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Robot mapping

Basic problem: build a “map” using a robot’s sensors

• Context for this thesis:
– 2D static environments
– Passive mapping
– Low-fidelity range-bearing sensors

• Some issues in designing algorithms:

– Environment model (landmarks,
occupancy, topological)

– Feature extraction and data association
– Managing and reducing uncertainty
– Computational feasibility
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Thesis contributions

• An analysis of mapping sensors and bounds on map error for a
simple range-bearing sensor model

• A Rao-Blackwellized particle filtering (RBPF) algorithm for
simultaneous localization and mapping (SLAM) with sparse
sensing

• Techniques for incorporating prior information in RBPF SLAM

• Two new sampling strategies for RBPF SLAM

• An implementation of RBPF on a 16 MHz microcontroller

• Full software implementations of all the algorithms in the thesis (and
other standard algorithms)
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Sensing and map quality

• Question: how can we relate “sensing capabilities” to map quality?

• Related work: for every kind of sensor, either design a specific
algorithm or prove no algorithm exists (localization, O’Kane and
LaValle, 2006):

– Binary characterization (can or can’t localize)
– Compass + contact sensor: can localize
– Angular odometer + contact sensor: can’t localize

• An alternative approach: fix the mapping algorithm and define a broad
sensor model
– Encompasses many types of practical mapping sensors
– Characterize which sensors can build a map
– Give quality bounds on the map for a given sensor
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Models and mapping algorithm
• Environment:

– Occupancy grid model
– Cells independently occupied with a given probability (“density”)

• Motion assumption: poses drawn uniformly at random

• Sensor:
– Ring of beams of non-zero beam width
– Bounded uncertainty model
– Beam reports range to first cell detected as

occupied
– Model incorporates false negatives/positives

• Mapping algorithm:
– Increase occupancy belief for cells at reported range (± error)
– Decrease occupancy belief for closer cells
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Bound on expected map error

• Error: ν = ∑ij νij

– νij = 1 if the ML estimate for cell mij is incorrect; νij = 0 otherwise

• Chernoff bound:

E[ν] ≤ M2 exp
{
−2E[oab]

(
1
2 − pinc

)2
}

• E[oab]: expected number of updates of any cell

E[oab] ≥
2TFρ(∆β+σβ)

M2 ∑

⌈
r++σr

δ

⌉
τ=0 τ · E∆βτ2

E

• pinc: probability that an update of a cell is incorrect

– Mainly related to range/bearing uncertainties, false pos./neg. rates
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Application: comparing real sensors
• We obtained model parameters for three real sensors used in mapping:

– SICK LMS 200-30106 scanning laser rangefinder
– Polaroid 6500 series SONAR ranging module
– Sharp GPD12 infrared rangefinder

• “Laser-normalized” running time
– Extra work (time) required for a sensor to build a map of (expected)

quality equivalent to that built by the scanning laser rangefinder
– Depends only on sensor characteristics and environment density
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Simultaneous localization and mapping (SLAM)
• Odometry is notoriously noisy!

– Cannot simply build map based on odometry-estimated trajectory
– GPS is often not available (e.g., indoors)

• SLAM: Alternate mapping and localization steps:
1. Use sensor returns to improve pose estimate based on current map
2. Update the map with the sensor returns

p(xt|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior

= η p(zt|xt, nt)︸ ︷︷ ︸
measurement

∫
p(xt|xt−1, ut)︸ ︷︷ ︸

motion

p(xt−1|u1:t−1, z1:t−1, n1:t−1)︸ ︷︷ ︸
prior

dxt−1
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Landmark based particle filtering SLAM

1: loop
2: Move / sense / extract features
3: for all particles φi do
4: Project forward: xr,i

t ∼ p(xr
t |x

r,i
t−1, ut)

5: Do data association (compute ni
t), update map

6: Compute weight: ωi
t = ωi

t−1 × p(zt|xr,i
t , xm,i, ni

t)
7: end for
8: Resample (with replacement) according to ωi

ts
9: end loop
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x
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RBPF SLAM with sparse sensing

obstacle

range readings

ra
nge

re
ad

in
gs

obstacle

• Related work: partial observability

– Bearing-only SLAM (cameras) — accurate data association
– Leonard et al. (2002) — EKF, SONAR, stores recent trajectory in state

• Approach: extract features using multiscans

– Data from multiple poses
– Feature extraction is conditioned on trajectory
– Naı̈ve RBPF implementation: per-particle feature extraction
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SLAM with multiscans
1: loop
2: for m time steps: move and collect sparse scans
3: Extract features with multiscan data from last m steps
4: for all particles φi do
5: for k= t−m+1 to t: project pose forward: xr,i

k ∼ p(xr
k|x

r,i
k−1, uk)

6: Do data association, update map
7: Compute weight ωi

t
8: end for
9: Resample (with replacement) according to ωi

ts
10: end loop
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Multiscan SLAM result: Stanford

Multiscan SLAM ( ) Scan-matching SLAM ( )
Scan-matching result courtesy of Brian Gerkey.
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Prior knowledge in SLAM
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• Typical RBPF SLAM algorithms ignore
environment structure

• Often, measurements of a landmark inform
you about other landmarks

• Example: rectilinearity
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Prior information as pairwise constraints
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• Write landmark relationships as
pairwise relative constraints

• Use prior knowledge to do
inference on constraint
parameters (in particle filter)

• Enforce constraints separately
for each particle
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Related work — constrained SLAM

• Constraint inference: Rodriguez-Losada et al. (2006) — thresholding

• Enforcing a priori known constraints in EKF estimation:

– Durrant-Whyte (1988); Smith et al. (1990); Wen and Durrant-Whyte
(1992): constraints as zero-uncertainty measurements

– Csorba and Durrant-Whyte (1997); Newman (1999); Deans and
Hebert (2000b): relative maps, constraints enforce map consistency

– Simon and Chia (2002); Simon and Simon (2003): project
unconstrained state onto constraint surface

• Our work: first to enforce constraints in particle filtering SLAM
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Rao-Blackwellized constraint filter — overview
Landmark initialization — for each particle:

1: Inference: should new landmark be constrained with
respect to any other landmarks?

2: If so, create a superlandmark with the new landmark
and all constrained landmarks

3: Compute max. likelihood constrained parameter values
4: Condition unconstrained parameters on ML values of

constrained parameters

• Running time: asymptotically same as standard RBPF (linear in N)
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Real-world results: rectilinearity

Unconstrained: 100 particles Constrained: 20 particles

Unconstrained: 600 particles Constrained: 40 particles
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Estimation consistency in RBPF SLAM

• A SLAM filter is inconsistent if it significantly underestimates pose
and map uncertainty

• Inconsistency in a particle filter:
– Occurs when samples poorly represent the target distribution
– Bailey et al. (2006): RBPF SLAM algorithms are inconsistent in general
– Due mainly to frequent resampling and poor proposal distributions
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Related work — improving RBPF consistency
• Improved proposal: Montemerlo (2003); Grisetti et al. (2005)

– “FastSLAM 2”
– Use current measurement to compute proposal distribution
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• Effective sample size: Liu and Chen (1995); Grisetti et al. (2005)
– Only resample when particle weights are highly skewed

• Backup state: Stachniss et al. (2005)
– Detect entry into a loop and store current particle set
– After traversing loop, restore saved particle set to recover diversity
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Updating the pose history

• Key idea: a new measurement tells you something about the pose
history, not just the current pose

• Can’t update the entire pose history (computationally infeasible)

• But we can draw new pose samples over a fixed lag time

– Draw new samples for xr
t−L+1:t

– Update maps from t− L conditioned on new samples

• Contribution — two new techniques for RBPF SLAM:

– Fixed-lag roughening: MCMC moves of pose samples over fixed lag
– Block proposal: optimal joint distribution for poses over the lag time
– Efficient; main implementation difficulty is extra book-keeping
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Fixed-lag roughening

• After resampling, apply an MCMC move step to {xr,i
t−L+1:t}

• Fixed-lag Gibbs sampler for RBPF SLAM:

xr,i
k ∼ p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

1 t− L t
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Block proposal

• Draw {xr,i
t−L+1:t} from fully joint “optimal block proposal” distribution:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L)

1 t− L t
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Simulation results: sparse environment
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• 27 sec., no loops

• 50 Monte Carlo trials averaged for all results

Mapping with limited sensing 26



Norm. est. error sq. (NEES): (xr
t − x̂r

t)(P̂r
t)−1(xr

t − x̂r
t)T
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Unique samples of each pose: |{xr,i
k |u1:t, z1:t, n1:t}|, k = 1 . . . t
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SLAM on the Ratbots
• Ratbot mobile robot platform:

– Inexpensive (several hundred US$)
– Atmel ATMEGA64 8-bit, 16 MHz microcontroller
– 64 KB program memory, 4 KB SRAM, 64 KB

extended RAM
– Five Sharp GPD12 IR rangefinders

• RBPF SLAM implementation details:

– Fixed-point numbers
– Lookup tables
– Hand optimization of linear algebra
– Multiscan SLAM— overlap data collection and

processing
– Efficient resampling

• Experiments in progress
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Summary of contributions
• Theoretical:

– Generalized sensor model, generic occupancy grid mapping
– Bounds on ML map error in terms of sensor characteristics
– Analytical comparison of mapping capabilities of laser, SONAR, IR

• Particle filtering mapping algorithms:
– Multiscan particle filter for sparse arrays of range sensors
– Rao-Blackwellized constraint filter: inference and enforcement of

pairwise constraints in RBPF

– Rectilinearity constraints
– Fixed-lag roughening and the block proposal distribution: sample the

pose history over a fixed lag time

• Implementations:
– SLAM on a microcontroller (Ratbots)
– All algorithms implemented in full in a unified framework
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Future directions
• Sensing requirements for mapping:

– Realistic trajectories, pose uncertainty, structured environments
– More thorough definition and analysis of the “space of mapping

sensors”

• Exploration:
– Active mapping vs. passive mapping
– What is the best exploration strategy for a given sensor?
– Exploit motion to simulate a high-fidelity sensor with a low-fidelity one

• Filtering algorithms:
– Exploit relationship between SLAM and general filtering problem
– Practical scenarios: flexibility in trading off efficiency and accuracy

• Practical implementations:
– What computational shortcuts can we take?
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Final thoughts

• Right now, many mapping problems are “solved” if you throw enough $
at them

BUT

• Fundamental questions about the requirements for mapping are
important to answer

• Practical mapping with inexpensive robots — must handle limitations in:

– sensing
– computing
– memory
– energy
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Thanks for coming!



Related work: limited sensing

• Topological mapping: Acar et al. (2001); Tovar et al. (2003); Huang
and Beevers (2005)

• SONAR-based geometrical mapping: Wijk and
Christensen (2000); Zunino and Christensen (2001);
Leonard et al. (2002); Tardós et al. (2002)

• Bearing-only SLAM: Deans and Hebert (2000a); Bailey
(2003); Solá et al. (2005)

• Range-only SLAM (with RF beacons): Kantor and Singh
(2002); Kurth (2004); Djugash et al. (2005)



Sensors for mapping

Contact sensor array Zero-range, low-res, accurate, cheap

RF signal strength
Mid-range, no-res, inaccurate, medium-cost
no bearing information (range only)

Infrared array Short-range, low-res, accurate, cheap

SONAR array Mid-range, low-res, inaccurate, medium-cost



Sensors for mapping (cont.)

Monocular camera
Long-range, high-res, accurate, medium-cost
no range information (bearing only)

Stereo camera Long-range, high-res, accurate, high-cost

Laser rangefinder Long-range, high-res, accurate, high-cost



Basic algorithm (landmark based mapping)

1: loop
2: Move; update pose estimate based on odometry
3: Sense the environment
4: Extract features from the raw sensing data
5: Match features with the current map
6: Based on matches, update pose and map

estimates
7: Add unmatched features to the map
8: end loop



Sensor and environment models
• Environment: M× M grid of cells mij; cells

occupied (F) at rate d, E otherwise

• Trajectory: xr
t , t ∈ [0, T]; assumption: poses

drawn uniformly at random

• Sensor:

– Ring: ρ beams, angles βi = i2π
ρ + U[−σβ, σβ]

– Firing frequency F
– Beam: goes until detecting an occupied cell
– False negative rate εE, false positive rate εF

• Mapping: occupancy grid; cell measurements
depend on “region” in beam

– mij ∈ CF: bel(mij = F)+=p0
– mij ∈ CE: bel(mij = E)+=p0
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Obtaining a bound on expected map error

Bound expected # observations of a cell

↓

Compute likelihood that an observation is incorrect

↙ ↘

Conditions for map convergence Bound expected error in ML map



Bound on expected # observations

Let:

EE = ((1− d)(1− εE) + dεF) p(some cell in a beam registers as E)
EF = (d(1− εF) + (1− d)εE) p(some cell in a beam registers as F)

Expected # oab of times any cell mab is updated:

E[oab] ≥
2TFρ(∆β+σβ)

M2 ∑

⌈
r++σr

δ

⌉
τ=0 τ · pobs

where:

pobs ≥
{
E∆βτ2

E if τδ > σr
1 otherwise



Likelihood of an incorrect observation

Let: pf = min
{

1, ∆βEF
δ2

(
(τδ + σr)2 −max{0, τδ− σr}2

)}
If cell mij is unoccupied (E) the likelihood that any update to mij is
incorrect is:

p(inc|mij = E) ≤ ∑

⌈
r++σr

δ

⌉
τ=0 pobs · pf ·

(τδ+σr)2−max{0,τδ−σr}2

(τδ+σr)2

If cell mij is occupied (F) the likelihood that any update to mij is incorrect
is:

p(inc|mij = F) ≤ ∑

⌈
r++σr

δ

⌉
τ=0 pobs · pf ·

max{0,τδ−σr}2

(τδ+σr)2



Bound on expected ML map error

The map converges if pinc < 1/2

Let ν = ∑ij νij, where νij = 1 if the ML estimate for cell mij is incorrect,
and νij = 0 otherwise.

If pinc < 1/2:

E[ν] ≤ M2 exp
{
−2E[oab]

(
1
2 − pinc

)2
}

(Chernoff bound)



Approach of Leonard et al. (2002)

• Incorporate trajectory into state vector:

xt = [xr
t−m+1:t xm

t ]T = [xr
t−m+1 xr

t−m+2 . . . xr
t xm

t ]T

• Keep measurements from last m timesteps

• At each timestep, do feature extraction using zt−m+1:t

• Discard data when:
– It becomes too old
– It is used to extract a particular feature

• Advantage: features extracted as soon as enough data available

• Main disadvantage: computational



Multiscan SLAM approximations
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• Two big computationally motivated approximations:
1. Ignore correlations between measurements from multiple poses
2. Extract features using expected trajectory (picture)

• These hinge on pose uncertainty being small over m consecutive poses

• Alternatives:
– Adaptively choose m
– Extract features per-particle: only with very few particles
– Extract features “per-stratum”



Enforcing relative constraints
• Problem: (ri, θi), (rj, θj) are not independent if cij 6= ?

– Group constrained landmarks: Li = [r1 θ1 r2 θ2 . . . rn θn]T

– Rewrite, e.g.: Li = [r1 θ1 r2 g2(c1,2; θ1) . . . rn gn(c1,n; θ1)]T

– Filter on reduced state: Li = [r1 r2 . . . rn θ1]T

– Conditioned on θ1, the ris are independent

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t, xm,c|u1:t, z1:t, n1:t)
|xm,f|

∏
i=1

p(xm,f
i |xr

1:t, xm,c, z1:t, n1:t)



Sensitivity to cross-covariance
• Our approach:

1. Sample values for constrained
variables

2. Condition unconstrained variables
on sampled values

• Conditioning: sensitive to landmark
estimation inaccuracy

• Cross-covariance of Gaussian PDFs
must be accurately estimated

• Are EKFs good enough? (How
non-Gaussian are landmark PDFs?)



Map constraints improve trajectory estimation

ground truth normal SLAM rectilinearity prior
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Fixed-lag roughening

• After resampling, apply an MCMC move step to {xr,i
t−L+1:t}

• Fixed-lag Gibbs sampler for RBPF SLAM:

xr,i
t−L+1 ∼ p(xr

t−L+1|xr,i
1:t−L,t−L+2:t, u1:t, z1:t, n1:t)

. . .

xr,i
k ∼ p(xr

k|xr,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

. . .

xr,i
t ∼ p(xr

t|xr,i
1:t−1, u1:t, z1:t, n1:t)

p(xr
k|xr,i

1:k−1,k+1:t, u1:t, z1:t, n1:t) =

η
∫

p(zk|xr,i
k , nk, xm

nk
)︸ ︷︷ ︸

measurement

p(xm
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t)︸ ︷︷ ︸
landmark

dxm
nk

p(xr
k|xr,i

k−1, uk)︸ ︷︷ ︸
forward

p(xr
k|xr,i

k+1, uk+1)︸ ︷︷ ︸
backward



Block proposal

• Draw {xr,i
t−L+1:t} from joint “L-optimal block proposal” distribution:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L)

• How to do it: forward filtering/backward sampling (Chib, 1996)

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t)︸ ︷︷ ︸

sampling distribution

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)︸ ︷︷ ︸
forward filtering

p(xr
k+1|xr,i

k , uk+1)︸ ︷︷ ︸
backward model

– Filter forward using an EKF

– Sample xr,i
t ∼ p(xr

t |u1:t, z1:t, n1:t, xr,i
t−L)

– Compute sampling distribution for xr,i
t−1 and sample

– Continue back to t− L + 1

• Need to reweight particles: ωi
t = ωi

t−1 p(zt|xr,i
1:t−L, u1:t, z1:t−1, n1:t)



Extra simulation results: sparse environment
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• 27 sec., no loops

• 50 Monte Carlo trials averaged for all results



NEES ratio: NEES(alg) / NEES(FS2)
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# effective particles (N̂eff): 1/ ∑N
i=1

(
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Simulation results: dense environment
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• 63 sec., loop

• 50 Monte Carlo trials averaged for all results



Norm. est. error sq. (NEES): (xr
t − x̂r

t)(P̂r
t)−1(xr

t − x̂r
t)T
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NEES ratio: NEES(alg) / NEES(FS2)
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Unique samples of each pose: |{xr,i
k |u1:t, z1:t, n1:t}|, k = 1 . . . t
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