + % sin 0 (5)

can define: tion 4. O
With this, we can now show that edge orientations in the
SGVD,, = (GVDo N M) UIM (3) GVD, are restricted.

The SGVD,, consists of a collection of line segments; eachemma 3.2 All edges in the GVR for a rectilinear environ-
segment is either saturated segmeffitom the boundary oM, ment have orientation? for some intege..

or anunsaturated segmerd# part of a bisector. In addition to the ] )

type of meet points found in the GVD, the SGVD,, contains Proof:  Pick a point on an edge of the GMD To de-
meet points where the GVD meets the boundary o¥/; these termine the direction of this edge, we consider the directional

are junctions of two or more segments that are equidistantdgrivative of the distance to each of the equidistant obstacles.
two or more sites atsa; Directions in which the directional derivatives are equal corre-

spond to the orientation of the edge.

. . We take two obstacles and set the directional derivatives
3.3 Orientations of paths equal:“fif—; = ‘fiif Using Equation 4, we get:
In order for arobot to trace the SGVD it must be able to com- T T
pute the orientations of edges locally based on the closest points cos (9 —ni 5) = cos (9 - ﬂzi) (6)
of equidistant obstacles. We now show that the orientations of
SGVD,, edges are restricted. This restriction is important &®r some integers; andn,. This can be simplified to:
traversing the SGVDQ, with sparse sensing, since it guarantees ]
a particular set of sensor orientations at all times. acost +bsing =0 )

First, we compute the directional derivative of the distan . - - . - . -

function. Let f[o] be the distance to an obstacle, parametef-herea = cos(m13) —cos(naz) andb = sin(ny 3) =sin(n. )

ved b the andle to the cl t point on the obstacl or integraln, no. Note thata, b € {—2,—1,0, 1,2} and when
€d bya, the angie 1o the closest point on the obstacle. ¥he o, orpis +2, the other must be. So the solutions of this
general, there will be multiple equidistant points on an obst

8guation aré € {0, £2, 7} when +2 41} andb = 0 or
cle underL, in which case we choose the closest of them?:e versa anfﬂ{e ’{i%’l}gl} Whaerela{b ” il}

’ 44 (A :
underL. The case where = b = 0 corresponds to either a point in
the interior of a region of equidistant points (which cannot be
on the GVD) or a point on the boundary of an equidistant
region that is on a diagonal to an obstacle vertex. In the latter

Lemma 3.1 The directional derivative off[«] as the robot
moves forward in directiofi is:

cos(0 —7) a€ (-, situation, value of,; andny for Equation 7 will only be valid
or (a :4_% and sin(6 — o) > 0) on!y over a 180 degree range @f Since '_[h_e GvVDR, cpntains
or (@ = = and sin(a — 6) > 0) points only on the boundary of the equidistant region and not
cos(d — 32) € (Z, ?irr) B in the interior, we must move at the limits of this range, which
>0 (@ A and sin(a — 0) > 0) must occur on the diagonal from the point, which must lie at
df or (= %’r and sin(6 — «) > 0) 0€{+F,£7}. _ . _
ds cos(0) ae (3,7 J[-m, —31) We state the following Lemma without proof:
— 3 :
or (a = Y and sin(f — a) > 0) Lemma 3.3 The boundary of the Minkowski sum of axis-
o (a ey an sin(a — ) > 0) aligned rectilinear polygons with an axis aligned square con-
cos(0 —3) ae (=, —F) sists of edges with orientations @t {0,+7,7}.
or (= —Z and sin(f — «) > 0)
or (a = —=f and sin(a — 0) > 0) Since the SGVL, is the union of the Minkowski sum bound-

(4) ary and a subset of the GVD, we have the following:



Theorem 3.4 The SGVD, contains edges only @ = n7= for Behavior: SITUATE
integral n. Behavior for situating the robot on the SG\YDfrom an arbi-

trary initial starting location.
Corollary 3.5 All meet points occur on a diagonal equidistant 1: if |A| > 1 then// get out of regions of equidistant points
from two of the closest walls. 2. Picka; € A arbitrarily and move in that direction until
Al=1
Proof: From Theorem 3.4, we know that all SGMD  3: e|s|,e ‘if|A\ = 0 then // nothing in sight

edges are at orientations that are multiples;ofTherefore, a 4.  Move forward until| 4| > 0
robot tracing the SGVR, must change its direction of travel s: end if
discontinuously (by a multiple of). j{[a] is discontinuous  6: if |[A| = 1 then // single obstacle closer than saturation
only whena € {+Z,£3%} j.e. on a diagonal between two  distance
walls. Diagonals are generally to the corner between two wallsz: ~ Move in directione; + 7 until one of the following oc-
but if the equidistant walls are perpendicular and do not inter- curs:
sect, the diagonal is to the point of intersection between the (s  Saturation distance is reached
lines through the walls. O ® Al >1

8: end if

9: MEET-POINT// determine direction to move

4 Tracing the SGVD, with an omnidi-

rectional sensor Behavior: SATURATED(0)

Traces a segment of the G\{Dat the saturation distance from

In this section, we describe behaviors with which a robot camrrent closest obstacles

trace the SGVLQ, using a short-range omnidirectional sensor.1. Letn — |A|

In Section 6, we extend these behaviors to the case in whichAa Continue moving in directioi, maintaining saturation dis-

robot has only sparse sensing. tance to obstacles af; . .. a,,

We assume a differential drive point robot with an omnidirec-3- Until one of the following occurs:

tional limited-range sensor. The pointrobot assumptionis made (a) |A| > n

to simplify the behaviors; it is essentially equivalent to the as- ) Anya € A4 becomest % or i%f andf ¢ {a, a4+ 7}

sumption that there are no walls in the environment smaller tham MEET-POINT

the radius of the robot, so by approaching as close as possible

to walls the robot will detect all obstacles. We assume that the

robot's range sensor maintains a set= {a, as, ..., an} Of  equidistant region. Since this point is also on the boundary of a

the angles to all closest equidistant obstacles that are wilhin \/oronoij region, it must be on the SG\VD

If there is more than one poin't ona single obstacle equidistanioinerwise there is only one closest obstacle, and the robot

underL., then the closest point undé, is chosen. must drive away from this obstacle until it first sees more than
one obstacle or until it reaches the saturation distance. At this

4.1 Situating on the SGVD,, point, the robot will be either on the boundary of a Voronoi
o _ _region or on a saturated edge, both of which are on the SGVD
When the robot is first turned on, it may not be at a location on 0

the SGVD,,. Therefore, it must “situate” itself on the SGVD

before it can begin mapping. TleTUATE behavior performs

the necessary actions. Though the robot may not be at a mée2 Tracing SGVD,, segments
point when thesITUATE behavior finishes, the EET-POINT be-

havior is used to determine directions of travel that are valid The_EPS?TUfRﬁTEPandSATulRATgD be?ar\]/lors are ea;:]h re-
from the robot’s initial location on the SGVD, since the re- SPO”S' _e or _0 ow_mg a s_mg_e edge 9. the SGXD T _ey
quired computations are the same. differ slightly in their termination conditions and also in the

sensory feedback required to follow the desired segment.
Lemma 4.1 The SITUATE behavior moves the robot from any The SATURATED behavior follows a line segment at the sat-
starting location to a point on the SG\VD uration distance from an obstacle. This is essentially a wall-
following behavior under thé ., distance metric. It is possible
Proof: If the robot sees more than one equidistant obstfr there to be multiple obstacles being tracked at the satura-
cle, it may be inside a region of equidistant points, so lines 14ign distance, but they must all be on one side of the robot and
move the robot toward the closest point on an obstacle urfllinear.
that obstacle is closest. Otherwise, if there were no visible ob-
stacles to begin with, the robot drives forward until it encouri-emma 4.2 The SATURATED behavior follows an SGVDR
ters one (lines 3-5). If it simultaneously encounters more thadge at the saturation distance and terminates when it reaches
one equidistant obstacle, then the robot is on the boundary af eneet point.



Behavior: UNSATURATED(f, ) Behavior: MEET-POINT
Traces a segment of the G\{Don the boundary of the Voronoi Behavior for determining valid outgoing paths at a meet point.

region for obstacle at; € A. 1: ComputeW, the set of all pairg6,i) where directiord
1: Letn = |A] lies on the boundary of the Voronoi region of the obstacle
2: Continue moving in directio, maintaining equidistance at «;. If at the saturation distance, exclude ghyhere
from obstacle atv, to other equidistant obstacles in A %[ai](ﬁ) > 0.
3: Until one of the following occurs: 2: if at the saturation distantleen
™ |4 >n 3:  ComputeY, the set of all pairgé, ) where%[ai](e) =
® Any o € A becomestZ or +2F andf ¢ {a, a + } 0 andVa,eca %[aj](g) >0
(¢) Saturation distance is reached 4: ComputeC, the set of uniqué in pairs fromi¥ andY’
4: MEET-POINT 5: Choose an elementfrom C

6: Start moving in the direction
. 7. if (¢,*) € W then

Proof: All points on a saturated edge must be atthe satuz. | ot 5 pe the index from any pair(c,i) € W
ration distance from all the closest equidistant obstacles, so the UNSATURATED(c, )
directiond satisfiesj{[a}(e) = 0forall a € A. This condition . o|5e
is met when called from theEET-POINT behavior. 11:  SATURATED(c)

The behavior should terminate when it reaches a locatiqy. anq if

where the robot must change direction to maintéém: 0,
or when new obstacles are encountered and a choice of which

obstacles to track must be made. Thus, termination conditiq_rli;mma 4.3 TheUNSATURATED behavior follows an SGVD

are: .
(A When a new obstacle is detected at the equidistant ran %Qn?e”t on the poundary of at Ieast. one Voronoi region and
rminates when it reaches a meet point.

the robot may choose to trace the boundary of the Voronoi
region of that obstacle.

_ Proof: Since this edge is on the boundary of a Voronoi
s 3
® When the robot crosses a diagonalg {+5,+5}) and . “we know that | lirection that maintai idis

is not moving along the diagonal (toward or away fror¥ p df
S . ance to the closest obstacles, :(0) = ZLla;1(0) for an
the corner),j—fs is discontinuous. Thus, the robot mus %@ J(0) = 55 1251(0) y

hange direciion instantan v to maintain th @ € A. The termination conditions are the same as those
tcf a ogll'et ec % ts a aCeOLljlsy 35 a Eth' 1€ Salllgihe saTURATED behavior, except that the robot must also ter-
;;g?nt istance offset (see Corollary 3.5), so this is a MeHlinate when it reaches the saturation distance. This is a meet

O point where the GV, reaches the saturation distance. O

The UNSATURATED bghavjor follows a line segmept on the4.3 Meet points
boundary of the Voronoi region for the obstaclevat This seg-
ment will be equidistant to the obstaclet and to the other  In general, when either of the above SG\/[iracing be-
obstacles inA. When|A| = 2, the edge is on the bisectorhaviors terminate, a meet point has been reached. MEES-
between two Voronoi regions. In this case, this behavior is egeINT behavior determines which directions will take the robot
sentially a hall-following behavior — if the robot should veeto a new segment of the SGVD There are two phases to this
to one side of this segment, the distance to one obstacle will stemputation.
crease whereas the distance to the other obstacle will decreasEirst, all directions corresponding to segments for tine
However, the distance of equidistance may increase or decreaseURATED behavior are computed. This is done by determin-
(e.g., when following a diagonal separating two perpendiculang, for the current robot location, which directions correspond
walls). to an edge on the boundary of the Voronoi region for each ob-

When |[A| > 2, this edge separates the Voronoi region fostacle. These can be found by considering the bisectors be-
as from a region of equidistant points. If the robot shouldween one obstacle and the other obstacles. Figure 3 shows the
veer off the segment into the Voronoi region, the distance televant cases. Each bisector eliminates a range of angles. Af-
that obstacle will decrease and distance to the other obstattsoverlapping the ranges eliminated by all the bisectors, the
will increase. However, if the robot veers into the equidistamingles at the extremes of the remaining range are the direc-
region, the distance to all obstacles represented nremains tions to follow the boundary of that Voronoi region. In certain
equal. Thus, this case is more similar to wall-following than toases, the bisectors for an obstacle may eliminate all directions,
hall-following in that the robot must maintain the correct offsewhich indicates that this meet point is not on the boundary of
from a single obstacle at;. However, since multiple obstaclesthe Voronoi region of that obstacle. Note that if the meet point
are equidistant and the equidistant range is less thanthe is at the saturation distance, any direction for whg{g;l(ﬁ) >0
UNSATURATED behavior is used. The offset from the obstaclmust be discarded since the robot cannot increase the distance
may increase or decrease since at less thanthe boundaries of equidistance beyone,: Figure 4 depicts an example of the
of equidistant regions are on diagonals. process of determining outgoing directions from meet points



stances, no choice is necessary.

tions of all edges leaving a point on the SGY[nd calls the

‘ Lemma 4.4 The MEET-POINT behavior generates the direc-
appropriate behavior to trace the chosen edge to the next meet

.

point.

Proof: Line 1 of theMEET-POINT behavior calculates the

F

+
Jd L .
— directions of edges on the boundaries of Voronoi regions. The
hi 0_$_ 0 only other directions that can be on an edge of the SG\éde
V \ I edges at the saturation distance. Lines 2—3 of the algorithm,
— executed only when the meet point is at the saturation distance,
calculate these directions. See the preceding discussion for the
* details of these calculations.
_l —_ — _l In lines 4-6, a direction is chosen, and the robot starts mov-
. 0 ing in that direction to put the robot on the edge before the ap-
/ﬁ\ propriate edge-following behavior is called in lines 7-11.
If ¢ is associated with one or more pairslii, then it lies

on the Voronoi region of an obstacle, so theSATURATED
Figure 3: Types of local bisectors between two obstacles. TRghavioris called onlline 9. Otherwiseis not on the boundary
Voronoi region of the obstacle labeled™is being computed Of @ny Voronoi region, so it must be a saturated edge (from a
by eliminating ranges of angles (highlighted side of the biseBal in Y), and thesATURATED behavior is called on line 11.
tor). See Figure 4 for a complete example. Moving along tH¥ote that edges at distancg from two non-collinear walls are
bisector, the range of equidistance may change (+ indicatesiisaturated edges under this approach. -
increase, - a decrease, 0 no change). Note that in some cases
the complete bisector is not known from only local informatiog 4  Completeness
(e.g., when the robot is inside or on the boundary of a region of

equidistant points). The SITUATE behavior moves the robot to a point on the
SGVD,, and calls theMEET-POINT behavior to move it to a
meet point. Subsequently, theET-POINT behavior calls ei-
u ther theSATURATED Or UNSATURATED behaviors to move the
I 0 robot to another meet point. With a suitable strategy for explo-

+ ration, the robot will traverse all edges of the SG¥D
= = 6 We note also that there are SGYDedges that extend into
each convex and nonconvex corner. It is not necessary to tra-
ﬂ r verse these edges to explore them (unless there is an opening at

an interior corner) because all the relevant area will be sensed
from the other segments on the SGYD

Figure 4: Example of determining outgoing directions from a

meet point by examining local bisectors between obstacles dgeorem 4.5 The SITUATE, SATURATED, UNSATURATED,

tected at the meet point. and MEET-POINT behaviors are sufficient to guide a robot to

trace a connected component of the SGYBom any initial

_ ) configuration.
using local bisectors.

If the meet point is atsa, then we also compute the direc-  Proof: The proof follows immediately from the previous
tions that maintain the saturation distance to a subset of the quémmas and discussion. 0
rent equidistant obstacles. This is done by solvﬁa(ﬁ) =0
for values off. The allowable values of must be directions
in which the change in distance to other obstacles will be nob- A virtual sensor for sparse sensing
negative since otherwise those obstacles would become closer
than the obstacle being traced at the saturation distance, andilgenow consider the case in which the robot has only sparse
robot would no longer be on the SGVD short-range sensing, rather than omnidirectional short-range
One of the allowable directions is chosen, and the robs¢nsing. Specifically, we assume that the robot has eight one-
moves in that direction and executes the correct behavior. dimensional sensors (e.g. infrared sensors), with one pointing
some cases, there may be only one path (aside from the incamthe forward direction and the rest spacediat intervals
ing one) that can be taken from a meet point. In these circuaround the robot.



In order to trace the SGV], the robot needs to know about

the closest equidistant obstacles. However, with sparse sensing,

the robot may not always be able to measure the distance to

the closest obstacles. Even worse, the robot may not detect an

obstacle until it has gotten too close, i.e., after the robot has
strayed off the SGVLQ,.
We address these problems by introducing a “virtual sensor”

which keeps track of the distance to obstacles that can no longgjure 5: Labels for sensors and octants which are fixed in the

be sensed directly by the robot. Still, this does not solve thg@yrld frame.

problem of discovering an obstacle too late, so we present be-

haviors in Section 6 that handle situations where the robot hag Variable ||

Explanation \

strayed off the SGVL, and go back to correct it. 0 the robot’s current heading
S the set of sensors = {s, s1,..., 57}
5.1 Basic operation U a set of unseen obstaclés, d) whereo
. . . . is the octant in which it lies and is the
The main function of the virtual sensor is to keep track of a distance to the obstacle
set of equ'IdISj[al’.lt obstaples and report jthelr. angles relative t T the set of “objects! € UUS (sensors and
the robot, in similar fashion to the omnidirectional sensor. The unseen obstacles) being tracked to follow
robot will maintain equidistance to these obstacles in order to the SGVD,, at any given time
trace the SQVIQO. Trlese obstacles are” represented by a set ) a set of pairda, t), ¢ € T, of angles to
T that contains both “unseen obstacles” — representations of objects being tracked and the correspond-
obstacles that cannot be directly observed but that have been ing objects
seen in the past — and sensors that can directly observe ap angs] absolute angle to the wall observed by
obstacle. Normally, the obstacles representedibgre the sensors: alwavs a multiole off excent
closest (known) equidistant obstacles. Edte the distance to when a ’dia or¥al sensoriees ; cornepr
these obstacles. The sBEtcontains all sensors for which the g
. ) angu] absolute angle to an unseen obsta-
ranged(s) = e and all unseen obstaclesfor which the dis- cle u that is being tracked: fom —
tance to that obstact&u) = e. (0r, d), andu] = LﬁJ x ’ n
When first initialized,I" contains only sensors. As the robot v —tz2J]2

moves, there are six kinds of changes related to the obstacles
represented by'.

1. The distance of equidistaneeanay change; this does not
have any effect off".

2. One or more obstacles i may increase in distance be-
yond e so they are no longer equidistant; any unseen op-
stacle or corresponding sensors should be removed fr
T.

Table 1: Variables used by the virtual sensor.

This paradigm maintains a consistent set of obstacles for the
robot to track but also indicates when the robot has strayed
ff the SGVD,,. After a K-Appearance occurs, the robot’s
GVD,, must be corrected because a meet point was missed.
SRe robot will turn around and re-trace its path on the (now in-

. An equidistant obstacle observed by a sensor may “dis;

correct) SGVI,. The obstacle that caused the K-Appearance

. Obstacles seen by a sensor that were at a distance greatéihecome an unseen obstacle and will eventually become

thane may now be at a distanee the sensors that can seeequidistant to the other obstacles representefl.bjhis causes

such obstacles should be addedto the flag to be turned off, indicating the robot is at the missed
meet point. The handling of K-Appearances is discussed in de-

" o il in Section 6.

appear’ so that it is not seen by any sensor. An Unseenyygq yiryal sensor is given in thelRTUAL -SENSORalgo-

obstacle should be created and addefl tand that sensor rithm, but the main work is done by thes-TRACK algorithm,

should be removed frof. described in Section 5.2, which maintains the Betand the

. An unseen equidistant obstacle may “appear,” i.e., be d&3-UPDATE algorithm, described in Section 5.3, which com-

tected by a sensor. This unseen obstacle should be RPetesA, the output of the virtual sensor.
moved fromI’, and the appropriate sensor should be added
toT. 5.1.1 Notation

One or more previously undetected obstacles may app®@é will label the robot’s eight range sensagsthroughs;, as

that are closer than distanegwe call the appearance ofas illustrated in Figure 5. These labels are for absolute sensor
such obstacles a “K-Appearance” and set a flag to trugrientations in the world frame and do not shift when the robot
This flag remains true as long as there are any obstactdsnges direction. Instead, the physical sensors on the robot
closer thare. The sefl” is notchanged in this case. have a different labels depending on the direction of the robot



] Function

|

Explanation \

Algorithm: VIRTUAL -SENSOR

interior (concave) corner of an ol
stacle withinrsa

CALC-B/F(s;,0)

computes the sensors and octal
behind and in front of sensos;
when the robot moves in directio
0. Returnssy, s;, on, 0; Wheresy,
is the sensor behind sensgy, s;,
the sensor in front;,, the octant be-
hind; ando;, the octant in front.

SETSAME(Ss;, 55, b)

asserts that sensogsands; are not
seeing the same wall if the booleg
bis#f .

IS-SAME(S;, 5;)

returns#f if it has been asserted th
sensors; ands; are seeing differen
walls or if d(s;) # d(s;); accounts
for transitivity and commutativity of
Sensors.

APPEAR(S)

returns#t
continuous decrease in range on

DISAPPEAR(S)

returns#t if there has been a dis
continuous increase in range en

if there has been a dis-

d(s) L. distance reported by sensgrif L Maintain a set of equidistant obstacles for the robot to track.
s detects nothing within the satura- 1: VS-INIT
tion distancers, d(s) = oo 2: loop
d(u) L., distance to an unseen obstagle ~ 3: VS-TRACK
d=(s) returns the range on sensgust be- 4. VS-UPDATE
fore a disappearance 5: end loop
ORIENT(S) absolute orientation of senser
EC-DIAG(s) #t if sensors is on a diagonal to an  Algorithm: vs-INIT
exterior (convex) corner of an obsta- njtialize virtual sensor state
cle within rsay 1: Perturb robot to determine ang] for diagonal sensors
IC-DIAG(s) #t if sensors is on a diagonal to an - forall s, € Sdo

Shsy S8j,0p,0j < CALC-B/F(s;,0)

SETFSAME(s;, sj,d(s;) == d(s;) A angs;] == andgs;])
: end for

: LetT = {s € S|d(s) = minsesd(0)}

nts

- for NOT. We also assume that orientations and angles are
compared modul@r.

an 5.1.2 Variables and utility functions

The variables used by the virtual sensor are listed in Table 1.
The “ang” variable is a slightly special variable, used to keep
track of the angles to unseen obstacles and to walls observed
by the sensors. This information is needed to properly calculate
the virtual sensor output. For unseen obstacles and nondiago-
nal sensors, this angle can be calculated, but for the diagonal
sensors, the algorithms must actively determine these angles.
A number of utility functions, listed in Table 2, are used to
simplify the presentation of the algorithms. A few functions

at
t

merit some additional explanation. ThaLc-8/F function,

Table 2: Utility functions for implementing the virtual sensor.used to compute the forward and backward sensors and octants,

motion; for example, when the robot moves in directibr=

17,

can be applied to the front sensor, returning two backward (and
no forward) sensors and octants. The back sensor is handled
similarly.

its front sensor is,;. We will sometimes refer to sensors Knowing whether two adjacent sensors are detecting the

relative to the direction of the robot’s motion: front diagonasame obstacle is necessary to determine when unseen obsta-
sensors, side sensors, and rear diagonal sensors. For exarafsie,should be created and to calculate the virtual sensor out-
if the robot’s direction is%”, s5 is the front sensorsg and sy
are the front diagonal sensors, and s; are the side sensors,a false #f ) assertion with thesET-SAME function is made. A
andsg ands, are the rear diagonal sensors. We may also refisue ¢t ) assertion, however, means that the sensmgbe ob-

to the two adjacent sensors (to a given sensor) as the “forwagtving the same obstacle. ThesAME function checks for
sensor” and “backward sensor,” again relative to the directidlse assertions but also compares the distance on the sensors
of the robot’s motion. When we refer to “diagonal sensorsywhen it is called. For conveniences-sAME handles commu-

this means the sensors at orientations-gf andi%{, namely tativity of the arguments and transitivity of “sameness.”

S1, 83, S5, andsy.

Figure 5 also shows labels for the eight octantsthrough 513

put. When we know that two sensors are seeing different walls,

Implementation note

o7, Which are also fixed in world frame. Octant includes
points at directions fromi% to (i + 1)7. Keeping the sensor In practical circumstances, tiEe-DIAG andiC-DIAG functions

and octant labels fixed in the world frame simplifies the bookvould depend on the robot having a sensor range of slightly
keeping for the virtual sensor.

In our algorithms, we use the symbais for true, #f for
false, A for the booleanaAND operation, v for OR, and

more tharrsgcand would look for a local maximum or minimum
in the range by observing a time series of readings. This would
require the robot to travel a small distance past the diagonal to



Algorithm: Vvs-TRACK

Track unseen obstacles.
1: Let Ad be the distance moved in directién
2: for all = (o0,d) € U do// track unseen obstacles
3  Leta =andu]

4 de—d+AdL[a)(9) @) (b)

5: end for . Figure 6: Two examples where an obstacle disappears from sen-

6: forall s; € S [ APPEAR(s;) V DISAPPEAR(s;), in Order gqrg, with the same sensor readings. In example (a), an unseen
from front to backdo obstacle should be created, but not in example (b).

70 Sp,S;,0p,05 < CALC-B/F(s;,0)
8: if DISAPPEAR(s;) then

9: if 1S-SAME(s;, sp) == #f V ands;] # angss] then  virtual sensor state. Finally, the last part of this algorithm (lines
10: Add (on,d™ (s;)) toU 32-34) updates the s&t

11: if s; € T then

12: Add (op,,d(s;))to T .

13 SEFSAME(s;, s, d(si) == d— (1)) 5.2.1 Disappearances

14;  endif A “disappearance” is a discontinuous increase in the range re-
15  if APPEAR(s;) then ported by a sensor, either to a finite value on¢o The main

16: SEFSAME(s;, s, #f ) I/ for boths), if front sensor  decision that must be made when a disappearance occurs is
17: Removes; from T’ whether to create an unseen obstacle or not.

18:  endif Figure 6 shows two disappearances with the same readings
19:  if d(s;) <= rsathen on the other sensors; an unseen obstacle should be created in
20: if ORIENT(s;) € {7, £} then one but not in the other. The key to deciding when to create
21 if ORIENT(s;) ==  V DISAPPEAR(s;) then an unseen obstacle is whether the back sensor is detecting the
22: angs;] ="?" same wall.

23: else In the general case, the robot may not have seen enough of
24: angs;] = ORIENT(s;) the environment to determine whether two sensors observe the
25: if 3(o,d) €U |0==0; A d==d(s;)then same wall or not. Because we only keep limited state informa-
26: Remove(o, d) from U tion about the environment, we assume that two sensors on the
27 SEFSAME(s;, 55, #f ) same side of the robot with the same distance readirgeb-

28: else serving the same wall — unless there is some evidence to the
29: SEFSAME(s;, 55, d(s;) == d(s;)) contrary (expressed as a falseT-SAME assertion). If we as-

30:  endif sume two walls are the same and they are not, the robot will
31: end for discover this in the course of its exploration and correct its map
32: Lete = minger d(t) appropriately.

33U —U—-{u=(o,d)eU|d>e} Disappearances are handled on lines 8—MsefRACK. If it

3: T — {te SUU | d(t) = e} is known that the backward sensor does not see the same wall,

an unseen obstacle is created. In addition, this unseen obsta-
cle must be added t& if that sensor was being tracked at the
detect a corner; the robot could then move backwards to tbguidistant range.

potential meet point. After a disappearance, the sensor may still detect a wall; we
call this a “finite-range” disappearance. This situation is like an
5.2 Tracking unseen obstacles appearance because a new obstacle is now seen on that sensor.

We need to decide whether this sensor and its back sensor are
The primary function of thevs-TRACK algorithm is to main- seeing the same wall. If the distances are different, we know
tain the sef” which represents the closest equidistant obstacleisat they see different walls; this is asserted in line 13. Whether
In order to provide information about obstacles that cannot be not the forward sensor sees the same wall is evaluated by the
sensed directly, “unseen obstacles” are created and maintaingst part of this section (lines 19—-30), which is executed for both
An unseen obstacle is a pdw, d) whereo is the octant the disappearances and appearances.
obstacle lies in, and is the distance to the obstacle.

As the robot moves, the distance to unseen obstacles

be updated; this is handled by the first part of tte TRACK 822 Appearances
algorithm (lines 1-5). However, the bulk of thes-TRACK al-  An “appearance” is a discontinuous decrease in the range re-
gorithm (lines 6—31) is devoted to handling the appearance gmutted by a sensor, either from or from a finite value. Ap-
disappearance of obstacles on the sensors. This may invgbearances are often caused by a corner of an obstacle crossing
creating or removing unseen obstacles as well as updating the ray of a sensor. This means that a wall has started crossing
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0 0% only sensor that detected that wall. Otherwise, we assume that
the distances from the two sensors indicate whether or not they
see the same wall.

Note that a wall can disappear from one sensor and appear
on an adjacent sensor simultaneously. For this reason,she
(b) (c) TRACK algorithm processes sensors from front to back (line 6)
. . s that the disappearance is handled first (creating an unseen
Figure 7: Appearance examples, with the angle from the rOb(%stacle), beforsrfche appearance (removiné the ur?seen obsta-
to the newly detected wall displayed: (a) appearances at |
thanrsa Where the angle to the wall for diagonal sensors Wi‘ﬁ '
be the orientation of the forward sensor; (b) a point on a wall )
appears atsy: on a front diagonal sensor; (c) a corner of an-2-3 UpdatingT
obstacle appears at, on a front diagonal sensor; the anglerhe set7 is updated in lines 32-34. This update is fairly
will be set normally (to 0 in this case) and will be changed tetraightforward, but the key to the correctness oftheTRACK
5 by thes-MEET-POINT behavior if the robot keeps moving toalgorithm lies in knowing that an appearance or disappearance
the right. of an obstacle represented Bywill always be detected.
When one obstacle occludes another, a disappearance or ap-
pearance may be missed by a sensor. Furthermore, differ-
from one octant to the next as the robot moves forward. Hownt sensors may miss different events. This could potentially
ever, an appearance can also be caused by any point of a wallse “phantom” unseen obstacles — an obstacle that disap-
(along the sensor ray) that has decreased in ranggddFig- pears from one sensor but never appears on the sensor behind
ure 7 illustrates several different situations. it and is therefore never removed. SiriEecontains obstacles
A single appearance definitively indicates that the backwaadl the same distance, none may occlude any other. The only
sensor is not seeing the same wall. In addition, if the sensor veageption is a K-Appearance: when an obstacle appears that
being tracked, it should be removed frdirsince the wall that is closer than the obstacles represented’in This obstacle
appeared is closer (this is a K-Appearance). These two changesild then occlude obstacles representedlbyWe address
handled in lines 15-18, are unique to appearances (and noKtédppearances fully in Section 5.3.1 but offer the following
the “appearance” caused by a finite-range disappearance). related lemmas in the meantime.
The remainder of the appearance handling applies to both )
appearances and to finite-range disappearances. The firstrrﬁwma 5.1 As long as there is no known obstacle closer than
(lines 20—24) sets the angle to the wall for this sensor; this orilye obstacles represented By any unseen obstacle ifi will
needs to be done for the diagonal sensors. Figure 7 indicatg8er be removed or will appear on a sensor.
this angle for the examples shown; it can easily be seen in these ] _— .
cases that the angle should be set to the orientation of the f Proof: An unseen obstacle must initially have a distance

og . .
ward sensor. The angle or asensor can only change fthe rolod 1 & 202 5 78 08 FRREn 1€ BR TR SRR
crosses the diagonal from an interior or exterior corner. This X ' ' '

taken care of by theix-ANG algorithm called from line 1 of the the robot wil eventually see the unseen obstacle, as the sensors

vs-UPDATE algoritm. We should note tha f the appearanclt Z¥8 52 SOV €U b 10 LR ORI B
is caused by an exterior cornermt{Figure 7c), the angle is y 9

not correct but will be fixed immediately during the execution®a! and will therefore be remo_ved. This Ie{:\ves only the case
of the vs-UPDATE algorithm. where the unseen obstacle distance remains the same. From

. . . __examining Equation 4, we note that this can only occur when
There are two exceptions to setting the angle to the onen{ - 9=d y

tion of the forward sensor: when th rance h ns on e robot is traveling in a directionf and the obstacle is in
on otthe forward sensor. whe eappea ance ?ppe SO (%ng of the four “side” octants. (For example,fif= 0, the
front sensor and when the appearance is due to a dlsappeara(%

Stacle must be iny, o2, 05, OF 0g.) However, all points in

In t_he_se cases, w“e cannot |pstantaneously determ|r_1e the aNf&e octants will be swept by the side or rear diagonal sensors,
so it is set to an “unknown” value. In the meet point behavy-

or when the actual andle is reauired. the robot must active 0 the obstacle will appear on a sensor. Note that since there is
measure it 9 a ' known closer obstacle, the appearance of the unseen obstacle

. . cannot be occluded. O
The second part of the appearance handling (lines 25-29)

makes an assertion about whether this sensor and the forwagghma 5.2 The sefl” will represent the closest known equidis-
sensor are seeing the same wall. If there is an unseen obstagi¢ obstacles until a K-Appearance occurs.

in the forward octant at the same distance, then we assume the

unseen obstacle has appeared on this sensor. The unseen obstaProof: When the virtual sensor is initialized, con-

cle is removed, and we know that the forward sensor cannottais only the sensors with the minimum distance reading. As
seeing the same wall — an unseen obstacle can only be crealedrobot moves about its environment, there are six kinds of
when an wall disappears from a sensor and that sensor wasdhanges that can occur, as listed in Section 5.1.
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Algorithm: vS-UPDATE 5.3 Generating virtual sensor output
Update the output of the virtual sensor.

1. FIX-ANG(0) The VS-TRACK.a!gOI’ithm maintains information about the set

2. LetA = {} of nearest equidistant obstacles. In order to emulate the output
3: forall s; € Sdo of an omnidirectional sensor, the virtual sensor must use the
4 if EC-DIAG(s;) A d(s;) == e then tracking information to produce a sgt containing angles to

5 angs;] = ORIENT(s;) those obstacles._ Thes-uUPDATE algorithm performs the nec-

6: if IC-DIAG(s;) A d(s;) == e then essary computations. _ _

7 Sh,Sj,0n,0; — CALC-BIF(s;,0) The first part of fche/s-UP_DATE aIgonthr_n (Ilqes 2-12) h_an-

8: if 1S-SAME(s;, 5,) == #f then dles sensors t.hat lie on a diagonal to an.mtlerlor or exterior cor-
9 Add (angsy], ;) to A ner. For gxte_nor corners, the closest point is exactl_y at the cor-
10: if 1S-SAME(s;, s;) == #f then ner; for !nterlor corners, there are two closest points, on the
11: Add (angs;], s;) to A walls adjacent to the corner. The next part of the algorithm
12: end for (lines 13-17) ensures that no two sensors that see the same ob-
13: Let M = {} stacle contribute tod, since each eqyidistant obstacle ;hould_
14: forall s; € S | ~IC-DIAG(s;) do only be reported once to the mget point and other behaviors. Fi-
15.  if (d(s;) == e A —3m € M | 1S-SAME(s;, m)) then nally, theloutput state of th virtual sensor can be constructed.
16: Add s; to M Angle pairs for each equidistant obstacle are added.tdhe

17: end for K-Appear andS-Appear flags are also set if necessary.

18: A — Au{(andt],t) |[teTNU VvV te M}

19: K-Appear = (3re SUU | d(r) < e) 5.3.1 K-Appearances and S-Appearances

20: if 3s; | {APPEAR(s;) A ORIENT(s;) € {0+ Z,0 — Z}

An obstacle discovered closer than the obstacles represented by
T causes a K-Appearance, indicating the robot has strayed off
the SGVD,,. In order for the robot to return to the SG\VD

this obstacle must be “ignored” by the virtual sensor for the

A =(3(a,t) € A| a == ORIENT(s;))} then
21:  S-Appear «— #f

Algorithm: FIX-ANG(7) time being so that the robot can retrace its steps. Thd set
Fix angles of sensors when they pass over corners. represents the obstacles that the virtual sensor previously deter-
1: forall s; € S do// update sensor state for this direction mined to be the closest equidistant obstacles, so this set must
2 Sp,84,0n,0; — CALC-B/F(s;,7) be maintained for th_e robot to find its way back to the SGYD
3 if EC-DIAG(s;) then TheK-Appear flag is set whenever a K-Appearance occurs.
4 angs;] == ORIENT(s},) There is one type of K-Appearance that must be handled
5. elseific-DIAG(s;) then slightly differently. This is when the robot is following the
6 angs;] == ORIENT(s;) boundary of an obstacle at,: and a new obstacle appears at
7- end for rsat ON @ side sensor (opposite the obstacle the robot has been

following). Without any special handling, this would be treated
as a meet point. However, in this situation, it means that the

Case 1 is when the distance of the closest equidistant obsrf)kzot missed a meet point where it should have switched to an
cles represented b changes: this distance, is qum uted in URsaturated behavior. Thes-UPDATE algorithm sets the flag
; P ges, " np S—Arppear to indicate when this situation might have arisen.
line 32. Cases 2 and 3 remove obstacles at a distance greE\te .

. . ine 20 checks whether there has been an appearance on a side
thane and add obstacles now at this is handled on line 34. . .
. sensor and that there is no other obstacle on that side of the

Case 4 addresses obstacles that have disappeared from a sen- .

o . ) . r? ot. Thes-SATURATED behavior takes care of the rest.
sor; this was discussed in Section 5.2.1. Case 5 covers obsta-
cles that appear on a sensor; this was discussed in Section 5.2.2.

Finally, case 6 handles K-Appearances. We note that an obfe4  Virtual sensor correctness

cle that causes a K-Appearance will be clos_er t_han any ObStaWS have described the background and operation of the virtual

represented ifi’ but the sensor that detects it will not be addegensor so we now set about establishing its correctness

to 7. ' '
These six cases ensure tfiafs properly updated based onLemma 5.3 The virtual sensor produces a sétequivalent to

observed appearances and disappearances as well as calcuiaéesktA produced by the omnidirectional sensor for the obsta-
updates to unseen obstacles. However, one possibility rematgs represented L.

that an obstacle disappears, causing an unseen obstacle to be

created, and there is never an observed appearance to removeProof: By Lemma 5.2,7 represents all the closest

it. By the previous lemma, it is not possible for this to happeequidistant obstacles. The sétshould contain only one ele-

as long as no known obstacle exists closer which could occluakent for each obstacle. Through theT-SAME assertions, the

the appearance, and this is what a K-Appearance signalsl  robot records when sensors are known to be observing distinct
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walls, and this is used to only add one element foer obstacle Behavior: s-SITUATE
wall. Behavior for situating the robot on the SG\YDfrom an arbi-
An obstacle is represented in the geby a pair containing trary initial starting location and orientation.
the angle from the robot to each obstacle and either an unseénif no sensor sees an obstattien
obstacle or a sensor that can see the corresponding wall. TBe move forward until at least one sensor sees an obstacle
unseen obstacle or sensor is associated so that the behavidrsTurn the robot until the front sensor sees a local minimum
can know which sensor to use or how to access the distance 4o Move forward until the obstacle is reached (zero distance)
the unseen obstacle in the virtual sensor state. 5: if robot is on a walthen
The angles produced by the virtual sensor cannot, in generd;  follow the wall until a corner is reached
be identical to those from the omnidirectional sensor. However7: Turn to align the robot with the diagonal from the corner
the directional derivative of Equation 4 returns the same result: Start moving forward
if the angles to obstacles (except for angles on the diagonalg; Start runningVIRTUAL -SENSOR
i.e., £ and+3T) are rounded to the nearesf. The angles 10: SUNSATURATED(#t )
reported for sensors and unseen obstacles are always values of
n7 except for diagonal sensors that see exteriqr corners. ThegBhavior: S-SATURATED(k)
fore, the setd produced by the virtual sensor is equivalent t§y5ces a segment of the SG\at the saturation distance from
that from th_e anldlrecnonal sensor, with respect to the kKnowq, rent closest obstacles.
closest equidistant obstacles. L Letn = |4

2: repeat
Move in directiond, maintaining saturation distance to
all objectst € T'|(x,t) € A
until one of the following conditions is true:
® Js; € S such that(ORIENT(s;) & {0,0 + 7}) A
(EC-DIAG(s;) =#t V IC-DIAG(s;) == #t )
Proof: The previous lemmas establish the emulation of ~ ® K-Appear ==k A S-Appear == #f
the omnidirectional sensor until a K-Appearance is detected. _(© Al > n
Once one occurs, there is an obstacle closer than any obstaéfell (K-Appear==#t A k==#t) v (|4] > n A
represented i, and this obstacle could occlude appearance S-APPear==# A K-Appear ==#f ) then
or disappearances that enable the virtual sensor to maifitain &  HANDLE-K-APPEARANCE(S-SATURATED)
However, if the robot turns around, this obstacle will become’: €5€
an unseen obstacle and thus unable to occlude any obstacle r8p- SMEET-POINT(k)
resented byl". By returning to the missed meet point, this un- o: end if
seen obstacle will be added as an elemerif' o$o the virtual

sensor will emulate the omnidirectional sensor with this newly-
discovered obstacle. (] robotis not necessarily aligned at an orientatiomf These

issues can be overcome, but it is far simpler to take the ap-
. . proach ins-SITUATE and use only the sparse sensors to situate
6 Tracing the SGVD,, with sparse Sens- the robot, by approaching a single obstacle until there is guar-
ing anteed to be no closer obstacle.
Once the robot is situated on the SGYDit traverses it in

We now turn to the problem of tracing the SG\Dusing the order to create_ its map. With av_ir;ual sensor that closely emu-
virtual sensor. We begin by introducing sparse sensing versid@s the functionality of an omnidirectional sensor, the sparse-
of the SGVD,, tracing behaviors and discussing their differS€NSiNg analogs to the omnidirectional SGVracing behav-
ences from the behaviors that assume an omnidirectional sif$: S-SATURATED, S-UNSATURATED, and S-MEET-POINT,
sor. We then show that these behaviors exhibit the same cdHg Mostly equivalent to their omnidirectional counterparts. The
pleteness properties as the omnidirectional behaviors, and i&in difference is that they must be capable of handling K-
cuss the results of simulations of the behaviors. Appearances.

The robot again begins the mapping process by situating it-
s_elf on the SGVIL. '_I'he S-_SITUATE behavior_is somewhat 6.1 Handling K-Appearances
different than the omnidirectional TUATE behavior. When the
robot is first “turned on,” the virtual sensor is uninitialized anéRecall that a K-Appearance occurs when a new obstacle is de-
the robot knows only about what is seen by its real sensotscted by one of the sensors at less than the equidistant range,
Though we could take a similar approach to the origmiat indicating that the robot has strayed from the SGY.DThe
UATE by using the virtual sensor immediately, there are comebot must return to the SGVD by backtracking until the
plications because K-Appearances may occur and becausenéwaly detected obstacle is at the equidistant range.

Theorem 5.4 The virtual sensor correctly emulates the omni-
directional sensor with respect to known obstacles until a K3
Appearance occurs. If the virtual sensor is used to immediately
return to the missed meet point, the sensor will thereafter cor?

rectly emulate the omnidirectional sensor again.
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Behavior: S-UNSATURATED(t, k) Behavior: sS-MEET-POINT(k)

Traces a segment of the SG\VDseparating the Voronoi re- Behavior for determining valid outgoing paths at a meet point.
gions of two sites, or on the boundary of the Voronoi regioni: Letp = label of this meet point

for the site represented ldye 7' (on the border of a region of 2. if (p,*,x) €V V ((p, Ap,*) €V A |A] > |4,]) then

equidistant points). 3 Add(p, A, (U,T,ang-],samé])) to V
1: Letn = |A] 4: else
2: repeat 5. Restore virtual sensor state frdm
3:  Move in directiond, maintaining equidistance from ob- 6: if 3(a,t) € A| o =="?" then
jectt to all other equidistant objectse T' | (x,t) € A 7:  Perturb robo? to determine unknown values
4: until one of the following conditions is true: 8: ComputelV, the set of all pair§a,t) € A) where direc-

» Js; € S such thatorRIENT(s;) ¢ {6,0 + n} and tion 6 lies on the boundary of the Voronoi region of the
(EC-DIAG(s) == #t OrIC-DIAG(s) == #t ) objectt. If at the saturation distance, exclude @hwhere
@® Jr € T|d(r) == saturation distance %[a}(ﬁ) > 0.
©) K-Appear == k A S-Appear == #f o: if at the saturation distantleen
o |4 >n 10: ComputeY’, the set of all pairg0, (o,t) € A) where
5 if (K-Appear == #t A k == #t ) then A 1a](0) = 0 andV s ryeapr2 L[B(0) >0
6: HANDLE-K-APPEARANCHS-UNSATURATED) 11: end if
7: else 12: ComputeC, the set of uniqué in pairs fromi/ andY
8  S-MEET-POINT(K) 13: if S-Appear == #t A Y is not emptythen
9: end if 14:  S-Appear =#f

15: if K-Appear == #t then
16: Delete this meet point
The mechanics of this operation are relatively simple. Sincg: if 3¢ € C|c corresponds to an explored edpen

the virtual sensor compute$ as if the newly detected obsta- 18: Choose:
cle does not exist (because it is too close), the robot can use else
the S-SATURATED, S-UNSATURATED, andS-MEET-POINT be- 20 S-SITUATE(#t )

haviors to retrace the incorrect SG\[) as long as they ter- 21: else

minate when the new obstacle is at the equidistant range. Ths  Choose an elementfrom C' // direction to move

is accomplished by modifying those behaviors to take an arges:  k« #t

mentk. When thek-Appear flag (set by the virtual sensor) is 24: end if

equal tok, the s-SATURATED andS-UNSATURATED behaviors  25: FIX-ANG(c)

terminate. During “normal” operatior, == #t , and while the 26: Start moving in the direction

robot is backtracking; == #f . 27: if (¢, *) € W then
When a K-Appearance is detected by the virtual sens®@g: Chooset arbitrarily from the pairgc, t) € W

it sets theK-Appear flag to #t, causing the segment-29: S-UNSATURATED(t, k)

following behavior in control at the time (eitherSATURATED ~ 30: else

Or S-UNSATURATED) to terminate and call thelANDLE-K- 31:  S-SATURATED(k)

APPEARANCE behavior. HANDLE-K-APPEARANCE initiates 32: end if

backtracking by turning the robot around, and then returns con-

trol to the behavior that called it, which terminates when the

new obstacle is at the equidistant range, where a meet pdalidating that the robot used tl®eSATURATED behavior to tra-

should be placed. verse a portion of the SGVD that should have been traversed
While the robot is backtracking to handle a normal Kusing thes-UNSATURATED behavior. The strategy for dealing

Appearance, it may encounter previously-discovered megith an S-Appearance is the same as for a K-Appearance, ex-

points. Since they are incorrect (there is a closer obstaclegpt that thes-MEET-POINT behavior is responsible for recog-

they must be discarded. TeMEET-POINT behavior checks nizing (by checking values ogfg) when the robot has returned

for this condition and deletes the meet point. It also enforcésthe meet point where the robot should have switched to using

the choice of a direction that takes the robot along a previoushe S-UNSATURATED behavior. Thes-MEET-POINT behavior

explored path; since it has been previously explored, there gamiven this responsibility since the virtual sensor is unable to

be no K-Appearances as the robot returns along that path. recognize the termination condition internally, because the new
Figure 8 depicts this strategy for handling K-Appearancesbstacle is already equidistant to the one being tracked.

It shows a scenario with several K-Appearances, and where irDne other change is necessary to $hiEET-POINT behav-

one case the robot places multiple incorrect meet points befawefor dealing with K-Appearances. Recall that once an unseen

it encounters a K-Appearance and backtracks. obstacle is farther than the equidistant range from the robot, the
An S-Appearance is a special type of K-Appearance that onlirtual sensor stops tracking it. This means that if the robot

occurs when an obstacle appears at the saturation distanceretirns to the vicinity of the obstacle when navigating later, it
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Behavior: HANDLE-K-APPEARANCH B) 6.2 Completeness
Handle the appearance of an obstacle at closer than the equidis-

tant range. The following lemmas and theorem show the correctness of the
1: Stop and turn 180 degrees sparse-sensing behaviors and establish the completeness of our
2: Begin moving forward mapping.
3: Call B(#f)

Lemma 6.1 The s-SITUATE behavior moves the robot from
any starting location to a location on the correct SG¥D

—— Proof: The s-SITUATE behavior begins by moving for-

u u ward until a sensor detects an obstacle within the saturation dis-
‘ tance. The robot then approaches this obstacle until it is exactly
upon it, so there can be no closer obstacles. Since the robot
does not make use of the virtual sensor while doing this, un-
seen obstacles, appearances, and disappearances do not affect
the robot’s approach. By moving until the end of the wall is
reached, the robot is guaranteed to be at a location on the correct
SGVD,,, since the SGVL, contains terminal segments into all
corners in the environment. Additionally, since the robot is at a
corner, it can compute the normal angles of the adjacent walls
and orient itself at the correct angle to trace the SGY&eg-

ment it is on. O

(@)

Lemma 6.2 When a K-Appearance occurs, the robot returns
to a point either on the correct SG\{Dor that will be detected
(d) (e) as not on the correct SGVD only if another K-Appearance

Figure 8: A situation in which the robot must handle goceurs.

Appearances. (a) The first K-Appearance — the top obstacle is
closer than either of the walls being traced. (b) After handlin oo R :
the first K-Appearance, the robot has placed two incorrect m {PEARANCEbehavior is initiated, which causes the robot to
points. (c) The second K-Appearance — the bottom obsta P and return along the (now incorrect) SGyIsegment

is closer than the bottom wall and the top obstacle. (d) Aft om which it came. At'any mget point that is encountered,
i Z’IS-MEET-POINT behavior requires the robot to move along

handling the second K-Appearance, the robot replaces one . 1) SGV ¢ that it had ious|
the incorrect meet points with another, but then detects anotﬁi ow Incorrect) R segment that it had previously ex-

K-Appearance. (e) The final map after all incorrect meet point ored. Therefore no new K-Appearances can occur while the
robot re-traces that segment, since they would have been de-

tected on the first traversal. The robot stops backtracking only
when all obstacles, both directly observable and unseen, are at
the same distance. By Lemma 6.1, this must occur before the
robot backtracks over all the previously explored segments in
may cause a K-Appearance, which requires extra work for thé SGVDx since the robot's initial location after situating is
robot to return to the SGVDR. Lines 1-5 ofs-MEET-POINT guaranteed to be on the correct SGYDThus, once all known
avoid this by associating information with a meet point abo@pstacles are at the same distance, the robot is on the correct
the state of the virtual sensor at the meet point. When the rol§eVDx. unless a future K-Appearance occurs that renders the
returns to a previously-visited meet point, it can update its seReet point incorrect. O

sor state to avoid dealing with K-Appearances. This is useful

for improving navigation efficiency, but is not strictly necessarkemma 6.3 Any portion of the SGVD traced by the robot

for navigation since backtracking is sufficient. However, stothat is incorrect because there is an obstacle closer than the
ing virtual sensor state at meet poiiggecessary to ensure thatequidistant range will eventually be discarded because of a K-
when the robot is backtracking to handle a K-Appearance, Agppearance.

other K-Appearances occur.

1

Proof: When a K-Appearance occurs, tReNDLE-K-

have been discarded and no more K-Appearances occur.

Proof: First, we show that the robot is guaranteed to

Aside from the modifications to handle K-Appearances, ttwveep all portions of the environment within the saturation dis-

behaviors for tracing the SGVD with sparse sensing are thetance of the SGVLQ, with its sparse sensors. If an obstacle has
same as the omnidirectional versions, aside from several snaalWall of length less than the maximum distance between sen-

syntactical differences that do not change their functionality. sors, the robot may fail to detect it while the robot is on the
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SGVD,,, and the obstacle causes a K-Appearance. The maxi- /l
mum distance between sensors occurs at the saturation distanc
from the robot.

If no such obstacles exist, the robot's sensors sweep all
points in the environment within the saturation distance of the
SGVD,,. The robot must move at least the maximum distance
between sensors to trace each wall in the environment, because
each wall is contained inside a Voronoi region whose boundary
is on the SGVD, and is traced by the robot. If there is an ob-
stacle within the saturation distance of the SGYEhat is oc-
cluded, there is another obstacle closer than it which determines
the SGVD,,. Since each wall of the occluding obstacle consti- @)
tutes a site and is traced to follow the corresponding SGVD
segments, the robot eventually circumnavigates the occluding
obstacle and “uncovers” the occluded obstacle.

Thus, if obstacles with walls short enough to cause a K-
Appearance exist, they will be detected as the robot sweeps
portions of the environment close to SGYDsegments cor-
responding to larger obstacles (or obstacles that caused previi
ous K-Appearances). The obstacles that caused K-Appearance
will then be circumnavigated to trace the corresponding
SGVD,, segments and the space occluded by them will be
swept. Therefore, all space within the saturation distance of
the correct SGVIQ, will be swept by the robot’'s sensors and
all obstacles in this area will be discovered.

By Lemma 6.2, each K-Appearance causes the robot to re- (b)
turn to the correct SGVR, discarding segments that are incor-
rect because of the new obstacle. No obstacle beyond the &&giure 9: SGVI, maps produced in simulation by the behav-
uration distance from the SGV/D can cause a K-Appearanceors from Section 6, using a virtual sensor implemented as de-
since the saturation distance is the maximum equidistant rang@fibed in Section 5.
Once every K-Appearance is encountered, no incorrect seg-
ments remain in the SGVD.

D

6.3 Experimental results

Theorem 6.4 Together with the virtual sensor, thiesiTuaTe, 1 he Virtual sensor and SGVD tracing behaviors have been
S-SATURATED, S-UNSATURATED, HANDLE-K-APPEARANCE implemented in 5|m_ulat|on and tested in a yarlety of environ-
and s-MEET-POINT behaviors are sufficient to guide a robotents. The simulations assumed a robot with no sensor or ac-
with sparse sensing to trace a connected component of {qator error and were prlmarlllyfocused on verifying the correct-
SGVD,, from any initial configuration. ness of the bghav!ors_e?(penmenta!ly and were used mostly to
test the behaviors in difficult scenarios such as K-Appearances.
_ Figures 9 and 10 show several maps produced in simulation
Proof: By Theorem 5.4, the virtual sensor correctly eMgsjng a robot with sparse, limited-range sensing. Figure 9(a) is
ulates an omnidirectional sensor except in K-Appearance sifiifajrly simple scenario aside from the one small obstacle at the
ations. By Lemma 6.1, the-SITUATE behavior is guaranteedtop, which causes a K-Appearance for large enough saturation
to place the robot on the correct SGMD And, aside from gistances. There are also several regions of equidistant points in
the handling of K-Appearance situations, th&ATURATED,  the environment. Figure 9(b) shows the SGYDF a difficult
S-UNSATURATED, ands-MEET-POINT behaviors are identical scenario in which multiple K-Appearances occur, similar to that
to their omnidirectional counterparts. Therefore, except in Kiiscussed in Section 6.1.
Appearance situations, Theorem 4.5 applies. Figure 10 shows how the SGVDchanges as the saturation
By Lemma 6.2, the robot is always either on the corregfistance (i.e. the sensing range) is increased. In these exper-
SGVD or able to return to it when a K-Appearance occursments, the robot initially starts near the left wall, facing left.
By Lemma 6.3, every obstacle in the environment that cagith a small saturation distance, as in Figure 10(a), the robot
cause a K-Appearance does so. encounters the wall and traces it at the saturation distance, but
Therefore, these behaviors enable a robot with sparse sensiager discovers any of the obstacles interior to the environment
to trace a connected component of the SGYfdom any initial  since the are outside its sensing range. With a slightly increased
configuration. [0 sensing range, as in Figure 10(b), the robot encounters some of
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when a small obstacle is observed too late by the robot’s sen-
sors. When such an obstacle is detected, our behaviors back-

| .
n track to return the robot to the SGV\Dand correct its map.
I We have shown both the omnidirectional and sparse sensing
5 behaviors to be complete in that they will trace all portions of

the SGVD,, reachable from the robot’s initial location on the

SGVD,,. We believe these are the first such algorithms for

(a) (b) robots with sparse sensing in arbitrary rectilinear environments.

Our virtual sensor could be viewed as maintaining a local

map of the area around the robot that is updated using odometry

information. However, the virtual sensor maintains relatively

little state information when compared to approaches that keep

detailed local maps about the area near the robot, e.g. by storing

occupancy grid data or other detailed metric information.

Creating maps of an unknown environment takes longer

© (d) yvhen using a robot V\{ith less p0\_/verful sensing. One reason
is that the robot can miss meet points on the SGYand must

Figure 10: The effect on the SGVDof varying the saturation backtrack to correct them. We also note that the virtual sensor

distance. requires odometry information, whereas the omnidirectional
sensing behaviors do not. Potentially this makes the sparse
sensing behaviors more fragile, but it should be duly noted that

the obstacles and “jumps” between obstacles that are within the robot is still able to trace exactly the same map as a robot

saturation distance of each other, but it still cannot find all @fith omnidirectional sensing.

the obstacles in the environment. Increasing the sensing range

further, the robot discovers every obstacle, as in Figure 10(c).

Finally, with an “infinite” saturation distance, the robot pro8 Acknow|edgement

duces the GV, of the environment, shown in Figure 10(d),

since no obstacles are ever outside the saturation distance. ¥Nhnks to Howie Choset for discussions on the GVD. This
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