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Motivation

Goal: mapping/navigation with limited sensing and computation
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The general problem

• Cost: laser rangefinder: US $5000 vs. IR array: US $50
• Low-power, small, lightweight
• Consumer robots, disposable robots, . . .

but
• Short range
• Low spatial resolution (“sparse”)
• Impossible to extract features from a single scan
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Previous work

Topological mapping with limited sensing : Acar et al. (2001);
Tovar et al. (2003); Huang and Beevers (2005)

Bearing-only SLAM : Deans and Hebert (2000);
Bailey (2003); Solá et al. (2005)

Range-only SLAM (with RF beacons): Kantor and
Singh (2002); Kurth (2004); Djugash et al. (2005)

SONAR-based SLAM : Wijk and Christensen
(2000); Zunino and Christensen (2001); Tardós
et al. (2002); Leonard et al. (2002)
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SLAM with multiscans

• Basic idea: extract features
using scans from consecutive
poses

• Treat groups of m poses as a
single “multiscan ”

• Enough data for feature
extraction

• Tradeoff: pose uncertainty
contributes to measurement
uncertainty

• Full formulation in the paper
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SLAM with multiscans
Modified Rao-Blackwellized particle filter (RBPF):

1: for k = 1 . . . done do
2: for t = k . . . k + m do
3: for all particles pi do
4: xi

r(t) ∼ p(xr(t) | xr(t − 1), u(t − 1))
5: end for
6: end for
7: for all particles pi do
8: Extract features from z = [z(k + 1) . . . z(k + m)]T

9: Find correspondences with xi
f (k − m)

10: Update map and initialize new features
11: ωi = p(z | xi

r(k + 1), . . . , xi
r(k + m), xi

f (k − m))
12: end for
13: If necessary, resample particles according to the ωis
14: end for
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Feature extraction with expected trajectory
• Extract features once using expected trajectory over multiscan:

E [xr(k)] = xr(k) = [xr(k − m + 1) . . . xr(k)]T

• Transform features for each particle

• Saves a lot of computation

• Tradeoff:
– large m: more data for extraction
– small m: better approximation of

per-particle extraction

• More details in the paper

xr

• Alternative: group particles into “strata,” do extraction per-strata
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Results: implementation details

• Implementation:

– RBPF similar to FastSLAM 1.0 (Thrun et al., 2004)

– Adaptive resampling (N̂eff) (Grisetti et al., 2005)

• Line and line segment features

– Data segmentation with adaptive agglomerative clustering
– See the paper

• Datasets:
– Data from Radish (Howard and Roy, 2003, radish.sf.net )

– Laser datasets ( ), “sparsified” ( )

– {0◦, 45◦, 90◦, 135◦, 180◦}
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Raw data

USC SAL
∼ 39 m × 20 m

100 particles
Line features

Max range 5 m
m = 50

Landmark map ( )
Occupancy map ( )

Dataset from Radish courtesy of Andrew Howard.
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Raw data

CMU NSH
∼ 25 m × 25 m

600 particles
Segment features

Max range 3 m
m = 40

Landmark map ( ) Occupancy map ( )

Dataset from Radish courtesy of Nick Roy.
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Raw data

Stanford
∼ 64 m × 56 m
1000 particles

Segment features
Max range 5 m

m = 18

Landmark map ( ) Occupancy map ( )

Dataset from Radish courtesy of Brian Gerkey.
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Comparison

Multiscan SLAM ( ) Scan-matching SLAM ( )

Scan-matching result from Radish courtesy of Brian Gerkey.
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Discussion

• SLAM in large indoor environments is possible with

• Complexity: same as normal RBPF

——

• Augmenting sensing with odometry: lots of uncertainty

– Unpeaked measurement distributions
– Simple remedy: more particles
– Other approaches: exploiting prior knowledge, better PF

samples, etc.

• How to pick m?

– Tuning parameter
– Adaptively based on accumulated uncertainty
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Summary

• Contributions:

– Algorithm for RBPF SLAM with sparse sensing ( )
∗ Group data from consecutive poses into “multiscans”
∗ Do feature extraction on multiscans

– Approximations for efficiency
∗ Feature extraction using expected trajectory

– Simple feature extraction for multiple-pose data
∗ Segmentation based on agglomerative clustering

• Results: successful mapping in several large, real indoor
environments
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Exploiting prior knowledge

Plain multiscans: 100 particles Rectilinearity prior: 20 particles

Plain multiscans: 600 particles Rectilinearity prior: 40 particles

K. Beevers and W. Huang. Inferring and enforcing relative constraints in SLAM, WAFR 2006, to appear.
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Thank you!



Leonard et al. (2002)

• “Mapping partially observable features from multiple uncertain
vantage points”

• Basic idea:
– At every timestep, extract features from data of last m poses
– Add m-step pose history to state, filter with EKF

• Differences of our approach:

– Only acquire enough data to observe feature parameters
infrequently: do extraction/filtering every m timesteps

– Tradeoff: less frequent filtering but much less computation
– RBPF: enables approximations like extraction with expected

trajectory

• Can combine the two approaches to play with the tradeoff

– Every p timesteps, extract features using last m scans
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